THE CIRCULAR LAW FOR SPARSE NON-HERMITIAN MATRICES

ANIRBAN BASAK* AND MARK RUDELSON'

ABSTRACT. For a class of sparse random matrices of the form A, = (& ;d: ;)7 =1, where {& ;} are
i.i.d. centered sub-Gaussian random variables of unit variance, and {d; ;} are i.i.d. Bernoulli random
variables taking value 1 with probability p,, we prove that the empirical spectral distribution of
An/\/np, converges weakly to the circular law, in probability, for all p,, such that p, = w(log®n/n).
Additionally if p, satisfies the inequality log(1/p») < c(lognp,)? for some constant c, then the above
convergence is shown to hold almost surely. The key to this is a new bound on the smallest singular
value of complex shifts of real valued sparse random matrices. The circular law limit also extends
to the adjacency matrix of a directed Erdés-Rényi graph with edge connectivity probability py,.

1. INTRODUCTION

For a n x n matrix B,, denote by Ai(By), A\a(Bn), ..., An(By) its eigenvalues. The empirical
spectral distribution (ESD) of B,,, denoted hereafter by Lp , is given by

1
Lp = — O,
Bn n; i

where §, is the dirac measure at z. If B, is a non-normal matrix (i.e. B, B} # B}B,) then its
eigenvalues are complex valued, resulting in Lp, being supported in the complex plane. Further-
more, when B,, is random its ESD is a random probability measure. Thus, to study the asymptotics
of ESDs of random matrices one needs to to define appropriate notions of convergence. This can be
done in one of the two following ways: If {1, } is a sequence of random probability measures such
that for every f € C(C), ie. f: C— R is bounded, [ fdu, — [ fdp in probability, for some
probability measure p (possibly random), then p, is said to converge weakly to u, in probability.
If fc fdun, — f(c fdu almost surely, then u, is said to converge to u weakly, almost surely.

The study of the ESD for random matrices can be traced back to Wigner [39, 10] who showed
that the ESD’s of n x n Hermitian matrices with i.i.d. centered entries of variance 1/n (modulo sym-
metry) satisfying appropriate moment bounds (for example, Gaussian) converge to the semicircle
distribution. The conditions on finiteness of moments were relaxed in subsequent works, see [0, 27]
and the references therein.

The rigorous study of non-Hermitian matrices, in particular non-normal matrices, emerged much
later. The main difficulties were the sensitivity of the eigenvalues of non-normal matrices under
small perturbations and the lack of appropriate tools. For example, Wigner’s proof employed the
method of moments. Noting that the moments of the semicircle law determine it, one computes
by combinatorial means the expectation and the variance of the normalized trace of powers of the
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matrix to find the asymptotics of the moments of the ESDs. The analogue of this for non-normal
matrices is to compute the mixed moments, i.e. compute

(1.1) /C whw'dLp, (w) = % zn: Ai(Bn)*\i(Bn)".
=1

For B,, non-normal, the RHS of (1.1) cannot be expressed as powers of traces of B,, and B}. So
the method of moment approach does not work. Another technique that works well for Hermitian
matrices is the method of evaluating limiting Stieltjes transform (see [5]). Since Stieltjes transform
of a probability measure is well defined outside its support, and the ESDs of non-normal matrices
are supported on C, their Stieltjes transform fail to capture the spectral measure.

In the 1950’s, based on numerical evidences, it was conjectured that the ESD of B,,//n, where
By, is an n X n matrix with i.i.d. entries of zero mean and unit variance, converges to the circular
law, the uniform distribution on the unit disk in the complex plane. In random matrix literature
this conjecture is commonly known as the circular law conjecture.

Using Ginibre’s formula for the joint density function of the eigenvalues Mehta [24] solved the
case when the entries have a complex Gaussian distribution. The case of real Gaussian entries,
where a similar formula is available, was settled by Edelman [18]. For the general case when there

is no such formula, the problem remained open for a very long time. An approach to the problem,
which eventually played an important role in the resolution of the conjecture, was suggested by
Girko in the 1980’s [22]. However mathematically it contained significant gaps. The first non-
Gaussian case (assuming existence of density for the entries) was rigorously treated by Bai [1],
and the first result without the density assumption was obtained by Goétze and Tikhomirov [23].
After a series of partial results (see [13] and the references therein), the circular law conjecture was
established in its full generality in the seminal work of Tao and Vu [37]:

Theorem 1.1 (Circular law for i.i.d. entries [37, Theorem 1.10]). Let M, be an n x n random
matriz whose entries are i.i.d. complex random variables with zero mean and unit variance. Then
the ESD of %Mn converges weakly to the uniform distribution on the unit disk on the complex

plane, both in probability and in the almost sure sense.

A remarkable feature of Theorem 1.1 is its universality. The asymptotic behavior of the ESD of
M, /+/n is insensitive to the specific details of the entry distributions as long as they are i.i.d. and
have zero mean and unit variance. Since the work of Tao and Vu, there have been numerous
attempts to extend the universality of Theorem 1.1 for a wider class of random matrix ensembles.
A natural extension would be to prove Theorem 1.1 for matrix ensembles with dependent entries.
This has been shown in [1, 2, 11, 25, 20].

Another direction to pursue is to study the asymptotics of the ESD of sparse matrices. Sparse
matrices are abundant in statistics, neural network, financial modeling, electrical engineering, wire-
less communications, neuroscience, and in many other fields. We refer the reader to [0, Chapter 7]
for other examples, and their relevant references. One model for sparse random matrices is the ad-
jacency matrices of random d-regular directed graphs with d = o(n) (for {a,} and {b,}, sequences
of positive reals, the notation a,, = o(b,) means lim,,_, o a,, /b, = 0). Recently in [7, 10] the circular
law conjecture was established for two different models of random d-regular directed graphs.

One of the most natural models for sparse random matrices is the Hadamard product of a
matrix of i.i.d. entries with zero mean and unit variance, and a matrix of i.i.d. Ber(p,,) entries,
with p, = o(1). In this paper we focus on the limiting spectral distribution of this class of sparse
matrices. When p, = n®! for some a € (0, 1), it has been shown that, under the assumption of
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the existence of (2+0)-th moment of the entries, the ESD of these sparse matrices (properly scaled)
converges weakly to the circular law, in probability and almost surely (see [23, 36]). Later in [11]
the assumption on the existence of (2 + ¢)-th moment was removed but the convergence was shown
to hold in probability.

In this paper, we prove that the circular law limit continues hold when p,, decays faster than a
polynomial (in n) rate. Namely, we show that under certain moment assumptions of the entries the
circular law limit holds for sparse non-Hermitian matrices whenever np,, grows at a poly-logarithmic
rate. Under an additional assumption on p, (see (1.2) below), the convergence is shown to hold
almost surely.

Before stating our result, let us recall the well-known definition of sub-Gaussian random variables.

Definition 1.2. For a random variable £, the sub-Gaussian norm of £, denoted by ||£||y,, is defined
as

1€lly, = sup E-2IEll,  where |I€]lx = (EJE[*)!/.

If the sub-Gaussian norm is finite, the random variable £ is called sub-Gaussian.

We will use the standard notation: for two sequences positive reals {a,} and {b,} we write
an = w(by) if b, = o(ay,) and a, = O(by,) if limsup,,_, . an /by, < 00 .
The following is the main result of this article.

Theorem 1.3. Let A, be an n x n matriz with i.i.d. entries a; ; = 0; ;& j, where &; 5, i,j € [n] are
independent Bernoulli random variables taking value 1 with probability p, € (0,1], and &, i,j € [n]
are i.1.d. centered sub-Gaussian with unit variance.

(i) If pn is such that np, = w(log®n) the ESD of A, /\/mpp converges weakly to the circular law,
as n — 00, in probability.

(it) There exists a constant c1.3, depending only on the sub-Gaussian norm of {&; ;}, such that if
pn satisfies the inequality

(1.2) log(1/pn) < c1.3(log npy)?

then the conclusion of part (i) holds almost surely.

It will be seen in Section 2 that a key to the proof of Theorem 1.3 is a uniform bound on
Smin(An — wy/mpy1,) for Lebesgue a.e. w € C, where spiy(-) denotes the smallest singular value.
We initiated this work in [¢] and showed that the desired bound holds when w € R. The result of
[%] relied on identifying the obstacles of arithmetic nature by methods of Fourier analysis, and using
geometry to show that with high probability none of these obstacles realizes. However, even that the
matrix A, is real valued, the extension to w € C\R makes the set of potential arithmetic obstacles
so rich that it cannot be handled within the framework of the previous argument. This required
developing new methods providing both a more precise identification of the arithmetic obstacles
arising from the complex structure and entropy bounds showing that with high probability these
obstacles are avoided.

The main part of this paper is devoted to find the desired bound on sy,;;, with a probability bound
strong enough to apply Borel-Cantelli lemma in order to deduce the almost sure convergence of
Theorem 1.3(ii). To remove the condition (1.2) one needs an improvement of [, Proposition 3.1].
See Remark 7.4 for more details.

It is easy to see that if p, = 1°5™ then the number of zero columns of A, is positive (and hence

n b
logn
n

Smin(A4y) = 0) with probability bounded away from zero. So

is a natural barrier in this set-up.
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To extend the bound on sy, beyond this barrier one needs to analyze the the smallest singular of
the adjacency matrix of “core of the graph”, when A, is viewed as the adjacency matrix of directed
random weighted graph. We leave this effort to future ventures.

Another key ingredient for the proof of Theorem 1.3 is the bound on the smallish singular values
of (A, —w\/npyI,) (see Theorem 2.12). This is derived by relating the inverse second moment of
the singular values to that of the distance of a random vector from a random subspace where the
dimension of the random subspace is n —m with m = o(n/logn). Concentration inequalities yield
a probability bound exp(—cmp), for some ¢ > 0. To accommodate an union bound we then need
np = w(log?n). Alternatively, one can try to prove an analogue of [31, Theorem 2.4] for the sparse
set-up. But this would again require an improvement of [3, Proposition 3.1].

Remark 1.4 (Sub-Gaussianity assumption I). The sub-Gaussianity assumption of Theorem 1.3 is
used in Theorem 2.2 to show that |A,| = O(,/npn), where || - || denotes the operator norm. From
[8, Remark 1.9] we note that if {; ;} are such that

(1.3) E\gi,ﬂh < ChpPh for all h > 1, and for some constants C' and £,

then [|A,| = O(\/npn), for all p, satisfying np, = Q((logn)??) (for two sequences of positive
reals {a,} and {b,} we write a, = Q(b,) if b, = O(ay,)). The case § = 1/2 corresponds to the
sub-Gaussian random variables. So we conclude that if {; ;} satisfies the moment assumption
(1.3), for some 3 > 1/2, then the conclusion of Theorem 1.3(i) holds for all p,, satisfying np, >
w(log?n), Q((logn)?P). Tt is easy to check that if p, satisfies (1.2) then np, = w((logn)??). Hence,
the conclusion of Theorem 1.3(ii) also holds under the moment assumption (1.3). To retain the
clarity of presentation we prove Theorem 1.3 for sub-Gaussian random variables.

Remark 1.5 (Sub-Gaussianity assumption II). Similar to here, in [31] bounds on sy, for dense
matrices were derived using the sub-Gaussianity assumption where it was used to find a bound
on ||A,]|. In a recent work of Rebrova and Tikhomirov [29] the sub-Gaussianity assumption was
removed and it was shown that the bounds of [31] continue to hold only under the finiteness of the
second moment assumption (see [29, Theorem B]). One may adapt the techniques of [29] to the
sparse set-up to remove the sub-Gaussianity assumption from Theorem 2.2 and hence from Theorem
1.3. We refrain from doing it here in order to keep this already long paper to a manageable length.

Remark 1.6 (Circular law limit for shifted sparse matrices). It is well known that the spectrum
of normal matrices is stable under small perturbation (see [3, Lemma 2.1.19] and [5, Lemma 2.2]).
However, for a general non-normal matrix its spectrum highly sensitive to small perturbations, for
example see [35, Section 2.8.1]. So there are no analogues of [3, Lemma 2.1.19] and [5, Lemma
2.2] for an arbitrary non-normal matrix. Nevertheless, in [11] it was shown that if D, any n x n
matrix with rank(D,) = o(n) and Tr(D, D};) = O(n*p,) then the ESD of (A, + D,)/\/np, admit
a circular law limit. Investigating our proof one can deduce that the ESD of (A, + Dy)/\/np, have
a circular law limit for any sequence real diagonal matrices {D,} such that ||D,| = O(\/np,) and
Tr(D2) = o(n?p,). It is possible to modify the proof of Theorem 1.3 to establish the circular law
limit for general shifts. We do not pursue this direction here.

We next show that the circular law limit holds for the adjacency matrix of a directed Erd6s-Rényi
random graph which may be of interest in computer science and graph theory. Let us begin with
the relevant definitions.

Definition 1.7. Let G,, be a random directed graph on n vertices, with vertex set [n], such that for
every i # j, a directed edge from ¢ to j is present with probability p, independently of everything



THE CIRCULAR LAW FOR SPARSE MATRICES 5

else. Assume that the graph G, is simple, i.e. no self-loops or multiple edges are present. We call
this graph G, a directed Erdés-Rényi graph with edge connectivity probability p. For any such
graph G,, we denote Adj,, := Adj(G,) to be its adjacency matrix. That is, for any 4,7 € [n],

Adin(i.5) = {
Theorem 1.8. Let Adj,, be the adjacency matrix of a directed Erdds-Rényi graph, with edge con-

nectivity probability p, € (0,1). Denote p, := min{p,, 1 — p,}.

(i) If p, is such that np, = w(log?n) the ESD of Adj,/r/npn(1 —p,) converges weakly to the
circular law, as n — 0o, in probability.

(ii) There exists an absolute constant c1.g such that if p, satisfies the inequality

(1.4) log(1/pn) < c1.8(lognpy)?

then the conclusion of part (i) holds almost surely.

1 if a directed edge from i to j is present in G,
0 otherwise.

Remark 1.9. Theorem 1.3 and Theorem 1.8 find the asymptotics of the eigenvalues of a large
class of sparse non-Hermitian random matrices at a macroscopic level. An interesting question
would be to prove the universality of the eigenvalue distribution at the microscopic level. This has
been shown for a wide class of Hermitian random matrices (see [10] and references therein). For
dense non-Hermitian random matrices, it was shown in [14] that the local circular law holds. In a
forthcoming article [9] we establish the same for sparse non-Hermitian random matrices.

Outline of the paper. Section 2 provides a brief outline of the proof techniques of Theorem 1.3.
We begin Section 2 with a replacement principle (see Lemma 2.1) which is a consequence of Girko’s
method. The replacement principle allows us to focus only on the integrability of log(-) with respect
to the ESD of BY := [(B, — wl,)*(B, — wl,)]/? for w € C, where B, is any random matrix. To
implement this scheme one requires a good control on smin(éﬁ” ) as well as on its smallish singular
values. One also needs to establish weak convergence of the ESDs of BY.

The required control on sy,;, and smallish singular values are derived in Theorem 2.2 and Theorem
2.12, and we outline of their proofs in Section 2.1 and Section 2.2, respectively. The limit of the
ESDs of BY is derived in Theorem 2.13 with the outline of the proof appearing in Section 2.3.

Section 3 - Section 7 are devoted to the proof of Theorem 2.2. Since spyin (M) equals the infimum
of [[Mpull2 (|| - |2 denotes the Euclidean norm) over all vectors u of unit ¢ norm, we split the unit
sphere into three parts: compressible vectors, dominated vectors and the complement of their union.
The compressible vectors and dominated vectors are treated with results from [8]. So the majority
of the work is to control infimum over the vectors that are neither compressible nor dominated.
Using a result of [31] (see Lemma 3.5 there) this boils down to controlling the inner product of
the first column of (A, — w/np,1,) and the vector normal to H’, the subspace spanned by the
last (n — 1) columns of (A, — w/np,1y,). In Section 7, it is shown that the last assertion can be
proved using Berry-Esséen Theorem. However, the probability bounds obtained from Berry-Esséen
Theorem is too weak to prove the almost sure convergence of Theorem 1.3(ii).

In Section 3 - Section 6, we derive a better probability bound that is suitable for the proof of
Theorem 1.3(ii). We split the set of vectors into two categories: genuinely complex and essentially
real. Roughly speaking, the set of essentially real vectors are those for which the real and the
imaginary parts are almost linearly dependent, and its complement is the set of genuinely complex
vectors.
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In Section 3, we show that the vector normal to H” has a non-dominated real part, with high
probability. We construct a net of small cardinality for the genuinely complex vectors in Section
4. We then use this net in Section 5 and results of Section 3 to show that with high probability,
the normal vector cannot be a genuinely complex vector with a sub-exponential (in /np,) LCD.
A similar result for essentially real vectors is obtained in Section 6. Then we finish the proof of
Theorem 2.2 in Section 7.

In Section 8 we prove Theorem 2.12. The key idea is to show that the distance of any row of A,
from any given subspace of relatively small dimension cannot be too small with large probability.
This observation together with [37, Lemma A.4] finishes the proof.

Section 9 is devoted to the proof of Theorem 2.13, which establishes the weak convergence
of the empirical measure of the singular values of (A,/\/np, — wl,). The weak convergence is
established by showing the Stieltjes transform converges to the appropriate limit. To prove the latter
convergence, we use the formula for the inverse of a block matrix and Talagrand’s concentration
inequality to show that the Stieltjes transform satisfies an approximate fixed point equation. From
this the result follows using a uniqueness property of the limiting fixed point equation.

In Section 10, combining the results of Section 7 - Section 9, we finish the proof of Theorem 1.3.
Then extending Theorem 2.2, Theorem 2.12, and Theorem 2.13, applicable to set-up of Theorem
1.8, we complete the proof of Theorem 1.8 in Section 11.

2. PRELIMINARIES AND PROOF OUTLINE

In this section we provide an outline of the proof of Theorem 1.3 and introduce necessary defini-
tions and notation. As mentioned in Section 1, the standard technique to find the limiting spectral
distribution of a non-normal matrix is the Girko’s method. We refer the reader to [7] for a detailed
description of it. The utility of Girko’s method, in the context of our set-up, can be captured by the
following replacement principle. First we introduce few definitions. A sequence of random variables
{X,} is said to be bounded in probability if

im liminf P(|X,| < K) =1

1
K—o00o n—oo

and {X,} is said to be almost surely bounded if
P(limsup | X,,| < 00) = 1.

Next, for a matrix By, we denote || By||, its Frobenius norm, i.e. || By|l, := /Tr(B};By).

Lemma 2.1 (Replacement lemma). (a) Let B,(ll) and B,(LQ) be two sequences of n x n random ma-
trices, such that
(i) The expression

1 2 1 2
(2.1) — HBS) ‘ + - HB}P ’ is bounded in probability,
n 2 N 2

(i1) For Lebesgue almost all w € D C Be(0,R) C C, for some domain D and some finite R,
1 1
(2.2) —log | det(BY — wl,)| — =log|det(B® —wl,)| =0, in probability.
n n
Then for every f € C2(C) supported on D,

(2.3) /f(z)dLBibl)(’LU) - /f(z)dLBgm (w) =0, in probability.
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(b) If (2.1) is almost surely bounded and (2.2) holds almost surely then (2.3) holds almost surely
as well.

Lemma 2.1(a) was proved in [7]. Repeating the proof of [7, Lemma 10.1] one can derive Lemma
2.1(b). The replacement principle had already appeared in random matrix literature (see [37,
Theorem 2.1]). However, [37, Theorem 2.1] requires a uniform control on syin(A, — wy/npl,) for
Lebesgue almost every w € C. Theorem 2.2 (see below) provides such a control only when w is
away from the real line. Therefore we need to use Lemma 2.1 instead of [37, Theorem 2.1].

We apply Lemma 2.1 with Bgl) = \/%An and B,(f) which is the matrix of i.i.d. centered

complex Gaussian entries with variance 1/n. The assumption (i) is straightforward to verify: it

follows from laws of large numbers. It is well known that X log | det(B,(f) — wly)| admits a limit.
Hence, establishing assumption (ii) of Lemma 2.1 boils down to showing that log(-) is integrable

with respect to the empirical measure of the singular values of BS) —wl,. As log(-) is unbounded
near zero, one needs to establish the weak convergence of the empirical measure of the singular
values, find bounds on spin, and show that there are not many singular values in an interval near
zero (the unboundedness of log(-) near infinity is handled by assumption (i) of Lemma 2.1). These
are the three ingredients of the proof of Theorem 1.3.

2.1. Smallest singular value. The desired bound on Sy, (A, — /nprwly,) is derived in the
theorem below.

Theorem 2.2. Let A, be an n x n matriz with zero diagonal and i.i.d. off-diagonal entries a;; =
i j&ij, where {6;;} are independent Bernoulli random variables taking value 1 with probability
pn € (0,1], and {&; ;} are i.i.d. centered sub-Gaussian with unit variance. Fix R > 1, r € (0,1] and
let D, be a diagonal matriz such that ||Dy|| < R\/np, and Im(D,,) = r'\/npyL, for some r’ with
|7'| € [r,1]. Then there exist constants 0 < c2.9,C2.2,Ch5,Ca2,C%4,Caa < 00, depending only on
R,r, and the sub-Gaussian norm of {& ;}, such that for any € > 0 we have the following:
(1) If B
S Caalogn

n — ’
n

A 1 1/, n /
P Smin(An+Dn) < cpo€€xp —CQ.QM \/p> <et 02,2 .
(i1) Additionally, if

then

log(1/py) < €2.2(log npy)?,
then

_ log(1/p, -
P (Smin(An + D) < co0eexp <—CQ.20g(/p)) p

) < e+ exp(—cho/npn).
log(npn) > ( 2.2 )

n

Since the diagonal of the matrix Adj,, is zero (recall Definition 1.7), in Theorem 2.2 we have
taken the diagonal of A, + D,, to be non-random, so that the set-up of both Theorem 1.3 and
Theorem 1.8 fits this general framework. To apply Theorem 2.2 in the proof of Theorem 1.3, we
simply condition on the diagonal and later take an average over the diagonal entries. Note that from
Theorem 2.2 we obtain a uniform control on smin(A, — \/npwl,) for w’s satisfying [Imw| € [r, 1]
(hereafter, for brevity, we will often write p instead of p,,).
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Similar to [%], without loss of generality, we can assume that p < ¢(K + R)~2, for some small
positive constant c¢. For larger values of p the entries a;; have variance bounded below by an
absolute constant. In such case, we can ignore sparcity and regard entries A;; as i.i.d. centered
subgaussian random variables whose variance is bounded below.

To prove Theorem 2.2 we follow the same scheme as in [8] and borrow some of its results.
Recalling the definition of the smallest singular value we have

Smin(lzln + Dn) = eiélnf_l H(A” + Dn)2H2 )
Zeoe

where S¢7! = {z € C" : ||z||, = 1}. Thus, to bound s, we need lower bound on this infimum. To
obtain such a bound we decompose the unit sphere into compressible, dominated, and incompress-
ible vectors, and obtain necessary bounds on the infimum on each of these parts separately. The
definitions of compressible, dominated, and incompressible vectors are borrowed from [%]. How-
ever, we now need to treat complex shifts of the matrix A, which necessitates a straightforward
modification of those definitions to accommodate vectors with complex valued entries. We start
with the definition of compressible and incompressible vectors.

Definition 2.3. Fix m < n. The set of m-sparse vectors is given by
Sparse(m) := {z € C" | |supp(z)| < m},

where |S| denotes the cardinality of a set S and supp(-) denotes the support. Furthermore, for
any ¢ > 0, the vectors which are d-close to m-sparse vectors in Euclidean norm, are called (m, d)-
compressible vectors. The set of all such vectors, hereafter will be denoted by Comp(m,d). Thus,

Comp(m, ) := {z € S{! | Jy € Sparse(m) such that ||z — y||, < 5}

The vectors in Sg_l which are not compressible, are defined to be incompressible, and the set of
all incompressible vectors is denoted as Incomp(m, 9).

Next we define the dominated vectors. These are close to sparse vectors but in a different sense.

Definition 2.4. For any z € S¢ ', let 7. : [n] — [n] be a permutation which arranges the moduli
of the coordinates of z in an non-increasing order. For 1 < m < m’ < n, denote by Zm:my) € C"
the vector with coordinates

Z[mm’](]) = Z(]) ’ l[mm’](ﬂ-z(j))
In other words, we include in 2.,/ the coordinates of z which take places from m to m’ in the
non-increasing rearrangement of its moduli. For a < 1 and m < n define the set of vectors with
dominated tail as follows:

Dom(m7a) = {Z € S(TCL_1 ‘ Hz[m-i—l:n]HQ < a\/anz[m-i-ln]uoo}

Note that by definition, Sparse(m) N Sg_l C Dom(m, a), since for m-sparse vectors, 2j;, 1. = 0.

While studying the behavior of sy, of real shifts of A, in [3], we noted that the control of the
infimum over compressible and dominated vectors can be extended when they are viewed as subsets
of SE71 (cf. [8, Remark 3.10]). So we only need to control the infimum over vectors that are neither
compressible nor dominated. The infimum over the incompressible vectors is tackled by associating
it with the average distance of a column of the matrix A,, from the subspace spanned by the rest
of the columns. We use the following result:
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Lemma 2.5 (Invertibility via distance [31, Lemma 3.5)). For j € [n], let A, ; € C* be the j-th
column of Ay, and let Hy; be the subspace of C" spanned by {Ay i € [n]\{j}}. Then for any
g,p>0, and M < n,

(2.4) P < inf szlnz
z€Incomp(M,p)

n
2 |P 1 o
‘2 <ep n> < Mjg_l P (dlSt(AnJ,Hn,j) < p\/ﬁ;) .

We should mention here that Lemma 2.5 can be extended to the case when the event on the LHS
of (2.4) is intersected with an event 2, and in that case Lemma 2.5 continues to hold if the RHS of
(2.4) is replaced by intersecting each of the event under the summation sign with the same event
Q2 (see also [8, Remark 2.5]). We will actually use this generalized version of Lemma 2.5.

In order to apply Lemma 2.5 in our set-up, denote by B”"~! the (n — 1) x n matrix obtained
by collecting the last (n — 1) rows of (A, + D,)". Hereafter, for brevity, we will often write B”
instead of BP"~1. We note that any unit vector z such that BPz = 0 is the vector normal to the
subspace spanned by the last (n — 1) columns of (A4, + D,). Thus, applying Lemma 2.5 and the
fact that the columns of A,, are i.i.d (ignoring the zero diagonal), we see that it is enough to find
bounds on <A£1, z), such that B”z = 0, where Aﬁl is the first column of (A4, + D).

The small ball probability bounds on (Ag 1, #) depend on the additive structure of the vector z.

Following [3], we see that with high probability, we can assume that any z € Ker(BP) is neither
compressible nor dominated, where Ker(B?) := {u € C" : BPu = 0}. Therefore, it is enough to
obtain estimates on the small ball probability for incompressible and non-dominated vectors. To
this end, we define the following notion of Lévy concentration function:

Definition 2.6. Let Z be random variable in C". For every ¢ > 0, the Lévy concentration function
of Z is defined as
L(Z,e) = sup P(||Z — u|, < ¢).
ueCn

The Berry-Esséen bound of [28, Theorem 2.2.17] yields a weak control on Lévy concentration
function which is enough to prove Theorem 2.2(i). To prove Theorem 2.2(ii) a significant amount
of additional work is needed which is the key contribution of this paper.

To obtain a strong probability bound on the Lévy concentration function, the standard approach
is to first quantify the additive structure present in an incompressible vector via the definition of
least common denominator (LCD). When the LCD is large, one can derive a good bound on the
Lévy concentration function using Esséen’s inequality [20] (see also [38, Theorem 6.3]). However,
Esséen’s inequality does not yield a strong small ball probability estimate for vectors with small
values of LCD. Nevertheless, these vectors are shown to admit a special net of small cardinality and
therefore one can still apply the union bound to complete the proof. For example, see [3, 31, 32].
One would hope to carry out the same program here. However, when we view the incompressible
and non-dominated vectors of small LCD as a subset of Sg_l, its real dimension is twice as large as
in the proof [%, Proposition 4.1]. On the other hand, for the real-valued random variables in A,
one does not expect to obtain better control on the Lévy concentration function. Thus the proof
of [3, Proposition 4.1] breaks down as the bounds on the Lévy concentration function and the size
of the net do not match (see also [¢, Remark 4.5]).

To tackle this obstacle we decompose the vectors according to the angle between their real and
imaginary parts. More precisely, we define the real-imaginary correlation as follows:
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Definition 2.7. Let z € C™ for some positive integer m. Denote V := V(z) := (ZI), where
z = x + iy. Then we denote the real-imaginary correlation of z by

d(z) = (det(VVT)>1/ °

If a vector z € Sgil has a large value of d(z), then we call this vector genuinely complex,
whereas vectors with small real-imaginary correlations are termed essentially real vectors (See (5.1)
and (6.1) for a precise formulation). The real and imaginary parts of essentially real vectors are
almost linearly dependent. This fact allows us to construct a net whose cardinality is a polynomial
of degree n in terms of the mesh. Therefore, one can use the small ball probability estimates from
[3] to show that with high probability, there does not exist any essentially real vector in the kernel
of BP with a small LCD.

The analysis of genuinely complex vectors is more delicate. Following the recent work of [33] we
define a notion of a two-dimensional LCD and using [33, Theorem 7.5] obtain better bounds on the
Lévy concentration function.

Definition 2.8. For y > 0, denote log;(y) :=logy - I(y > e). Fixing L > 1, for a non-zero vector
z € R™, we set

9
2.5 Di(z) :=inf{ 6 > 0: dist(6z,Z™) < 2°L4/log 161l .
L6

If V is a 2 X m matrix, define

VTo
Dy(V) := inf {HQb 0 eR? dist(VT6,2™) < Ly/log, | 28LH2 } .

We will call the first version of the LCD one-dimensional, and the second one two-dimensional.
This explains the subscripts 1 and 2 in the notation above. Also note that D;(-) matches with the
definition of the LCD used in [8] up to constants.

Note that D;(-) and Dy(-) are defined for real-valued vectors and matrices, respectively. However,
both these notions can be extended for complex valued vectors by the following simple adaptation.

Definition 2.9. Consider a complex vector z = x +iy € C™. Denote Z := #(z) := (§) € R*" and
define a 2 x m matrix V := V(z) := (f}) Using these two different representations of z € C™,

we now define:

Dy(z) := Dy(V) and Di(z):= Di(2).

From Definition 2.8 we see that Dy(V') is defined in terms of two different norms: ||f||, and
HVTQHQ. To take advantage of both norms, we introduce the following auxiliary quantity.

Definition 2.10. For a real-valued 2 x m matrix V, define

= : s — < .
A(V) hgﬂf{uv 9H2 dist(VT0,2) < L\[logy 2, [0l < 7Da(V)

As before, for a z € C™, we define A(z) := A(V') where V = V(2). It is easy to see that
(2.6) d(z)D2(z) < A(z) < Do(2).
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Remark 2.11. Similar to [¢] we will take L = (dop)~ /2, where 6y € (0,1) is a constant such
that £(£6,¢) < 1 — dgp, for all € < g, £ is a random variable with unit variance and finite fourth
moment, 6 ~ Ber(p) independent of &, and € € (0,1). See [3, Remark 2.7] for more details.

Equipped with the definitions of LCDs we can now finish the outline of the proof of Theorem
2.2. Using a recent result of [33] (Theorem 7.5 there) we show that the small ball probability
bound of genuinely complex vectors decays roughly as the inverse of the (2n)-th power of the
two-dimensional LCD (see the bound in (5.8)). This probability bound nicely balances with the
cardinality of the net of genuinely complex vectors for which A(zgpnan)/L is large, where zgman is
the part of z containing the “smallest” coordinates in the absolute value. It allows us to take the
union bound over the net of such vectors. To treat the remaining set of genuinely complex vectors,
using results from [5], we show that there cannot exist a vector z € Ker(B”) with a dominated
real part, with high probability. This additional observation then shows that for any z € Ker(BP?)
the quantity A(zgman)/L must also be large. This finishes the outline of the proof of Theorem 2.2.

2.2. Intermediate singular values. We also need to show that there are not too many singular
values of (A, — w,/nply,) in a small interval around zero. The following theorem does that job.
Before stating the theorem, for i € [n], let us denote s;(+) to be the i-th largest singular value.

Theorem 2.12. Let A, be an n x n matriz whose entries are {&; ;6; 1} ;_ where {& ;}7;_; are
i.i.d. with zero mean and unit variance, and {6;;};';_, are i.i.d. Ber(p) random variables. There

exist constants ca.12 and Co12' such that the following holds: Let 1) : N +— N be such that P(n) <n
and min{py(n),¥?(n)/n} > Cs12logn. Then for any w € Bc(0,1) we have

nt A i 2
| | i o < — —.
P {sn i < D wan> < 02'1271} <3

i=3¢(n)

To prove Theorem 2.12 we follow the approach of [12, 37, 11]. We first show that the distance
of any row of A, from any given subspace, of not very large dimension, cannot be too small with
large probability. This observation together with a result from [37] finishes the proof.

2.3. Weak convergence. Recall that to show the integrability of log(-) we further need to establish
the weak convergence of the empirical measure of the singular values of %An — wl,. Define

Vp

w 0 ﬁAn —wl,

(2.7) Al = REPT 0
VnpTTm "

and denote by vy the ESD of A}Y. It can be easily checked that v}y is the symmetrized version of
the empirical measure of the singular values J%An — wl,. Thus, it is enough to prove the weak
convergence of v}
Theorem 2.13. (i) Let A, be an n x n matriz with entries a;; = 0;; - & j, where §;; are i.i.d.
Bernoulli random variables with P(6; ; = 1) = p, and & ; are centered i.i.d. random variables with
10%). Fiz any w € Bc(0,1). Then there exists a probability measure
such that v}Y converges weakly to V%, in probability.

(i) If additionally {&; ;}7 ;-1 have finite fourth moment and 3¢ 1(n?p)~! < oo then the above
convergence holds almost surely.

unit variance. Assume p = w(

w
VOO

Lthe constants ¢2.12 and Cb.12 can potentially depend on the tail of the distribution of {£;}i;.
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To prove Theorem 2.13 we first apply a standard truncation technique which shows that it is
enough to prove the weak convergence of v to vy for bounded {§; ;}}';_; (see Lemma 9.1). This
truncation argument requires the additional assumptions of part (ii) of Theorem 2.13 to establish
the almost sure convergence. Now turning to the case of bounded {gi,j}ijlv we see that AY is
a Hermitian matrix. Therefore, it suffices to show the convergence of Stieltjes transform of the
ESD of AY (for example, see [3, Theorem 2.4.4]). To this end, recall the definition of the Stieltjes
transform of a probability measure.

Definition 2.14. Let p be a probability measure on R. Its Stieltjes transform is given by

Gu(O)= [ —zdul@),  CeCR.

We will write m,, to denote the Stieltjes transform of v’. Therefore we see that m,(() =
my (¢ w) = 5 Tr (AY — ¢I5,)"". We then need to identify the limit of m,,(-). When B,, is a matrix
consisting of i.i.d. entries of zero mean and unit variance, with certain moment assumptions, the
Stieltjes transform of the ESD of

0 ﬁBn —wl,
J=Bn —wl, 0
is known to converge to mq(+), where mqo(+) is the unique root of the equation
(2.8) P(m) :=m(m+¢)* +m(l — Jwl*) + ¢ =0,
with positive imaginary part on C* := {£ € C : Im¢& > 0} (see [4, 23]). It is also known that

the ESD of B,,/y/n converges to the circular law. Since the ESD of A4, /,/np also admits the same
limit, the Stieltjes transforms {m,,({) }nen should have the same limit m..(¢). This is shown in the
theorem below.

Theorem 2.15. Let A, be an nxn matriz with entries a; j = 0; j-& j, where d; ; are i.i.d. Bernoulli
random variables with P(6; ; = 1) = p, and & j are bounded i.i.d. random variables with zero mean
and unit variance. Fix any C > 1 and denote

T = {¢ € C" N Be(0,4C) : Im ¢ > C}.

If np = w(logn), then there exists an absolute constant Ca.15 such that for any ¢ € I, . we have
mp () = Moo(C) almost surely.

To prove Theorem 2.15 we use the formula for the inverse of a block matrix to first derive
equations involving entries of the inverse of (AY — (Ia;,). Then using Talagrand’s concentration
inequality we identify the dominant and negligible terms from those equations, which allows us to
deduce that P(m,(¢)) = o(1) for all large n. Finally using a uniqueness property of the roots of
the equation P(m) = 0 (see Lemma 9.10) we deduce that |m,(¢) — meo(¢)| = o(1) completing the
proof of Theorem 2.15.

Finally to deduce the weak convergence of v,y to v from Theorem 2.15 we need the following
proposition.

Proposition 2.16. Let {u,} be a collection of probability measures on R (possibly random) and
mn(-) be the Stieltjes transform of pu,. Suppose my(C) — m(() in probability (almost surely), as
n — oo, for all ( € I and some C > 0, where m(-) is the Stieltjes transform of a (non-random,)
probability measure p on R. Then p, converges weakly to p in probability (almost surely).
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The proof of Proposition 2.16 is standard. Indeed, from the proof of [3, Theorem 2.4.4(c)] it
follows that it is enough to show the convergence of m,,({) to ms(¢) for all { € €, where ¥ C C\R
is such that it has an accumulation point ¢ € C\R.

3. THE STRUCTURE OF THE KERNEL: VECTORS WITH NON-DOMINATED REAL PART

Recall from Section 2.1 that to prove Theorem 2.2 the main challenge is to show that there
does not exist a genuinely complex vector z € Ker(B”) with a small two-dimensional LCD. As a
first step we show that for any z € Ker(BP), its real part must have a non-dominated component
with high probability. This is shown in the following result, which is the main result of this
section. Before stating the result let us introduce the following notation: For some M < n/2,
to be determined during the course of the proof, we denote by small(z) the set of the (n — M)
coordinates of z having the smallest absolute values. The ties are broken arbitrarily. We also write

Zsmall = Tsmall T 1Wsmall ‘= Zsmall(z)-
Proposition 3.1. Let A,, be a matriz with zero diagonal and i.i.d. off-diagonals a;; = &j0i;, where

{&;} are i.i.d. centered random variables with unit variance and finite fourth moment, and {d;;}
are i.i.d. Ber(p) random variables. Set

fo = Fog 1/(81?)} '
log \/pn
Fiz r € (0,1] and R > 1 such that Im (D,,) = +'\/npl, with |r'| € [r,1] and ||D,| < R/np. Fizx
another positive real K > 1. Then there exist constants Cs1, 53_1, c3.1, and ¢3.1, depending only on
r,R, K, and the fourth moment of {&;;}, such that the following holds: Let 1 < pn < p~', and set
M = Cyyp?p~2p~t. If

(3.1) czap’pn > 1,
then, for p := (Cs.1(K + R)) %5, we have
(3.2)
p( 3 K D n—1 . Re(zsmall) -1,1/2 ) c
zeKer(BY)NSE m >u ' p/? and HAnH < Ky/np | < exp(—cs31np).
small) (|2 || oo

Remark 3.2. For clarity we only prove Proposition 3.1 for v/ € [r,1]. It will be evident that the
proof of the case r’ € [—1, —r] is exactly same. So we spare the details.

The key to the proof of Proposition 3.1 is in showing that if the real part of a vector z is
compressible then HBD 2H2 cannot be too small. This is derived in the following lemma:

Lemma 3.3. Let BP, A, p, K,R,r, and r' be as in Proposition 3.1. Then there exist constants
0 < c33,c55,04 4,033 < 00, depending only on K, R,r, and the fourth moment of {&; ;}, such that
for any p~t < M < ¢y 3n/log(1/p),
PEz=x+1iy € Sgil : HBDZH2 < c3.3p/Np,
||xsmallH2 < C{gl.gp, and HAnH < K\/ nl)) < eXp(_EB.Snp)-

Before going to the proof of Lemma 3.3 let us introduce a notation. Write Re (B”) to denote
the real part of the matrix B”. Recalling the definition of B from Section 2.1 we see that its rows
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are the last (n — 1) columns of A, + D,,. Since A, is a real valued matrix we see that the rows of
Re (BP) are the last (n — 1) columns of A, + Re (D,,). This, in particular, implies that Im (BP),
the imaginary part B is non-random.

To prove Lemma 3.3 we borrow results from [3]. In [8, Proposition 3.1] we showed that, with
high probability, there does not exist any real-valued compressible or dominated vector z such that
HRe (BP )zH2 is small. In [2, Remark 3.10] it was also argued that the same conclusion holds for
HBD sz when z is now allowed to be complex valued. We will need both these results to prove
Lemma 3.3. For completeness we state it below.

Proposition 3.4 ([3, Proposition 3.1, Remark 3.10]). Let A, be as in Proposition 3.1. Fix
K, R > 1, and assume that Dg) and Dﬁf) are two non-random diagonal matrices with real and
complex entries, respectively, such that HDS)H, ||D,(12)H < R,/pn. Then there exist constants 0 <
C3.4,E3.4,03.4,03.4,53_4763,4 < 00, depending only on K, R, and the fourth moment of {&;;}, such
that for

Csqlogn 1
and any p~ ! < M < es4n, we have

P(Hm € (Dom(M, (Cs.4(K + R))™*) U Comp(M, p)) N S2~

| (A + DO)a]| < o (K + Rypyp and | A, < K ypm) < exp(~ca.apn)
and
]P’(Hz € Dom(M, (C3.4(K + R))™*) U Comp(M, p)

(A + D)z < ha(K + R)py/ip and || A, ]| < K y/pm) < exp(—eo.apm).

where p = (Cs4(K + R)) ™6 and ly be as in Proposition 3.1.

Observe that Proposition 3.4 is stated for the square matrix A,. To prove Lemma 3.3 we
need a version of Proposition 3.4 for (n — 1) x n matrices. As noted in [8, Remark 3.9] this
follows from an easy adaptation. So, without loss of generality we will use Proposition 3.4 also
for (n — 1) x n matrices. The final ingredient for the proof of Lemma 3.3 is an estimate on the
Lévy concentration function for incompressible and non-dominated vectors. Such an estimate was
derived in [8, Corollary 3.7] for real valued vectors. One can investigate its proof to convince oneself
that the same proof works for complex valued vectors. We state this modified version below.

Lemma 3.5 ([3, Corollary 3.7]). Let A, be as in Proposition 3.1. For every z € C" and i € [n],
define z(;) to be the vector obtained from z by setting its i-th coordinate to be zero. Then for any
a > 1, there exist 3,y > 0, depending on o and the fourth moment of {&;}, such that for z € C",

satisfying supjciy] (Hz(i)Hoo / Hz(i)HQ) < a,/p, we have

L </_1nz,/8 -y/pn inf H%)Hz) < exp(—n).

i€[n]

We now proceed to the proof of Lemma 3.3.
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Proof of Lemma 3.3. The proof is based on ideas from [21]. For ease of writing let us write ¢y :=
(C3.4(K + R))~*. We also denote

Qp.c:={Re(BP): 3z € Dom(M, cy) U Comp(M, p)
HBDzH2 < dy 4(K + R)py/np and H/LLH < K\/np},
Qc : = {Re(B”): Ju € Comp(M,p) N Sg~!

|Re (BD)uH2 < dy 4(K + R)py/np and H/LLH < K\/np}.
Using Proposition 3.4 we see that P(Qp c),P(Qc) < exp(—csanp). We now make the following
claim.

Claim. Fix any J C [n] of cardinality M and let
Zi={z=x+iy: ||[Temanllz < ¢"p and supp(z}.ag) C J3,
for some small constant ¢’ to be determined later. Then
P ({32 € Z) such that HBD2H2 < epy/np} NQG N Q) < exp(—en),

for some small constants ¢ and €.

The conclusion of the lemma immediately follows from the claim by taking an union bound over
J C [n], such that |J| = M. Thus we now only need to prove the claim.

To prove this claim we will first show that if z € Z/ such that ||BPz||2 is small, then y, the
imaginary part of z, belongs to a small neighborhood of a linear image of the subspace spanned
by the largest M coordinates of x, the real part of z. This together with the fact that ||zgmanl|, is
small enables us to obtain a net of 2/, with small cardinality. Finally using the estimate on Lévy
concentration function of Lemma 3.5 and the union bound we finish the proof of the claim. Below
we carry out the details.

To this end, fix any J C [n] and let Re (B”)|; denote the sub-matrix induced by the columns
of Re (BP) indexed by J. We first condition on a realization of Re (B”)|; and show that for every
such realization the conditional probability of the event in the claim is less than e~". Then taking
an average over the realizations of Re (B”)|; the proof will be completed.

So let us assume that z € 2’ be such that HBDZH2 < ¢py/np. Then we see that

(3.4) HRe (BD)gzc—Im(BD)yH2 < HBD2H2 < cpy/np.
Notice that Hx[MH:n}HQ < ||#smanlly as @(ar41:n) consists of the smallest in the absolute value
coordinates of z. Since
[Re (BP)|ge]| < [[Re (BP)]| < | BP|| < || Aul + 1Dl < (K + R)y/np,
applying the triangle inequality we further deduce that
(3.5) [ (BP)y — Re (BP)| sz pi.m|l, < eov/mp + |[Re (BP) s par 1
< C,O\/7TP+ HRG (BD)‘JC : ||$smallH2 < 200\/777

where in the last step we choose ¢’ so that ¢/(K + R) < c.
Recall that Im (BP) is a (n— 1) x n matrix whose first column is zero and the last (n—1) columns
form a diagonal matrix whose entries are all equal to r’\/np. Therefore denoting y|[2:n] to be the
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(n — 1) dimensional vector consisting of the last (n — 1) coordinates of y we further have that
1
r'\/np
Thus (3.6) implies that the vector y|j.,) belongs to a (2r~'cp)-neighborhood of the linear subspace
&} = span(Re (BP)[;R7) ¢ R*™L. Since [|zpr11.0)/l2 < ¢'p < r7Lep we have that for any z € 27,

such that ||BPz||s < c¢py/mp, belongs to a (3r~!cp)-neighborhood of the space
(3.7) & ={x+iy: supp(x) C J, Yl € 9 € [-1,1]},  with  dim(&y) <2M + 1.

< 27“/_16,0 < 27“_1cp.
2

(3.6) y|[2:n] - Re (BD)|J1‘[1:M]

Since 2/, C Sg_l, applying the triangle inequality and choosing ¢ < r/3 we further see that every
vector in z € Z/, such that || BPz||2 < ¢p,/np, belongs to a (3r~'cp)-neighborhood of (2BE) N E,.
Therefore we can choose a (r~'cp)-net N' C (2B%) N &) of cardinality

2M+1
(3.8) V] < (12) < exp(3M log(12/(cp)).

Note that, using the triangle inequality we see that N is (47~ !cp)-net of the set of all vectors z € z!,
such that |BPz||s < cpy/np. Thus, for a z € 2, with |BPz||s < cp,/np, there must exist at least
one w € N such that | BPw||, < 5r7' (K + R)cpy/np. Now shrink ¢ such that 10r—'c¢ < c§ ;. With
this choice of the constant ¢ we see that we w ¢ Dom(M, cp) U Comp(M, p) on the event Qf, .

However, for any w we have |[wpr41:mllc < 1/v'M, and moreover for any w ¢ Comp(M, p), one
has |[wiar41:m)ll2 > p. Therefore,

1
(3.9) lwrevangiylly > lwpecimll, = 1/VM 2 5 wprn]l,

Here the last inequality follows from the definition of p and the assumption p < ¢(K + R)~2, for
sufficiently small ¢, which we made at the beginning of Section 2. Therefore using the fact that
w ¢ Dom(M, ¢p), we have

w0 wps iy iy || o < 2(eoVFD) ! < 265 /5,
i) [wpsrapn g |,

where in the last step we used the fact that M > p~!. Thus applying Lemma 3.5 there exists
constants ¢, and ¢ such that

P (|[BPwll, < cpy/p[Re (BP))

<L <Re (B)| sew(ar+ 1) 265 llerbfb] | wiars v it |l \/np) < exp(—2cn),
Hence, by the union bound,
P (Elw eN: ||BPuwl, < c*p\/np‘Re (BD)|J> < [N - exp(—2¢n) < exp(—cn),

where the last step follows from the bound (3.8) and the fact that M log(1/p) < ¢'n for a sufficiently
chosen small constant ¢/. Thus shrinking ¢ again such that 57 ~!(K + R)c < ¢, we obtain that

P ({Elz € Z'; such that HBDzH2 < cpy/np) NQGH o N QG Re (BD)|J> < exp(—cn).

Finally taking an average over all the realizations of Re (B”)|; the proof finishes. O
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We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. We note that if 3 is chosen sufficiently small then the assumption (3.1)
implies that
Mlog(1/p)
ch gn
whenever n is large enough. So Lemma 3.3 can be applied, which implies that, with high probability,
| Zsmanllz > €5 3p. Denote zgman = Re(Zsman) + 1Im(2gman) =: v + iv. Recall that x = Re(2).
Therefore

<1,

HUHQ > Hx[M—&-lzn]HQ > Cg.pr
with high probability. On the other hand,

1
HuHoo < stmaHHoo < W

Combining last two inequalities, we obtain

[ 1
(3.10) o < )
lully = e spv/M
and the result follows upon choosing C5 1 sufficiently large. O

Remark 3.6. Note that the inequality (3.10) continues to hold even if the constant Cs ; is increased
without changing other constants 53,1,03,1, and ¢3.1, appearing in Proposition 3.1. This implies
that, if needed, we can arbitrarily increase the constant Cs ;. This observation will be used later
in the paper.

4. NET CONSTRUCTION: GENUINELY COMPLEX CASE

In this section we show that the set of genuinely complex vectors admit a net of small cardinality.
Let us start with a simple reduction. Fix M < n/2, z € S¢7!, and let J = small(z). Denote
Vy :=V(z;), where z; € C’ (for ease of writing we write C” instead of Cl’l) is the vector obtained
from z by keeping the indices corresponding to J and recall the definition of V(-) from Definition
2.9. Now consider the singular value decomposition of the matrix V;:

wi
Vi =U1SUz = Ui (&)
2

where U7 is a 2 x 2 orthogonal matrix, S is a 2 x 2 diagonal matrix of singular values, and U, is
a 2 x |J| isometry matrix. The vectors wy, wy € R” are scaled copies of the right singular vectors
of the matrix V;. This means that w; L wsy, and without loss of generality, we can assume that
|lwall, < |Jwi|y. Translating this back to the complex notation, we find a 7 € [0,27] such that
zy = e (wy +iws). As z; € Ker(B) if and only if e7"2; € Ker(B), without loss of generality, we
can only consider the following set

2 :={z € Sg7"\(Dom(M, (Cs.4(K + R))™") U Comp(M, p)) : zgman = w1 + iwz,
(4.1) wy Lows, [lwilly > [lwally}
instead of S¢~ '\ (Dom (M, (C3.4(K + R))~*) U Comp(M, p)). Therefore our revised goal is to show

that the set of genuinely complex vectors, when viewed as a subset of Z, admits a net of small
cardinality.
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To this end, fixing a set J C [n], we start with constructing a small net for the set of pairs (¢, 1)
with ¢ L 1 in the unit sphere of R/ x R’ for which the value of the two-dimensional LCD, the
auxiliary parameter A(-), and the correlation d(¢,v) = ||¢||, |||, are approximately constant. The
condition on the two-dimensional L.CD means that there exists a linear combination of the vectors
¢ and v which is close to an integer point. Our aim is to use this linear combination to construct
separate approximations of ¢ and .

For any ~+ > 0, let us denote Zi =7/ N fyB'QJ‘. Using a simple volumetric comparison argument
we have following estimate on |Z7] :

[J]
(4.2) 27) < (Co (J%H)) ,

for some absolute constant Cjy. The main technical result of this section is the following lemma.
Lemma 4.1. Letd € (0,1), and 0 < o < dD < A < D. Define the set
Sy(D,A,d) == {(¢,¥) R xR ¢ L9, |19], € [1/2,1], 4]l € [d,3d]
3¢ € R? |l € [D,2D], Gio + G, € [A,24)],
and dist (G ¢ + Cotp, Z7) < o}
Then, there exists a (C“ga)—net M;(D,A,d) C S;(D,A,d) such that

] 2
My(D, A d)| < (cdf (ﬁ+i)) (2).

for some absolute constants Cyo, and Cy.

This lemma provides a significant improvement over the standard volumetric estimate yielding

(cD2 / a2)“]|. As we will see below, this improved bound precisely balances the term appearing
in the small ball probability estimate. Note that the bounds on [|¢||, and |||, imply that the
correlation d(¢,) is approximately constant in the set S;(D, A, d), whereas the bounds on ||(||,
and dist(C1¢ + (210, Z”7) ensure that the two-dimensional LCD and the auxiliary parameter A(-) are
approximately constant. We also note that Lemma 4.1 deals with the case when the correlation
between ¢ and v is relatively large, which is represented by the assumption d > «/D. Under this
assumption, the angle between the real and the imaginary part of the vectors are non-negligible.
In Section 5 we will use this criteria to formally define the notion of genuinely complex vectors.

Proof of Lemma 4.1. Assume that there exists ¢ := (1, (2) € R? and ¢ € Z7 satisfying

(4.3) 1C1d + Catdlly € [A,24] and  [|Gd + Gotp — glly < v,

We consider two cases depending on the size of (3. Let us start with the case when this value is
small. Consider the set

Sg(-DaAad) = {(¢7¢) € SJ(-DvAad) : El(ClaCQ) € R27 ||(C17C2)H2 € [D72D])
1G] < %dD, IC1g + G0l € [A,2A],and 3q € Z7 such that [|C1¢ + Cotp — qll, < a}.

Since d < 1, note that the condition on (; implies that D/2 < |(2] < 2D. Hence

1
(4.4) A < [Go+ Gl < 5dD|Igll, +2D |[fl; < 7dD.
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We will approximate ¢ using the standard volumetric net and use (4.3) to construct a small net

for 1. To this end, consider (¢, ) € S9(D, A,d) and let ((1,(2) € R? be the corresponding vector
(i.e. for which (4.3) holds). Then, by the triangle inequality,

llglls < a+2A < 3A,
i.e. ¢ € ZJ,. Denote by N, an (a/D)-net in By with
3D\
Nol < ( ) :

a
Choose ¢’ € Ny such that ||¢ — ¢'||, < a/D. Then

6/ + o —ally < @t cal- [ - ], < 2
as |¢(1] < 4dD < D. Therefore

G, D/2 ¢ 20 4«
+ ¢ — == | <—=<—=
‘w &’ ppl, TGl <D
We observe that
G D/2 A
4. <1 <1, <6—=<
( 5) <2 \/ CQ ? H¢ H2 and D/2 6D = 6a

where the last inequality follows from our assumption A < D. Next let Ng be an («/D)-net in the
unit square in R? with [MVa| < (6D/a)?. Using (4.5), and applying the triangle inequality, we now
see that there exists (z1,22) € Ng such that

llo

D

q

Hlb—l’léf) —$2D/2

Hence,
MG(D, A, d) = { <¢,az1¢> ““20/2) 1o € Noyq € L, (w1, 22) eNu},

is an 22-net of S9(D, A, d), with

7] 9
IMY(D, A, d)| < Nyl - |Zdal - NG| < (3(’2D~<3A+1>> .(6D>

V11

dD? 11 \\7 fepy?
< B B
< (6300 o ( TJ’ +A>> <a> )
where (4.2) has been used to bound |Zg,| and (4.4) has been used to replace A by dD in the last
inequality.
Turning to prove the case of |(1| > 3dD we denote SY(D,A,d) := S;(D,A,d)\SY(D,A,d).
That is,
1
SHD. Aud)i= {(0,0) € 52D A )+ H1,G) € B (61l € [D.2DL il € | 3ap.20)

110 + Cat]|, € [A, 2A]and Jg € Z7 such that |16+ Covb — g, < a}.

Now let us construct a net in S}](D, A,d). Our strategy here is opposite to what we used in the
previous case. Namely, we use the volumetric approximation for ¢) and then use (4.3) to approximate
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¢. To this end, consider any (¢,1) € S5(D, A, d) and let (1, (2) € R? be the corresponding vector.
As in the previous case we see [|g||, < 3A, i.e. ¢ € ZJ,. Since |(1] > $dD and |(2| < 2D we also
see that 24 ||(1¢[|y > 6dD > ||¢2¢]|,. Therefore

(4.6) A <Gl + IGwlly < 25(1Cidlly < 25(Gil.
Recall that by assumption, a/D < d. Hence, we see that
94D\ 7!
< (==
\Nw’ = ( o ) )

where Ay be an (a/D)-net in 3dBy. Since ||¢)||, < 3d, there exists ¢’ € N, such that |[1) — /||, <
a/D. As in the previous case, this yields

1616 + G —al, < a+ Gl - [[v = ¢/, < 3a,

and so A . A
¢+ CQ .50D1[) — @ <3704§757047
50D¢; A 25¢ Ay, G A
where we have used (4.6) in the last step. Note that
Al A 50D 150dD 25¢
<1 < < 150 d — | < 75.
50DG; V ‘25@ = A, S | NN (e

Let Mg be the same (a/D)-net in the unit square as in the previous case. Since A < D, combining
the previous estimates with the triangle inequality, we have that there exists a (z1,z2) € Ng such

that
50D’ B @ 300«

oo 22 2
Using the fact A < D again, we now obtain an (o/D)-net My in (2%2) - BJ with

My < <9OOD>J
¢ >~ —_— .

A
Thus there exists v € My such that
50D’ 25¢
A

o

This implies that the set

/
MY(D, A, d) == { (ml 5Dy %a ¢'> |

A N
V' €Ny, g€ LI\, vE My, (x1,12) e/\fg}

is a (2a/D)-net in S;(D, A, d). We observe that
IMG(D, A, d)| < [Nyl - |Zsal - M| - NG|

2 (o) 8 e (b))

where C' is some absolute constant.
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Since S;(D,A,d) = S9(D,A,d) U SY(D,A,d), it therefore means that
MJ(D7 Aa d) = Mg(D7 A7 d) U MLlf(Da Aa d)

is a (Ca/D)-net for the set S;(D, A, d), where C is an absolute constant.

The net M (D, A,d) constructed above, is not necessarily contained in S;(D, A, d). However,
we can construct a new net by replacing each point of this net by a point of the set S;(D,A,d)
which is within the distance Cv/ D from this point. If a (Ca/D)-close point does not exist, we skip
the original point. Such process creates a (2Ca/D)-net contained in S;(D, A, d) without increasing
the cardinality. Thus the lemma is proved. (|

Remark 4.2. Note that Lemma 4.1 holds also for any subset of S;(D,A,d). That is, given any
S C S;(D,A,d) there exists a net M‘;(D, A,d) C § with the same properties as in Lemma 4.1.
We use this version of Lemma 4.1 to prove Proposition 4.3.

Building on Lemma 4.1 we now obtain a net with small cardinality for the collection of vectors z
for which DQ(Zsmall/stmaHHQ) ~ D7 A(Zsmall/stmaullHQ) ~ A, and d(zsmall/HZsmallH2) ~ d7 where we
recall that the vector zgpmay contains n — M > n/2 coordinates of z having the smallest magnitude.
To this end, let us define the following set:

(4.7) Z(D,A,d) = {Z cZ: DQ(ZsmaH/ ”ZsmaHHQ) c [D, (3/2)D],

A(zsman/ ”ZsmaHH2) € [A, (3/2)A], d(zsman/ stmallnz) € [d, (3/2)d]}.

As will be seen in Section 5, the small ball probability for the images of such vectors is controlled
by the values of the two-dimensional LCD and the real-imaginary correlation. So we partition this
set according to Ds(+), A(+), and d(-). The net M j(D,A,d) provides a net for the vectors which
have Dy(-) =~ D, A(-) ~ A, and d(-) ~ d. This is shown in the proposition below.

Proposition 4.3. Letd € (0,1), D,A > 1, and denote

/ A
a:=1L loglﬁ.

Assume that @« < dD < A < D. Then there exist absolute constants Cys3, Cus, and a set

N(D,A,d) c Z(D,A,d) with

o n D 5M dD2 1 1 n—M
W(D,A,d)| < Cly (p]%ﬂx) .(a.<\/ﬁ+A))

having the following approximation properties: Let z € Z(D,A,d) be any vector and denote J =
small(z). Then there exists w € N (D, A,d) such that

To prove Proposition 4.3 our strategy will be to use the net M‘;(D,A,d), for some suitable
choice of S, obtained from Lemma 4.1, to approximate the small coordinates. The cardinality of
the net to approximate the large ones will be obtained by the simple volumetric estimate.

zJ wj

po pa
2l [lwall

(e}
< 04.35, |zge —wyelly < Cas D zsll2 — llwrll2] < 04.35-

2

Proof of Proposition 4.3. Fix a set J C [n], |J| =n — M, and denote
Z7(D,A,d):={z¢€ Z(D,A,d) : small(z) =J}.
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Let us now construct an approximating set for this subset. Denote ¢ + iv = ¢(2) + i)(z) =
zy/ 1275 € C’. Recalling the definition of A(¢ + it)) we see that there exists ¢ € R? such that

IClly < (4/3) D2 +19) <2D,  [[G¢ + Qvlly < (4/3)A( +1i9) < 24,
and dlSt(<1¢+ CQw,Z ) < L\/logllzs‘LHQ S L loglﬁ = .
Further recall that d(zsman/||Zsmanll2) = ||¢l5 [|#]|, and note that by our convention we have ||¢||, €

[1/2,1]. Thus we deduce that ||¢]|, € [d,3d]. Hence (¢,v) € S;(D,A,d), and in particular
(¢,7) € S where S := {(¢(2),¥(2)) : z € Z(D,A,d)}. So it can be approximated by an element of
M‘E(D, A,d). To this end, set

My i={o+1t: (¢,9) € MF(D,A,d)}.
Then for any z € Z;(D, A, d), there exists w’ € M such that

(6%
< 04.25.

zZJ ’
—_ =W
1zl

2

For the set J¢, we will use a net satisfying the volumetric estimate. Since z € Sg_l, there exists a
set Nje with

3 D\*M
s (22"
Al Ciop «
such that for every z € Z;(D, A, d) there exists a wje € Nje for which
pa

HZJC — U}Jc”2 S 04'25'
Finally we obtain a net Njg 1 with [Ny 1j| < 3D/(Cy2pa) such that for every z € Z;(D, A, d) there
exists a p’ € [0, 1] for which
pa
25l = '] < Crapy-
Now let us define
N(D,A,d) = U Nye x My x N ).
|J|=n—M
Then setting |wy|, = p' and wy; = p' - w’' we see that for any z € Z(D,A,d) there exists a
w € N (D, A,d) such that
2y wy 0" pa pa
- < Cua—, [[2ge —wyelly < Caa—, [llzsll2 — [wsll2] < Caa—7
lzally  llwsllall D ? D D

The set N (D,A,d) thus constructed may not be contained in Z(D,A,d). However, as in
the proof of Lemma 4.2 this can be rectified easily. It thus remains to bound the cardinality
of N(D,A,d). By Lemma 4.1, we have

|N(D,A,d)|§ Z |NJC|'|-/V’[0,1}|'|MJ|

|J|=n—M

G D (0 ()2

Since 1 < M < n/2 the required estimate follows from a straightforward calculation. This completes
the proof. O




THE CIRCULAR LAW FOR SPARSE MATRICES 23

Remark 4.4. Similar to Remark 4.2 we note again that given any & C Z(D,A,d) there exists
a net \° S(D, A,d) C § with the same approximation properties and the cardinality bound as in
Proposition 4.3. In Section 5 this version of Proposition 4.3 will be used.

5. THE STRUCTURE OF THE KERNEL IN THE GENUINELY COMPLEX CASE

In this section, our goal is to show that with high probability, any genuinely complex vector in
Ker(BP) has a large two-dimensional LcD. Before proceeding any further let us formally define the
notion of genuinely complex vectors:

(5.1)

4L
Compl(Z) :=1< z € Z : d(zsmal/ || Zsmal > \/10
) { Goman] [smanlla) 2 B ool V81

A(Zsrnall/ ||Zsmall ||2)
7L '

Equipped with the notion of genuinely complex vectors we state the main result of this section.

Theorem 5.1. Let BP A, p, K, R,r, and ' be as in Proposition 3.1. Then there exist constants
51,051, and 1 < psq < p~ L, depending only on K, R,r, and the fourth moment of {&;}, such that
if p satisfies the inequality

(5.2) csap’pn > 1,
then we have

n _
IP’(EIz € Compl(Z)NKer(BP) : Da(2sman/ || 2smanlly) < exp(cs, M)’ | An]| < K\/pn) < exp(—Cz.1np),

where M = Cs1u2 1p~2p~ 1.

The proof of Theorem 5.1 is carried out by the following two-fold argument. Using Proposition 4.3
we show that the subset of vectors in Compl(Z) that have a large value of A(zsmal/ || Zsmall||5) admits
a net of small cardinality. This observation together with an estimate on the small ball probability,
derived from [33, Theorem 7.5, yields the desired conclusion for vectors z € Complex(Z) which
possess a large value of A(zsmall/ ||Zsmalllly) (see Proposition 5.2). For the other case, we first show
that such vectors, upon rotation, must have a dominated real part. Applying Proposition 3.1 we
show that this is impossible with high probability, which finishes the proof of Theorem 5.1. The
rest of this section is devoted to make the above idea precise.

First let us consider the case of large A(zsmal/ ||zsmalllly). For such vectors we prove that the
following holds:

Proposition 5.2. Let s > 1. Define the set Z(s) by

Z(s) = {z € Compl(Z) : A(zsman/ ||zsmailly) > sL and

d(zsman/ || zsmanlla) < 4ji€n[£] d (zsmall\{j}/HZsmall\{j}HQ) }

Let A,, BP, K, R, and p be as in Theorem 5.1. Then there exist s5.0,7, > 1, and ¢t o > 0, depending
only on K, R, and the fourth moment of {&;;} such that for any r2p~t < M < pn we have,

IP’(E!Z € Z(s52) NKer(BP) : Do(zsman/ | zsman|ly) < exp(cson/M) and Hf_lnH < K,/pn) <e ™
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To prove Proposition 5.2 we use estimates on Lévy concentration function. Since the diagonal
entries of A,, + D,, are non-random the bound on the Lévy concentration function depends on
infjep, d (Zsmall\{j} [ Zsman\ {5} ||2) rather than the real-imaginary correlation of zgman/||zsmanl|2 (see
Proposition 5.6). This forces the additional constraint on the real-imaginary correlation in the
definition of Z(s). During the proof of Theorem 5.1 we will remove this constraint by another
application Proposition 3.1.

As mentioned above, the proof of Proposition 5.2 requires bounds on the Lévy concentration
function. Using such bounds we show that for any vector z € Z(s) the £5 norm of B’z cannot
be too small with large probability. From the net constructed in Section 4 it follows that Z(s)
admits a net of small cardinality which enables us to take the union bound and complete the proof
of Proposition 5.2. Before deriving the bounds on the Lévy concentration function we need to fix
some notation. Let z € C™ and J C [m]. Denote z; := (z;)ics € C’ and V; := V(z;), where we

recall that for any 2/ = z + iy € C" we define V() := (;; ) Further denote the real-imaginary
correlation of V; by
1/2
A(Vy) = d(zy) = (det(Vv))
This parameter, along with the LCD of z;/||z||2 controls the Lévy concentration function of
Z;”Zl Zjzj, for a sequence of independent random variables {Z;};c(m). The estimate on Lévy
concentration function of > 7', Z;z; then yields probability bounds on the £s-norm of (BP2); to
be small, for each i € [n — 1]. However, we remind the reader that the diagonal of A, is zero.
This implies that the probability of having a small value of ||(B”z2);|2 depends on the LCD of
zpgiv/ 1z iy ll2 instead of z;/[|z;]|2. Hence, we need to modify the definition of the LCDs so that

the modified LCDs of 2\ (i1 /]2 (i} |l2 can be related to the LCDs of z;/||z||2, defined in Definition
2.9.

Definition 5.3. Fixing L > 1, for a non-zero vector x € R™, we denote

D 0
(5.3) Dy (z) := inf {9 >0 dist(fz, Z™) < 2*Ly/log, ”2;522 } -

If V is a 2 X m matrix, define

- I 75
Dy(V) ::inf{H0H2 L0 R, dist(VT0,27) < 4 flogy ||V28LH2}'

Similarly as before, for z € C'™, we denote

Do(2) :=Dy(V(2))  and  Dy(z):= Di(3(2)),

where V(z) and Z(z) are as in Definition 2.9.

Equipped with these new definitions of LCDs we have the following estimate, which is a direct
corollary of [33, Theorem 7.5].

Proposition 5.4. Fiz any positive integer m and let = := (Z1,...,5y,) € R™, 55 := 0§, j =
1,...,m, where 61,...,6n, are i.i.d. Ber(p), and &; are i.i.d. random variables satisfying

(5.4) ﬁ(éj,l) <1l—e¢ and P(’@’ > Cl) < 01/2
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for some absolute constants Cy and c; € (0,1). Then for any z € C™, J € [m] , and ¢ > 0, we have

2
- Cs4 1
(5.5) L(VE=,ey/p) < a0 <€ + \/ﬁﬁz(VJ)>

and

_ _ 1
(5.6) L(VE,ey/p) < Cs4 (e + 7\/@1 (mj)> ,

where V =V (z), Cs.4 and C5.4 are some constants, depending only on c1 and C1, and x5 = Re (2y).

Remark 5.5. We point out to the reader that the definition of LCD in [33] and that of ours are
slightly different from each other. For example, to define LcD in [33] the function log, (z) :=
max{logz,0} was used instead of log;(-). Moreover the constants appearing in front of L are
different (compare Definition 5.3 with [33, Definition 7.1]). However, upon investigating the proof
of [33, Theorem 7.5] it becomes evident that the same proof can be carried out for the LeDs Da(-)
and 51() to obtain the same estimates on the Lévy concentration function. It only changes the
constant that appears in [33, Eqn. (7.3)]. Below we apply this version of [33, Theorem 7.5].

Proof of Proposition 5.4. As mentioned above the proof is a straightforward application of [33,
Theorem 7.5]. Indeed, we note that L(VE,t) < L(V;E,,t), for any ¢t > 0, where Z; := (Ej) e
The assertion (5.4) implies that

(5.7) L(Z;,1)<1—pc; and P(|Z;] > C1) < pey/2.

Since L = (6op)~*/? (see Remark 2.11), shrinking &y if necessary, the inequality (5.5) follows
directly from [33, Theorem 7.5], applied with m = 2. To prove (5.6), using the triangle inequality

we further note that £(V;Z,,t) < L(z1Z;,t). Thus applying [33, Theorem 7.5], with m = 1 we
obtain (5.6). O

Applying Proposition 5.4 and standard tensorization techniques we obtain the following result.

Proposition 5.6. Let BP be as in Proposition 5.1. Fiz any z € S{™" such that z ¢ Dom(M, o)

for some M, a, satisfying a,, vV M > 2. Let J := small(z). Then for any ¢ > 0, we have
(5.8)

n—1

: Cs6 < 1 )2
L£(BP2, —1) inf i) < + ’
(B2 ev/p(n—1) inf [l2n5]l,) llnfje[n]d(zj\{j}/HZJ\{J.}H2> T D2/ Tzally)

and

a 1 n—1
(69 LB zeVpln—1) it [lzngl,)< [05-6<5+\/ppl(Re(zJ)/HZJHQ))] ’

for some constants Cs 6, and Cs6, depending only on E|&;;| and ]E(f:l])

Proof. Since {;;} have finite fourth moment one can easily check that the assumption (5.4) holds.
Also note that the diagonal entries of B are non-random, for i € [n — 1]. Since

L <(BDZ>z‘= Ve inf HZJ\{J'}H2> < £ ((B2lngzn)i vie lzng )
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from (5.5) we obtain that
c <(BDZ)1, Ve inf ||ZJ\{J*}H2)

2
1
<. Cs.4 (e - _ ) .
infjepn d(zngy/ |20 03 |l,) VPinfjep Da(zn gt/ |20 ly)
We claim that
(5.10) Do(z1/ l|z1lly) < 4ji€n[7fl] Da(zn g/ |z l)-

Equipped with the claim (5.10), the inequality in (5.8) follows directly from a standard tensorization
argument (see [38, Remark 3.5]). N
Turning to prove (5.10), from the definition of Da2(zp (;1/ll2n sy ll2) it follows that there exists

0 € R? with [|0]]2 < 2D2(25(j3/12 5 ]|2) such that

. my L [ar P
(511) dlSt(V_-I;a,Z ) < 5 logl ﬁ,

where m = n — [J\{j}| and V_; := V(2 j1/llzng1ll2)- If 5 ¢ J, we see that there is nothing to
be proved. So we only focus on the case j € J. Note that z ¢ Dom(M, a) implies that
1Z5ll2 = eV M||z1l[oc > 227 ]loo,

which further implies that ||z, /2 > $llzsll2.  Therefore, denoting Vy = V(z;/||zsl2), 0 =

(llzsll2/ [z g1 ll2) - €, and noting that m =n — M — 1 we see that
dist(V] ¢/, z" M) < dist(V1,0,Z™) + 1,

and [|0']]2 < 2[|0||2. From the definition of log;(-) it follows that the RHS of (5.11) is at least
L/2 = L(6op)~Y/2. Thus, shrinking & again (if needed) and noting that HV_T]-9||2 < |[V]#||2 the
claim (5.10) follows. This completes the proof of (5.8). To prove (5.9), arguing similarly as in
(5.10), we obtain

(5.12) Di(Re (27)/ lzsll2) < 4ji€n[£] Di(Re (zn )/ |zt ||)-

from which the proof follows upon using [38, Remark 3.5] and Proposition 5.4. We omit further
details. 0

Remark 5.7. The inequality (5.9) provides bounds on Lévy concentration function based on one-
dimensional LCD. It will be used later in Section 6 to treat essentially real vectors.

To prove Proposition 5.2 we also need the following elementary lower bound on the LCD of non-
dominated vectors. Its proof follows from [33, Proposition 7.4] and the definition of dominated
vectors.

Lemma 5.8. For any z ¢ Dom(M, «,.) we have

(870

18

D2(Zsmall/HZsmallH2) Z

2

We are now ready to prove Proposition 5.2.
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Proof of Proposition 5.2. The set in question can be partitioned into the subsets of Z(D, A, d)
appearing in Section 4. Indeed, using Lemma 5.8 we note that for any z € Z(s) we have
Do (zsman/|| Zsmanll2) = %a*\/ﬂ > %p*I/Q for some o, > 0. Since L = (50]9)*1/2, choosing
r4 sufficiently large, we therefore obtain that

{z € Z(s) : Da(2smait/ [|2smallp) < exp(c'n/M)} C U Z(D,A,d)N Z(s),
D,Ad
where the union is taken over all D = 2%, C,L < D < exp(c'n/M), for some large constant C,,

and over all A = 2", d = 27¢ satisfying dD < A < D. Also note that for any z € Compl(Z) we
have

4L A(zZsmant/ || zsmai|l2)
5.13 d(Zsmall/ || Zsmaitl|9) > \/log )
( ) ( sma. /H sma. HQ) D2(Zsmall/‘|zsmall”2) 1 27L

If 2 € Z(D,A,d) we further have that D2(Zsmall/||zsmallH2) < 2D, d(Zsmall/stmaHHQ) < 2d, and
A(zsmal/ || zZsman]|2) = A. Therefore, it follows from (5.13) that

/ A
o:=1L loglﬁ <dD.

So it allows us to use Proposition 4.3. Also, since D > %pil/z, and L = ((50p)*1/2, choosing a
sufficiently large ry, we may assume that

o L D 1
14 — < —1/1 — <dD < —.
(5.14) Cispy < Casyyflogy o7 <dD < 3

Next recalling that M > r2p~! > p~!, we see that the number of different values of D appearing in
the partitions is bounded by ¢’pn. Using the fact that o > L, we see that the number of different
values of d is bounded by the same number, and so is the number of different values of A. Therefore,
using the union bound, we deduce that it is enough to show that

(5.15) P(3z € 2(D,A,d)NZ(s): BP2z=0, and ||B|| < (K + R)y/pn) < e ",
for each such tripple (D, A, d).

To this end, we note that Z(D,A,d) N Z(s) admits a net N (D, A,d) C Z(D,A,d)NZ(s). Since
for any z € Z(s) we have

from Proposition 5.6 it follows that

d(zsmall/ ”Zsmall||2) < 4]1611[2] d (Zsmall\{j}/”'zsmall\{j}HQ) )

4C 1\

L(B" ) —1) inf small\{j = = > )
(B7w,ev/p(n = 1) 1nf umangyl,) < | = (H N ]

for any w € N(D,A,d) and £ > 0. Set

(5.16) em:m@ﬂK+m%.

Since a > L = (6op)~"/2 > p~'/2 and K, R > 1 we note that gy > ﬁ. Recall that N'(D, A, d) C
Comp(M, p)¢. Therefore for any w € N(D, A, d) we also have

< 2 inf ;
[ wWsmanll2 < P | wWeman (5112
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(see also (3.9)). This further implies that

€ C a2t
P (I52ul, < Pl vim) < |5 (+05)]
for some positive constant C. Hence, by the union bound and applying Proposition 4.3
£
P (Elw e N(D,A,d) HBDwH2 < gOstmaqu : \/pn)

<IN(D,A,d)| - ﬁ (e + R>g>2i

o <[oems)] e (2 ()

Recalling the definition of o and using the inequalities L <a<dD and A < D we note that

1 (a 27L
d —D D\/ g127L— \/ g127L—27\/

where the last step follows from the fact that z='logz — 0 as 2 — oco. As we have already
noted that D > C, L, for some large C,, we can enlarge C, further (i.e. we increase r,) so that
%((K + R)%)?>Cy3 < 1. This means that we can drop the term

© (uesmp)]" " emes

n—1

d
n (5.17). Therefore, from (5.17) we obtain
£
(5.18) P (aw EN(D,A,d) [[BPw]|, < w2 - fpn) < exp(~Tn),
where

o 1_% 1 C’/(K+R)2a+C’(K+R)2a _%1 n D
o n o8 Vn A n ° oM o)’

and C’ := C - Cy3. To finish the proof we need to show that T'" > 2.
Turning to proof of this, we recall that {7 > 1, a>L>1and D < exp(c{). So, choosing ¢
sufficiently small we obtain

oM n D 10M n oM
—1 —_ — — o < > —1 D < 20.
n 8 (pM a) T n M * 8=
Next recall that L = (6op)~ /2 and A < D < exp(c'n/M).

1 CTL
R Vit 27L =\ SoMp’

Therefore, using the fact that M < n/2 we obtain
1 (K e C(K 2
P> -1 C'(K + R) \E+C( + R\
2 Voo Mp A
We claim that by choosing s to be a sufficiently large constant, we can guarantee that
C'(K + R)?
( Z ) o < =50

(5.19)
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Thus choosing ¢’ small enough and recalling that Mp > 72, from claim (5.19) we see that T' > 2,
providing the required bound for the probability.

Now let us check our claim (5.19). Using the definition of «, choosing s5 2 sufficiently large, and
using the fact that the function f(z):= 2~!,/log;, = tends to 0 as z — oo, we note that

C'(K + R)*«a L |/ A
50 _ 50 2 <
e e’C' (K + R) log, 57 S 1,

for any A such that A > s52L. This proves the claim (5.19).
Thus we have shown that for a sufficiently large value of ss 2,

(5.20) P (Elw € N(D,A,d) ||BPwl|, < %Ollwsmaulb : \/m) < exp(—2n).

To deduce (5.15) from (5.20) we simply use the property of the net N (D, A,d). Indeed, let us

assume that there exists a z € Z(s52)N Z(D, A, d) so that Bz = 0. Denoting J = small(z), using

Proposition 4.3, and the triangle inequality we see that there exists a w € N'(D, A, d) such that
IBPwlz = |BP (w - 2)|2

2 wy

lzsll2 [Jwslle

< |IBP]- (szc ~wgella + sl

T sl = 2l |)

(&% (67 (&%
< (K + R)yip- (201555 + CraZllwsllz) < 3C1a(K + R) S llwsll2v/np,

2

where the last inequality follows from the fact that w € N (D, A, d) C Z(s52) C Comp(M, p)¢. To
complete the proof, let us show that ||wsmanll; < 4 ||ws|ly. Assume for a moment that the opposite
inequality holds. Denote small(w) = I. Combining Proposition 4.3 and (5.14), we see that

1
Iz2lly < llwilly + llzing — winglly + [|2ng — wnsll, < 7 lwrllz + 127 = wylly +[l27e —wjelly

1 1 1
< 5 lesllz + g llzslla + go <llzsllz

where we used ||z||5 > p in the last inequality. This contradicts the definition of J as J = small(z)
and proves the desired inequality ||wsmanllo < 4|w||y-

Recalling the definition of ¢y in (5.16), we now deduce (5.15) from (5.20). This finishes the
proof. O

Using Proposition 5.2 we now finish the proof of Theorem 5.1. The final ingredient for the proof
of Theorem 5.1 is a lower bound on the one-dimensional LCD, the proof of which follows from [38,
Lemma 6.2].

Lemma 5.9. For any x € R™,
1

2zl

Proof of Theorem 5.1. First we claim that

(5.21) P <E|z € Ker(BP)n St i d(zs/|12s]2) > 2ji€n[7fl] d(ZJ\{j}/HZJ\{j}‘Q)) < 2exp(—¢cs1np),
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where J = small(z). Indeed, recalling that z;/||zs|l2 = ¢ + it where ¢ L 1, we note that

d(z/|lzsll2) = l|@ll2 - [|]|]2. On other hand, for j € J, denoting ZJ\{j}/”ZJ\{j}HQ = ¢_; +i_; we
see that

{boyby)] < H”J'H Néllso - [
Therefore,
Ezpiy/lzngyllz) = lo-5l5 - v—illz = Ko—j, v—j)I?
4
(5.22) > (22l ) 1ol - Il - WoI) — ol - 1wl
N2

where the last inequality follows from the relations between (¢,) and (¢—;,%—;). Since z €
Ker(BP) implies that iz € Ker(BP), using the union bound and setting c5.; < c3.1, from Proposition

3.1 we have that
\/ H Im zsmall
|

3z € Ker(BP NS~ L. H
( ( ) HRG Zsmall ”2 Im Zsmall H2

Re Zsmall —1 1/2

> QP

and H/LLH < K\/@> < 2exp(—cs.1np),

where for two real numbers z and y we denote x Vy = max{x,y}. Therefore, fixing any u > 2
we have max{||¢||cc/[| /|2, ¥ ]lsc/|[¥]2} < 3, on a set with probability at least 1 — 2 exp(—¢s.1np).
This together with (5.22) establishes the claim (5.21). Next note that, if p satisfies the assumption
(5.2) for a sufficiently small ¢5 1, then the inequality rfpil < M < pn holds for M = Cz1p?p~4p~1,
with 2 < 1 < p~!. Therefore we can apply Proposition 5.2 and hence from (5.21) it follows that

(5.23)
IP’(EIZ € Zo(s52)NKer(B”) : Da(zeman/ || zsmanlls) < exp(c52 HA H < K\/pn) < 3exp(—¢és1np),

whenever y > 2, where

ZO(S) = {Z € COHIpl(Z) : A(Zsmall/ stmall”Q) > SL}

To complete the proof we next show that

(5.24) P (Elz € Ker(BP)n S¢ 1 : A (Zsmall/ || Zsmall|5) < 4\’}) < exp(—Cs.1np).
The probability bound above would follow from Proposition 3.1 if for any such z, we find a number
v € C, |v| = 1 such that the vector vzgnay has a dominated real part. To implement this idea

and show (5.24), we fix z € Ker(BP)n Sg_l and denote zgman/ ||2zsmanlly = ¢ + i, where ¢, €
R7, J = small(z). Let § = (61, 0) € R? be such that

010+ 6
(5.25) dist(f1¢ + Oa1p, Z7) < L\/ log; ”1¢;L2¢H2
and |01 + 029y < 2A(Zemalt/ || Zsmalt|y)- Denote
01 —ify _
wi=—-—=2.
|01 — i69|

Then w € Ker(BP) N Sg_l and Wgman = Zsman. Therefore (5.25) implies that
Dl (Re(wsmall)/HRe(wsmaH)||2) S 2A (Zsmall/HZsmaHHQ) .
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Upon applying Lemma 5.9 we find that

-1
> [4A < Zsmall >} > M_1p1/2.
o) N stmaHHQ B
Since w € Ker(BP) N SE! the claim (5.24) now follows from another application of Proposition
3.1.

Finally, recalling the fact that L = (dop) /2, and shrinking p, if necessary, we choose 2 < p < p~
so that

Re(wsmall)
[Re(wsman) ||2

1

S5,2L < L

4/p’
The desired result then follows from (5.23) and (5.24). O

6. CONSTRUCTION OF THE NET AND THE STRUCTURE OF THE KERNEL
IN THE ESSENTIALLY REAL CASE

In this section, we consider the class of vectors whose real and imaginary parts are almost linearly
dependent. Namely, we introduce the set of essentially real vectors Real(Z) defined by

(6.1) Real(Z) := Z\Compl(Z).

Having shown that there does not exist any vector in Compl(Z) N Ker(BP) such that its two-
dimensional LCD is small, it remains to show the same for Real(Z) N Ker(BP). For essentially real
vectors, the real-imaginary correlation d(-) is very small which precludes using (5.8). Instead we
have to rely on the probability bound obtained in (5.9), which depends on the one-dimensional
LCD. As the bound on D;(u) implies a much more rigid arithmetic structure than a bound on
Ds(u), construction of a net of real(Z) would be easier. To construct such a net we will follow
the method of [33]. Before finding a net let us remind the reader that the definition of Compl(Z)
and hence that of Real(Z), depends on the two-dimensional LCD (see (5.1)). Since the bounds on
Lévy concentration function, for vectors in Real(Z), depends on the one-dimensional LCD, we need
a result that connects D1 (-) with Ds(-). The lemma below does that job.

Lemma 6.1. Fiz z € Real(Z) and let zsman /|| zsman||2 =: ¢+itp. Then D1(¢) < 2D2(zsman/ || zsmail|2)-
In particular, if Da(zsman/ ||zsmanl|2) < D then Di(¢) < 2D.

Proof. Let us denote J = small(z). Denoting D = Da(¢+it)), we see that there exists 6 = (61, 602) €
R? with [|0]|, < 2D and ||¢61 + ¥bal2 > A(zs/||2s]l2)/V/2, and ¢ € Z7 such that

010+ 0
(6.2) 1616 + 02 — ql|, < L\/logl W-

Using the triangle inequality, and the facts that |62 < ||6]],, [|olly - ¥l = d(z5/]|2s]]2), and
|¢ll, > 1/2, we also obtain

(6.3) 1616 + 020y < [|610lly + 4d(21/[|2s]l2) Da(2s/l121]]2)-
Since ¢ + i1 € Real(Z) we further note that

Alzs/ llzllp)

) Vol Date 1) < A togy 22T

(see (5.1) and (6.1)). Therefore denoting
010+ 6
0" [\/logl H 1 2w”2

26,21
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from (6.2)-(6.3) we note that

1610l + 1609

(6.4) 1610 + 02v) — ql|, < ap < L\/10g1 26 /3L

It is easy to check that

s < \/logl(t+s/4\/§), s>0and t>0=s</log, (V2t).

Hence we deduce that

0
||91¢—|— 921!) — q||2 <L logl ” 216(12’2'

As we have already noted [|62v|2 < 4d(z5/]|zsl|2)D2(2s/||21]]2), using the fact z € Real(Z), the
triangle inequality, and (6.4), we conclude

1016]],
26 -
Since |01| < [|0]|2 < 2D, the proof of the lemma is now complete. O

1616 — ally < 11616 + 020 — qll, + [629]], < 17ag < 2°Ly [log,

Next we find a small net for Real(Z). As in the genuinely complex case, we start with constructing
a small net for the set of the small coordinates.

Lemma 6.2. Fiz J C [n] and 0 < & < D. Define
Sy(D) = {(u,v) € R? x R+ Jlull3 + [[oll3 = 1, Jully = ||l
d(u,v) <a/D, and 30 € [D,3D], such that dist (OU,ZJ) < a}.

Then, there exists a (%) -net M j(D) C S;(D) with

]
Mo(D)] < 2 (cm (jj + 1)) ,

where Cgo and Cgo are some absolute constants.

Proof. Let (u,v) € S;(D), and let 6 € [D,3D], g € Z’ be such that
16u —qll, < a.
Then, using the triangle inequality,
lally <@ +16] <4D,
and so g € Zy4p. This implies that

D ¢ q
—Z 2 <= where | & FH < 4.
u 0 2< ere 0 9

From the definition of real-imaginary correlation it also follows that

(%

(6.5) <1,

2
(6.6) lolly < 2d(u,v) < -

Let N7 be an (&/D)-net in [—1,1] with

D
’Nl‘ S 2—.
(0}
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Define ML (D) by

Mb(D) = {(x%,O) . q € Zsp, T € Nl} .
Then from (6.5)-(6.6) we deduce that MY (D) is a (7a/D)-net for S;(D) and | MY (D)| = |Zsp|-|N1|.
This in combination with the bound in (4.2) yields the required estimate for the cardinality of the
net. To complete the proof, we have to replace the constructed set of vectors by a subset of S;(D).

This is done in the same way as in Lemma 4.1. We skip the details. O

Now we use Lemma 6.2 to construct a small net in the set of essentially real vectors with an
approximately constant value of the one-dimensional LCD. Define the set Z(D) by

Z(D) := { € Real(Z) : 0 — ¢ iy, [|g]ly > [y, Di(6) € [D,2D], d(¢,) < &/D} :

| zsmat | 2
where

_ [ D
(6.7) a:=2°L log, 57

The set Z(D) is the collection of vectors in Real(Z) for which D (zeman/||Zsmanll2) & D. The
condition d(¢, ) < a/D ensures that the real-imaginary correlation is small.

Proposition 6.3. Fiz D > 1. Let a be as in (6.7) and assume 0 < a < D. Then there exist
absolute constants Cg3, Cs3, and a set N (D) C Z(D) with

N(D)| < Ciy (,34'5)4M~ (\%H)nM

having the following approximation property: Let z € g(D) be any vector and denote J = small(z).
Then there exists w € N (D) such that

zJ wy

lzslls Ml

a pa pa
< 06.357 | zge — wyelly < 06.36a zsll2 = Jlwrll2] < 0635-

2

Proposition 6.3 is derived from Lemma 6.2 in the same way as Proposition 4.3 was derived from
Lemma 4.1. We omit the details.

Now, we are ready to prove the main result of this section which shows that with high probability,
there are no essentially real vectors with a subexponential LCD in the kernel of BP.

Proposition 6.4. Let BP A, p,K,R,r, and v’ be as in Proposition 3.1. Then there exists a
positive constant cg 4, depending only on K, R, and the fourth moment of {&;;}, such that

]P’(Hz € Real(Z) NKer(BP) : Dy(zsman/ || Zsmanlls) < exp(chqn/M)and | An]] < K«/pﬂ) <e™",

where M = Cs 12 1p~2p~ 1.

Proof. The proof of this proposition is very similar to that of Proposition 5.2. First we note that
using Lemma 6.1 it follows that it is enough to show that, with high probability, there does not
exist z € Ker(B”) N Real(Z) such that D1(¢(z)) < exp(c'n/M) for some small constant ¢/, where
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Zsmall/ || Zsmall|l2 =: @(2) + i (2) with ||¢(2)|l2 > ||1(2)||2. We then claim that the subset of Real(Z)
in context can be partitioned into the sets Z(D) as follows:

(6.8) {z € Real(Z) : Di(¢(2)) < exp(c'n/M)} | JZ(D),
D

where the union is taken over all D = 2¥, D < exp(c/n/M). Note that the claim in (6.8) is obvious
if we drop the requirement d(zgman/||zsmall|2) = d(¢(2),v%(2)) < a/D from the definition of Z(D).
We show that the required condition on the real-imaginary correlation is automatically satisfied for
all z € Real(Z). Indeed, recalling the definition of Real(Z), and the fact that

A(Zsmall/HZsmaull”2) < D2(Zsmall/||zsmallH2)
we see that for any z € Real(2),
(6.9)

d(Zsman/ || Zsman||2) <
( sma /H sma H ) D2(zsmau/HZsmaH”2

4L D2(Zsmall/HZsmallH2) 8L Dl <¢(Z))
)Vhogl 2L S Dioten Vo8 —os

where the last inequality is obtained upon noting that zy/log;(1/x) is an increasing function for
x € (0,e” '] together with an application of Lemma 6.1. If z € Real(Z) such that Di(¢(z)) € [D,2D]
then recalling the definition of &, from (6.9) we see that

d(d(2),¥(2)) = d(zsman/l|zsmanl2) < /D,

which in turn proves the claim (6.8). We further claim that the lower bound on D in (6.8) can be
improved to

Do := Copsap™ ',
where Cy := 1/C51/2. To see this we note that Real(Z) C Incomp(M,p). Therefore for any
z € Real(Z) we have

”ZsmaHHoo 1 \/]3
< < =
l#()lloo < 2smanlly. = pv/M  ps513v/Csa’
where the last step follows from our choice of M. Hence, using Lemma 5.9 we see that for any
z € Real(Z) we must have D;(¢(z)) > Dy. This establishes that the union in the RHS of (6.8) can
be taken over all D = 2¥, Dy < D < exp(¢'n/M). So using the union bound, we deduce that it is
enough to show that

P (Elz € Z(D): B”z=0, and HBDH < (K—l—R)J}Tn) <e

for each such D. B
To this end, using Proposition 5.6 we see that for any w € N (D) we have

- 1 n—1
L(BPw,e\/p(n — 1) inf || weman ¢ < [C <5+>] )
( \/ﬁje[n} | mgill2) < |Css N

Since N'(D) ¢ Comp(M, p)¢ we have
p= ||wsmall||2 < 2]16n[7f1] ”wsmall\{j}”Q-

Now set

g@:m%gK+m%.
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Since the fact @ > L = (50p)_1/2 implies that gy > we obtain that for any w € /\N/(D),

70

e n—1 _ ~\ n—1
P (HBDwH2 < §0stmallH2 ' \/1971> < [056 (EO + \[D>] < <C(K +R)g> )

for some constant C. Hence, by the union bound and applying Proposition 6.3 we obtain

P (E!w eN(D): ||BPw|, < %”stmau!b : \/17n>

<|N(D)| - <5(K+R)g>n_1 < (C’(KJFR)g)n_l (;}7\4 , g)‘lM (\l/)ﬁ + 1)”—M’

where C’ is some large constant. Next recalling the definitions of & and Dy, using the facts that
D > Dy, L = (pp)~'/? and the function f(x) := x+/log,(1/z) is increasing for z € (0,e~") we find
that

(6.10) \/ 0g; = < Ulogl ( > .
25L 25L Copis 10, 1/2

Recalling the definition of Cy and enlarging Cg,l we therefore note from above that we can assume
C(K 4+ R)a/D < 1. This yields

P (Elw e N(D) : HBDwH2 < %Ostmaqu . \/ng) < exp(—I'n),

where

~ M C'(K+Ra C'(K+ R)a 4M n D

Fr=—(1——1J-1 ——1

( n ) ©8 < Vn * D n 08 oM @&
We next show that I' > 2 which allows us to deduce that
€
(6.11) P (Elw e N(D : || BPw |, < —Ostmalng : w/pn) < exp(—2n).
To prove that I' > 2, we recall that - ; and L < a < D < exp(c'{7). Therefore
AM
o (” : 13) <10,
n pM «

upon choosing ¢ sufficiently small. Using the fact M < n/2, this yields
~ 1 C'(K+ R)a C'(K+R)x
I'>——-1 — 10.
2~ log ( NG + D
Recalling (6.10) we see that we may enlarge C51 (and thus, the minimal value of D) further so
that C(K + R)a/D < 3. Using the upper bound for D, we also note that

a < 25L\/ log, 557 25L\/’7n 2°\/¢ 25p2\@ <o

Vv~ vn vn \/50Mp VC3.100 ~ ’
where the second last inequality follows from our choice of M, and the last inequality results from
enlarging (5.1 once more. This completes the proof of the claim that ' > 2. Thus we have shown
that (6.11) holds. The rest of the proof relies on the approximation of a general point of Z (D) by
a point of the set N (D), and is exactly the same as that of Proposition 5.2. We leave the details
to the reader. This completes the proof. ]
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7. PROOF OF THEOREM 2.2

In this section our goal is to combine the results of previous sections and finish the proof of
Theorem 2.2. First let us state the following general result from which Theorem 2.2 follows.

Theorem 7.1. Let A, be an n x n matriz with zero diagonal and i.i.d. off-diagonal entries a;; =
9ij&i i, where {6;;} are independent Bernoulli random variables taking value 1 with probability
pn € (0,1], and {&; ;} are i.i.d. centered with unit variance and finite fourth moment. Fiz K, R > 1,
and r € (0,1] and let Qi = {||An|| < K /np,}. Assume that D,, is a diagonal matriz such
that ||Dy,|| < Ry/np, and Im(Dy,) = r'\/np,I, with |r'| € [r,1]. Then there exists constants
0 < cra,8r1,¢r1,Cr1,Ch,,Crq < 00, depending only on K, R,r, and the fourth moment of {&;},
such that for any € > 0 we have the following:
(1) If B
S Cr1 logn’
n
then

- log(1/pn) Dn Ch
; < — _— — < — s
P({smm(An + D) < ¢cracexp ( C71 ogtp) / . } () <e+ —
(11) Additionally, if

(7.1) log(1/pn) < er.1(lognpn)?,
then
i log(1/pn)\ [Pn )
- < Oyt [ < —c /TPn).
P<{Smm(An + Dy) < craeexp < Cra Tog(npy) - } ﬂQK < &+ exp(—c7.1/npn)

The proof of part (i) of Theorem 7.1 follows from Berry-Esséen theorem and Proposition 3.4.
The proof of part (ii) uses results from Section 5 and Section 6. Recall that in Section 5 and
Section 6 we have shown that there does not exist any vector in Ker(B”) with a sub-exponential
two-dimensional LCD, with high probability. To prove the second part of Theorem 7.1, we use LCD
based bounds on Lévy concentration function. At this moment, we know that with high probability,
any vector in in Ker(B”) has an exponential two-dimensional LcD. However, we do not have any
control the real-imaginary correlation of this vector. This means that we cannot use the bound
(5.8), and have to rely on (5.9). To apply (5.9), we therefore need to show any vector with a large
two-dimensional LCD must also admit a large value of one-dimensional LCD. This calls for another
modification to the definition of the one-dimensional LCD.

Definition 7.2. For a non-zero vector x € R™, we set

~

0
Di(x) := inf {9 > 0: dist(fz,Z™) < Ly/log, 10|, } '

The advantage of working with the one-dimensional LCD lA)l() can be seen from the following
result.

Lemma 7.3. For z := x + iy € C™ we have

Dy(z) > Dy(z).
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Proof. The proof follows by simply noting that if there exists a # > 0 such that

9/
dist(6'x, Z™) < L1/log, ”251’/’2,
then for @ = (¢’,0) we also have that
. m Vol
dist(V'T0,Z™) < L1/log, 7 Z,

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. The proof is similar to that of [$, Theorem 1.1]. We include it for complete-
ness. Note that for any 9 > 0,

P({smm(ﬁn +D,) <¥}N QK>

(2 <P({ it [|(A4+ Do)zl, <9} 0 ) +B({ inf [|(A, + Du)el, <9} na).

where

V= Sg_1\<Comp(03_4n, p) UDom(cs an, (Cs4(K + R))*4)>,
and p as in Proposition 3.4. Using Proposition 3.4 with M = c3.4n, we obtain that

p(xienvfc (A + D), < cy4(K + R)py/ip, || An]| < K\/M) < exp(—c3.4np).

Therefore it only remains to find an upper bound on the second term in the RHS of (7.2). Applying
Lemma 2.5 we see that to find an upper bound of

B({ inf Ik + Djal, < 2} )

is enough to find the same for
P({dist(Ay 5, Hny) < py/pe 1 Q) for a fixed j,

where A, j are columns of (A, + Dy,). As these estimates are the same for different j’s we only need
to consider the case j = 1. Recall that B is the matrix whose rows are the columns An 2. .. An’n
Therefore

diSt(An,ly Hn,l) > ’<’U, An,l)’a
for any v € Sg_l N Ker(BP). Thus it is enough to find an upper bound on
(7.3) ]P’({ElveZﬂKer(BD) (A1, 0)] <p5\f}ﬂQK>

First we obtain a bound on (7.3) under the assumption of part (i). This follows from a simple
Berry-Esséen bound.

Since v € Sg_l NKer(BP) using Proposition 3.4 again, we may assume that v ¢ Comp(c3.4n, p)U
Dom(cs 4n, (Cs4(K + R))™)). Let J = supp(vje, ;nt1,,)\{1}. Then

P

(An1,0)| < pey/p) < L (Zviﬁsi&,p\/ﬁs).

icJ
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Since v ¢ Comp(cz.4n, p) UDom(czan, (C34(K + R))™4)) we have

03,4(K + R))4
||v[03.4n+1,n”|00 < WHU[%.M—FLH}H? and ||”[c3.4n+1,n}“2 > p,

from which it easily follows that
203_4(K + R))4
\/C3.4m

Therefore the Berry—Esséen Theorem (see [28, Theorem 2.2.17]) yields that

vs]loo < [vsll2 and  lvsll2 > p/2.

pllvsll3 , vl 4
(7.4) L 00, pype | <Ce+ ' =232 < Ce+ C'— 22— < (Ce+ ——,
ieZJ P32 ||lvslly P2 vl N

where C'is an absolute constant C', the constant C’ depends only on the fourth moment of {&; ;}
and
"o_ 203.4(K + R))4
Nen

Now replacing € by £/C the proof of part (i) of the theorem finishes.

It now remains to prove part (ii). As seen above we only need to obtain a bound on (7.3) under
the stronger assumption of p, of part (ii). To this end, we apply Proposition 3.4 again. Setting
My = Cg,lug.lp_Qp_l from Proposition 3.4 we find that it is enough to bound

(7.5) P({Ev € Vo nKer(BP) : [(An1,0)] < pe\/ﬁ} N QK),

where

C O

Vo i= 5271\ (Comp(My, p) U Dom(Mo, (Cs.4(K + R))™)).
Further denote
Vi = {w € Vo | D2 (Wsman/||wsmanl2) < GXP(C/H/MO)} and Vs 1= Vp\ W1,
where ¢ := min{c} ;, ¢ ,}. We will show that
(7.6) P({Elv evin Ker(BD)} N QK) < exp(—cnp),

for some ¢ > 0. Since Ker(B") is invariant under rotation, recalling the definition of the set Z (see
(4.1)), we see that it is enough to show that

IP({EIU € ZNKer(BP) : Dy (veman/ || vmatlly) < exp(c'n/Mo)} N QK) < exp(—anp).

Note that, if p satisfies (7.1) with a sufficiently small ¢7 1, then it also satisfies the assumption (5.2).
So we can apply Theorem 5.1. Applying Theorem 5.1 and Proposition 6.4 we then immediately
obtain our claim (7.6). Therefore now it only remains to find an upper bound on

(7.7) P({Elv € ZNKer(BP) : Do (vsman/|[vsmattlly) > exp(c'n/Mo) and |(An1,v)| < ps\/f)}ﬁQK).

To obtain the desired bound we condition on BY which fixes the vector v for which

Do (Usmall/”vsmallHQ) > eXp(C/n/MO)-

Lemma 7.3 implies that

~

D1 (¢(v)) > exp(c'n/My),



THE CIRCULAR LAW FOR SPARSE MATRICES 39

where we recall that vsman/||Vsmanlll2 = ¢(v) +1(v). Now repeating the proofs of (5.9) and (5.12),
and recalling the definition of My we deduce that

- ~ 1 - 1
P(|(An1,v)| <epyp) <Cle+—=—— | <C <€ +— exp(—C”npp4)) :
VPD1(6(v)) VP
for some constants C' and ¢”. Choosing 7.1 sufficiently small and recalling the definition of p we

further deduce that ]

— exp(—c"npp") < exp(—c”/np).

VP

Therefore by replacing € by ¢/C we conclude that (7.7) is bounded by

e+ Cexp(—c’\/np).
This completes the proof of the theorem. ]

Proof of Theorem 2.2. Proof follows from Theorem 7.1, [8, Theorem 1.7], and the triangle inequal-
ity. We omit the details. O

Remark 7.4. From the proof of Theorem 7.1 we note that the assumption (1.2) (equivalently
(7.1)) was needed to show that the assumption (5.2) holds. From [%, Proposition 3.1] we have p =
exp(—C'log(1/p)/log(np)), for some large C. If one can improve the conclusion of [3, Proposition
3.1] to accommodate p = (1) then it is obvious that (5.2) holds without the assumption (1.2),
and therefore Theorem 1.3(ii) can be extended without any extra assumption.

8. INTERMEDIATE SINGULAR VALUES

In this short section, our goal is to prove Theorem 2.12 which shows that there are not too many
singular values of the matrix ﬁAn — wl, near zero. To prove Theorem 2.12 we employ the same

strategy as in [12, 37, 41]. Namely, we first show that the distance of any row of A4,, from any given
subspace, of not very large dimension, cannot be too small with large probability.

Lemma 8.1. Let a := (§6;)]"_, be an n-dimensional vector where {&;}7_, are i.i.d. with zero mean
and unit variance and {0}} | are i.i.d. Ber(p). Let ¢ : N — N be such that ¥ (n) — oo and
Y¥(n) < n. Then there exists a positive finite constant cg1? such that for every sub-space H of C"
with 1 < dim(H) <n —(n), we have

P (dist(a, H) < cs1y/p(n— d1m(H))> < exp(—cg1p(n)) + exp(—cg19%(n)/n).

A result similar to Lemma 8.1 was obtained in [37] (see Proposition 5.1 there) for the dense
case. Later in [12] (and [11]) it was improved for the sparse case. Our Lemma 8.1 follows from [12,
Lemma 3.5] when applied to the set-up of this paper. So we omit the proof and refer the reader to
the proof of [12, Lemma 3.5].

We now complete the proof of Theorem 2.12 using Lemma 8.1. We employ same strategy as in
[37, pp. 2055-2056] (see also the proof of [12, Lemma 3.14]).

2the constant cs.; depend on the tail of the distribution of {&}im1
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Proof of Theorem 2.12. To lighten the notation, let us denote by s; > s9 > --- > s, the singular
values of (A, — \/npwl,). Fix i such that 3¢ (n) < i <n—1 and denote A;"" to be the sub-matrix
formed by first m rows of the matrix (A4, — \/npwl,), where m = n — [i/2]. Further denote
sy > sh >---> sl to be the singular values of A;"". Using Cauchy’s interlacing inequality we see
that

(8.1) Sn_i < Sp—i-
Next from [37, Lemma A.4] it follows that
(8.2) ST s b sl = dist 2 disth 2 + - - 4 dist! 2,

where dist’; := dist(a; —w./npe;, H"), a;r is the j-th row of the matrix A,, H; """ is the subspace
spanned by all the rows of Ap"" except the j-th row, and e; is the j-th canonical basis. We also
note that dist; < dist};, where dist; := dist(a;,span(H; ", e;)). Thus from (8.1)-(8.2) we deduce

FE
i 1 1
-2 -2 c g2
(8.3) o Sn—i < - Z s; 7 < - Zdlstj .
j=n—i j=1
It is easy to note that dim(span(Hﬂ;w, ej)) <m+1<n—1(n)forall j=1,2...,m. Therefore

from Lemma &.1 we further obtain

P <distj < s p-i/3) <o~ j=1,2,....m,
where we used the fact that n — dim(span(H;-Z;w, ej)) >n—(m+1) >1i/3 and chose C 193 > 4c§i.
Hence, from (8.3) we see that
C8.1 1 -3
P(s, ;<L mp-L) <2
<sn NG /Ip n) n=°,

for all ¢ such that 3¢(n) < i < n — 1. After taking the union over 4, the proof of the theorem
completes. O

9. WEAK CONVERGENCE

Here our goal is to prove Theorem 2.13. As mentioned in Section 2.3, using a truncation argu-
ment, we first show that it is enough to restrict to the case of bounded {¢; ;} To this end, we
have the following lemma.

n
ij=1°

Lemma 9.1. If the conclusion of Theorem 2.13 holds for {&; ij=1 bounded then it continues to
hold without the boundedness assumption.

To prove Lemma 9.1 we need to use the notion of bounded Lipschitz metric between two prob-
ability measures.

Definition 9.2. Let p and v be two probability measures on R. The bounded Lipschitz metric is
defined as

A (1) :=sup{/fdu—/fdvr flloe + 1711 < 1},

where || f||oo := sup, | f(z)| and || f||1, denotes the Lipschitz norm of f.
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In the context of Lemma 9.1, an important property of the bounded Lipschitz metric is that it
characterizes the weak convergence. That is, a sequence of probability measures {u,} converges
weakly to poo if and only if dpr,(tn, pleo) — 0 as n — oo (see [3, Theorem C.8]). We will exploit
this property of dpr(+,-) to prove Lemma 9.1. The approach of our proof is similar to that of [15,
Proposition 4.1].

Proof of Lemma 9.1. Define
K &i 1% 5] < K) — p(K)
[/ O’(K) R

where
WK) =Elg1(1&, < K)]  and  o*(K) = Var(§,1(I&,] < K)).
Using dominated convergence theorem we note that p(K) — 0 and o(K) — 1 as K — co.
Let AX be the matrix whose (4, j)-th entry is 55 - 6;, 5. Denote V5 0 be the ESD of
0 ﬁAﬁf —wl,

Then by the assumption of this lemma v, K converges weakly to v for every K > (0. This in
particular implies that dgr(vy ’K,Vévo) — 0 as n — oo, for all K > 0. From the definition of
bounded Lipschitz metric it is easy to see that for any two 2n x 2n matrices Hermitian matrices

Bi and By
2n
1
dpr (P, uP?) < sup Z\f = fG(B))], Iflle <1p < 2712\/\3'(31) = Aj(B2)l,

where pP' and 152 denote the ESD of By and Bs respectively, and {);(Bj) 2”1 and {\; (BQ)
denote the eigenvalues of B; snd Bs, arranged in non-decreasing order.
Therefore using Hoffman-Wielandt inequality (see [3, Lemma 2.1.19]) we see that

> (655)%0i

n2p

dbr (v ) < nTpTY[(A = A)(An =AY =

9

where é{g =& — &KJ Using Chernoff’s inequality, followed by an application of Borel-Cantelli
lemma we note that

n
Z 0;; < Cn’p, almost surely ,
ij=1
for some absolute constant C'. Therefore
Cn2p
(9.1) P (s (v, vY) > 2CE[(E)%) <P (&)? = 2Cn?pE[(£5)7 |
=1

where {¢/} are i.i.d. copies of {5 "} One can check that E[(¢f)?] — 0 as K — oo. Thus applying
the weak law of large numbers we obtain that for any € > 0 there exists Ky(e) such that for all
K > K0(€)7

lim P(dpr(u?, viv) > ¢/2) = 0.

n—oo
Hence using triangle inequality we find

lim P(dpr(p,,vy) >¢€)=0.
n—oo
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Since € > 0 is arbitrary we obtain that the conclusion of part (i) of Theorem 2.13 holds with-
out the boundedness assumption. To prove that part (ii) of Theorem 2.13 also holds without the
boundedness assumption we proceed from (9.1) by applying Markov’s inequality, followed by an-
other application of the Borel-Cantelli lemma. We omit the details. This finishes the proof of the
lemma. g

Equipped with Lemma 9.1, hereafter we assume that {fi,j}gjﬂ are bounded, and under that
assumption we show that the Stieltjes transform of the ESD of A}Y converges, i.e. we prove Theorem
2.15 (recall the definition of A from (2.7)). We remind the reader that the limit of m,,(¢) (Stieltjes
transform of the ESD of AY), denoted by ma.((), satisfy the equation

P(m) :=m(m+¢)? + m(1 — |w|?) + ¢ = 0.

Our strategy for proving Theorem 2.15 is to show that P(m,(¢)) is small for large n. Namely, we
establish the following result:

Theorem 9.3. Fiz w € Bc(0,1) and a constant Cy > 2. Fizing any arbitrary positive constant
co < 1/2 define
Sy i ={CeCtN Be(0,2¢5") : Tm ¢ > co}.

Assume {&; ;} are bounded by K for some K > 1 and p = w(h%). Then there exist a constant
Cy.3, depending only on cy, Co, K, and R, and an absolute constant Cyg3 such that for any ¢ € S

P <|P(mn(C))’ > Cozy | k;i:) < nCy 3 exp(—Cylogn).

Since there are three roots of the cubic equation P(m) = 0, the fact that P(m,({)) is small does
not automatically guarantee that m,(¢) is close to ms(¢). We will see later (see Lemma 9.10)
that only one of the three roots of the cubic equation P(m) = 0 can be the Stieltjes transform of
a probability measure. This fact together with Theorem 9.3 finishes the proof of Theorem 2.15.

Now we turn our attention to the proof of Theorem 9.3. A key tool to show that P(m,({)) will
the formula for the inverse of a block matrix.

Lemma 9.4 (Inverse of a block matrix).

A B *1_ (A_BD—lc)—l —A_lB(D—CA_lB)_l
{C D] N [—D‘lc(A -BD7'C)"t (D-CcAT'B)T! }

Using Lemma 9.4, one can obtain equations involving the entries of the inverse of AY — (I, and
that of a sub-matrix of AY — (Iy,. For the ease of writing, we introduce the following notation.

Definition 9.5. Denote

Ay(C) =

1
1A*C I—nm Mfﬂa wIn] '

Jrpin n n

Fix a subset T C [2n] and let A¥(¢)(™) be the sub matrix of A¥({) obtained after removing the
columns and the rows of A¥(({) indexed by T. Further denote G%T)(C ) == (A%(O)™)~1 where
we suppress the dependence on w. When T = &, we write G, ({) instead of G?)(g). \(Nit{h};chis
TO{kD) (¢

notation, we note that m,(¢) = 5 TrG,(¢). For the ease of writing, we abbreviate Gj,
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by G,(qkT)(C) for any k € [2n]. Similarly we write Gg)(g) and ng)(g*) when T = {i} and {3,j}
respectively.

Equipped with the above notations, we now state an easy consequence of Lemma 9.4 that allows
us to relate the entries of G%T)(C) and G;’“T)(g). Its proof can be found in [19, Lemma 4.2].

Lemma 9.6. Fiz T C [2n] and k € [2n]. Fori,j # k and i,j,k ¢ T we have

Qa0 O
G,ELT) ii= Gglk']l') . n i,kUn k,].

In the proof of Theorem 9.3, using Lemma 9.6, we obtain equations involving entries of G,(F)(C )
for certain choices of the index set T. From those equations we then need to identify the negligible
and the non-negligible expressions. To do this we use the following concentration inequality.

Lemma 9.7. (i) Let a := (§;0;)"_; be an n-dimensional random vector where {&;}_ are i.i.d. with

zero mean and unit variance and {§;}7_, are i.i.d. Ber(p), where p = w(loi"). Also assume that

{&}1, are bounded by some constant K > 1. Fiz a matriz R and a vector ¥ such that |92, [|R]| <
R for some R > 1. Then for every Co > 1 there exist a constant Cy7, depending only on Cy, K,
and R, and an absolute constant Cy 7 such that we have

(9.2) P ( > Cy7+/nplog n) < Cy.rexp(—Cplogn)

and

(9.3) P (\ﬁ*a\ > Cy.74/log n) < Cy.7exp(—Coglogn).

1) Let a := (8; —Ed;), where {5;}"_, are i.i.d. Ber(p). Further let p, R, 9, and R be as in part

( ) i=1 =1 p b, v, p

1). Then for every positive constant Cy > 1 there exist a constant C}, -, depending only on Cy and
9.7

R, and an absolute constant Cg7 such that

(9.4) P (

and
(9.5) P (\19*(1\ > O 7+/log n) < Cy.7exp(—Cohlogn).

a*Ra —p En: R

=1

a*Ra — p(1 — p) Z Rii
i=1

> CZN\/W) < Cy.7exp(—Coylogn)

The proof of Lemma 9.7 has been motivated from the arguments in [35, pp. 175-177]. Although
the arguments there are for the dense case, we show below that the same approach can be taken
in the sparse case. The part (ii) of Lemma 9.7 will be used in Section 11 to prove Theorem 1.8.

Before proceeding with the proof, we should mention that Lemma 9.7 continues to hold for any
n’ x n/ matrix R and n’-dimensional vector ¥ as long as n’ > ¢'n for some absolute constant ¢’.
This modification only worsens the constants appear in Lemma 9.7. During the proof of Theorem
9.3 we use Lemma 9.7 for n’ = n — 1 and n — 2. In the proof of Lemma 9.7 we stick to the case
n' = n for simplicity.
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Proof of Lemma 9.7. First let us prove part (i). Then we will outline the required changes to prove
part (ii). To this end, using Chernoff’s inequality we see that there exist absolute constants C' and
¢ such that

n
(9.6) P <Z 0; > Cnp) < exp(—cnp).
i=1
Therefore using the fact that {¢;}7 ; is a sequence of bounded i.i.d. random variables and applying
Hoeffding’s inequality, we obtain
Cnp

P (IlaHg > 2Cnp) <P (Z &> 2Cnp> + exp(—cnp) < exp(=Cnp/K?) + exp(—cnp).
i=1
Hence for any non-negative definite matrix R
(9.7) P (||f)‘{1/2a\|2 > /2C || np) < exp(—Cnp/K?) + exp(—cnp).

Note that the above inequality in particular implies that M(||9t/2all2) < \/2C||R|np, where for
any random variable X the notation M (X) denotes the median of its distribution. Now applying

Talagrand’s concentration inequality for convex Lipschitz functions (see [35, Theorem 2.1.13]) we
deduce that for every € > 0,
(9:8) P (|1 2alls - MR ?alls)| = [93]/2Ke) < O exp(~c'e?),

where ¢ and O’ are absolute constants. Upon using integration by parts, the above inequality also
yields that |M(||9t/2al2) — E||9t/2al|2| < C" for some constant C”, depending only on K and R,
where we recall that ||9R]] < R. Therefore an application of the triangle inequality further shows
that

(9.9 P (|l all, ~ EIR ally| 2 2|92 Ke) < € exp(~c<?),
for all e > C”. Using integration by parts once more we obtain that Var(||9'/2al|2) < 2(C”)? where

we enlarge C”, if necessary. Thus

(IR 2al3) - M(IR2al3)

2 2
(9.10) < Var(|%'2al3) + ‘(Enml/?ang) - (M(|%'al2)) ’< 3C" \/2C|[R]|np,
for all large n. Since for any non-negative definite matrix SR we have a*Ra = HiRl/?aH;, from

(9.7)-(9.8), and (9.10), upon applying triangle inequality, we further deduce that

P (\a*ma — E(a*Ra)| > 3v/2CCod L K||%R|/nplog n)
<P <\a*iﬁa — M(a*Ra)| > 21/2CCod =1 K||R]||\/nplog n)

<P (1% 2all2 + M ([%'all2) = 2/2C R ] np)

+B (|19 ally — M(IR'2alle)| > K V/[R[Co Togn)
(9.11) < ' exp(—Cplogn) + exp(—Cnp/K?) + exp(—cnp),

for all large n. Now recalling that E[§;] = 0, E[¢?] = 1, E[5;] = p, and the fact that {£6;}",
are i.i.d. we see that E[la*Ra] = p ;" | R;;. Thus using the fact np = w(logn), when R is a
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non-negative definite matrix, the inequality (9.2) follows from (9.11). Then applications of triangle
inequality extend (9.2) for the Hermitian case first and then for any 98 with bounded norm. This
completes the proof of (9.2). To prove of (9.3) we follow the same lines of approach as above and
note that E(9*a) = 0. This finishes the proof of part (i).

Next we turn our attention to the proof of part (ii). Since a3 <230 (62 +p?) <230 6+
2np. Thus using (9.6) we note that

P (Ha”% > 4Cnp) < exp(—cnp).

Now repeating the remaining steps of the proofs of (9.2) the proof of (9.4) completes. We omit the
details. The proof of (9.5) is exactly same as (9.3). O

During the proof of Theorem 9.3, we apply Lemma 9.7 to the matrix R = G,(F)(C), with some
suitably chosen T, while its rows (columns) are playing the roles of 9. So we need bounds on their
norms, which are derived in the next two lemmas.

Lemma 9.8. For any T C [2n] and k € [2n]\T both \GSF)(QM\ and HG,(F)(C)H are bounded by
1/Im¢.

The proof follows by simply observing that

1
DO =Y /\Z_CWUZ,

£e2n]\T

where {\¢}, and {u,} are the eigenvalues and eigenvectors of A%(¢)(™. The next result provides
bound on the Euclidean norm of a row (column) of G,(F)(C )

Lemma 9.9 (Ward identity). Fiz any T € [2n]. Then for any i € [2n]\T

m ™.
S 6P0u = T[] =BG G,

Im ¢
ke2n)\T ke2n]\T

The proof of Ward identity follows from the resolvent identity
cl'-pt=cY(b-c)p!,
applied with ¢ = A¥(¢)M and D = C*. Now we are ready to prove Theorem 9.3.
Proof of Theorem 9.53. Fix any i € [n]. Using Lemma 9.4 we note that

(9.12) Gn(Qii = —(C+ Zi) ™,
where ‘

Zi= > aix G (Q)r e,

kO£

and ay e is the (k,£)-th entry of AY(¢). We see that Z; is a quadratic function in the variables
{@ik}repen)\fi}- Hence, one would like to appeal to Lemma 9.7(i) and show that Z; must be close to
its expectation. However, we cannot directly apply Lemma 9.7(i) because all the entries of A¥(()
are not of the form £ -¢. In particular, for every i € [n] the entry a;,; does not have that product
structure, so we need to separate this case. We carry out the details below.
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To this end, we first note that for any i € [n] we have that a;, = 0 for any & € [n]. Therefore
the expression of Z; simplifies to

(9.13) Zi= Y aixGP(Orears
ke[2n]\[n]

For the ease of writing, denote [n]®) := [2n]\([n]U{n+i}). Recalling that HGS)(C)H <1/Im¢ < ¢!
setting R = cgl, and applying Lemma 9.7(i), we see that

lo —
(9.14) P Z a;, kG( )( k@i — — Z G QOkk| > Cg.?\/n?pn < Cyrexp(—=Coplogn).

k,ee[n]® ke [n]®)

Using Lemma 9.6 we note

LS 600 =2 Y GOt 3 GlOunOue

ke[n]® ken) @ ke[n)® Gn(Q)ii
Therefore an application of Ward identity (see Lemma 9.9) and Cauchy-Schwarz inequality yields
1 - n < —- — < .
(9.15) Z G (O 0 Z Gn(QOrr| < 0 G (Onme = nim¢

ke[n](Z ke[n]®
From Lemma 9.4 an easy computation also shows that

(9.16) LY = Y GalOin
keln]

ke2n\[n]
and therefore recalling that |Gy, ({)ntin+i| < 1/Im(, from (9.15) and (9.14) we deduce that

A logn —
(9.17) P Z ai fGD(Osari — mn(C)] > 2C9.74 | ngp < Cgrexp(—Cplogn),

ken]®

for all large n.
Next we need to analyze the remaining terms of Z;. Since w € Bc(0,1) using the triangle
inequality we see that |a; 4| < 2 for all large n. Now applying Ward identity again we see

2 < ImGT(Ii)(C)n-i-i,n—f—i < 1
- Im ¢ ~ (Im¢)?

‘Gv(@i) (C)n—i—z‘,f
Le[n]®
So from Lemma 9.7(i) it follows that

. logn —
(9.18) P Z @i n+iG(Onipani > 2074/ fp < Cg.rexp(—Cplogn).

£€[n](®

A similar argument as above shows that

] _
%81 < Ty exp(—Cplogn).
np

(9.19) Pl Y ainGP(Qrnritngii| > 2Cor
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Using the fact that {§; ;}7,_, are bounded and recalling that

1 1
int+i = ——=E&in+iOimti — W and ntii = ——E&n+i,i0n+i; — W
/TP /TP ’

we note
Wit G (Ontintitnsii — [WPC(Onrinri| < longpn,
for all large n. Thus denoting
Z) = Z; —mp(() — ’w|2G$Li)(§)n+i,n+i7
from (9.12)-(9.13) and (9.17)-(9.19) we deduce
(9:20) Gn(Qii = =(C+mn(Q) + PG (Ontinti + 2)) 7,

where

N _
(9.21) P (\Zﬂ > 7Cq 7 ngn) < 3C9g.7exp(—Cylogn),

for all large n.

Equation (9.20) together with inequality (9.21) is the first step towards obtaining an approximate

fixed point equation for m,(¢). Next our goal would be to show that Gg)(g‘)nﬂ,nﬂ is close to a

certain function of m,,(¢) with high probability. This would enable us to approximate Gq(f ) (Ontinti
by that function of m,,(¢) and derive the desired equation for m,(¢).

To control the behavior of Gq(f ) (Q)n-tinti, we apply the formula for the inverse of the block matrix

again. This yields
G (QOnrimes = —(C+Z)7Y,
where ~ o o
Zii= Y ik G Qnarnii = Y anpikGY" T (Oketenis
kb£n—+isi k.ee[n]\{i}

and in the last step above we have again used the fact that aj i = anyir = 0 for k € [2n]\[n].
Note that for every k£ € [n]\{i} the random variable a4, has the desired product structure.
Hence, an application of Lemma 9.7(i) now shows that

logn

~ 1 L
Pl|Z,— = (4,n+1) >
> G (Qrp| = Cor -

" kel
Therefore, arguing similarly as in (9.15)-(9.16) and denoting
Z? = ZZ - mn(g)a

< Cy.7exp(—Cplogn).

we conclude
(9.22) Gg)(on—&-i,n—l—i = _(C + mn(o + Z?)_lv

where

- 1 _
(9.23) P <|ZP‘ > 209,7\/%) < Cgrexp(—Cologn),
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for all large n. So combining (9.20) and (9.22) we see that

1
(9.24) Gn(Q)ii=— — .
CHmal0) = iz + 2
Since Imm,,(¢) > 0 for any ¢ € C* we have |¢ + m,,(¢)] > Im{ > ¢. Thus for any i € [n]
1
(9.25) Gn(C)ii = — —,

2
Cma(Q) = iy + 2
for some Z? such that

logn
np

(9.26) P <|ZZO| >C > < 4Cq 7 exp(—Cplogn),
for some large constant C'. By a similar argument (9.25)-(9.26) holds for any i € [2n]\[n]. We omit
the details.

Next we claim that

(@) = | 2

If not, then together with (9.25)-(9.26) it implies that |G, (()is| > %cal, for all large n, on a set
with high probability. This yields a contradiction to Lemma 9.8. Therefore, from (9.25)-(9.26)
again, we deduce that for every i € [2n],

(9.27) Gn(Q)iy = — ! + &,

¢+ mn(C) - g.g_‘nu;‘n(()

for some EZ-O such that

1 _
ogn) < 4Cq7exp(—Coplogn),
np

P (|5?\ > ('

for some other constant C’. Next recalling that w € B¢(0,1) and |¢ + my(¢)] is bounded on .7,
the proof of the theorem finally completes from (9.27) by taking an average over i € [2n] and
rearranging the terms. O

As we have already mentioned Theorem 9.3 alone cannot prove Theorem 2.15. To complete the
proof of Theorem 2.15 we need the following uniqueness property of the limit mqo(¢), which is
borrowed from [7].

Lemma 9.10 ([7, Lemma 8.5]). There exists an absolute constant Cy 19 such that for every & € C
with Im ¢ > Cy19 there is one and only one root m(¢) := m((, z) of the cubic equation P(m) =0
such that /m(¢)| < 2/Im(.

We are now ready to finish the proof of Theorem 2.15.

Proof of Theorem 2.15. Recall that the limit ms(¢) is a root of the equation P(m) = 0. Let m1(()
and ma(¢) denote the other two roots of the same equation. Therefore

P(mn(C)) = (mn(C) = moo(€)) (mn(¢) —m1(¢))(ma(C) —m2(C)).
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From Lemma 9.8 and Lemma 9.10, and the triangle inequality, we note
mn(¢) = my(Q) > 1/Im¢,  for j = 1,2,
Hence, upon choosing ¢y in Theorem 9.3 such that ¢ 1'> 20y 10, from Theorem 9.3 it follows that
logn
np

P (|(mn(C) — Moo(C)] > C ) < nCy3exp(—Cplogn),

for any ¢ € J¢,,,, where C' is some large constant. Choosing Cy > 3 the proof completes by an
application of Borel-Cantelli lemma. O

Proof of Theorem 2.13 is now immediate.

Proof of Theorem 2.13. When {¢; ;} are bounded, the weak convergence of vy to v% follows from
Theorem 2.15 and Proposition 2.16. Then the boundedness assumption is removed using Lemma
9.1. ]

10. PROOF OF THEOREM 1.3

In this section we combine Theorem 2.2, Theorem 2.12, and Theorem 2.13 to prove Theorem
1.3. As already mentioned in Section 2, to prove Theorem 1.3 we need to invoke the replacement
principle. We fix r € (0,1) and define D, := {w € Bc(0,1—7) : [Imw| > r}. Then applying Lemma
2.1, we show that for every f € C?(C) supported on D, we have [ f(w)dL,(w) — [ f(w)dm(w)
in probability or almost surely, depending on the choice of the sparsity parameter p, where L, is
the ESD of \/%An. Afterwards letting » — 0 we establish the circular law limit. Below we make
this idea precise.

Before we prove Theorem 1.3 we need some properties of the probability measure v%. Recall v
is the limit of the ESD of A where AY was defined in (2.7).

Lemma 10.1. (i) For anyw € Bc(0, 1) the probability measure v, is supported on [—/ Ay, \/A+],

where 5
(\/1 T 8[uw? +3)

)\_|_ = A_A,_(U}) = .

8 (\/1 + 8Jwl|? + 1)

(ii) There exists some absolute constant ro € (0,1) such that for all v € (0,r¢), 7 € (0,1), and
w € Be(0,1 —7r)\Bc(0,7) we have

;
| Noglallduti(z) < Cunaritog ],

—T

for some positive constant C'1g.1 which depends only on r.

Proof. In [1, Lemma 4.2] it was shown that for any w € Bc(0,1) the probability measure 7% is
supported on [0, Ay (w)] where for any ¢ > 0, 7% ((0,t?)) = v% ((—t,t)). From this part (i) of the
lemma follows.

Turning to prove (ii), using integration by parts we note that for any probability measure p on
Rand 0 <7 <1,

(101 | Nogt@ldn(o) < ogrluo.m) + G

0 t

t.
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Using [7, Lemma 8.4(i)] and [7, Lemma 10.3] we see that for any ¢ € (0,1),
V2 ((0,8)) < v (=) < 2t (Im meg(it)) < 2C,

for some large constant C' depending on r. The rest follows from (10.1). O

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We first prove part (i). That is we show that the ESD of A,/ /np converges
weakly to the circular law, in probability. Fix r € (0,1/2) and denote D, := {w € B¢(0,1 —r) :
[Imw| > r}. Let us also fix w € D,.. Define

Ay, log(1/p)) 1
Q=< Smin —wly | >cpp, h n = —C .
n {8 ( " w > >c } where ¢ C9.9 €XPp < 9.9 log(np) ) ninp

Setting D,, := diag(Ay)—w/npl,, conditioning on diag(A,), the diagonal of A,,, applying Theorem
2.2, and then taking an average over diag(A,) we deduce that

1 /
(10.2) P(Q)) >1— L1+ GChy
VP
Fix any 6 € (0,1) and let 7 := 7(8) := c2.126. Further denote 1(n) := max{+/n/p,n/(logn)?

Since np = w(log®n) we note that 1(n) = o(n/logn). Equipped Wlth these notations we recall the
definition of v to see that
- 1 n—3y(n) 1 n
103) [ ogelidy@) =1 3 fosslitsi <+ Y log(soli(s < 7).
i=1 i=n—3y(n)+1
We evaluate each term of the RHS of (10.3) separately. Focusing on the second term we see that
on the event Q,

n

> log(si)[I(si < 7) < [log(sn)| -
i=n—3(n)+1

We next consider the first term of (10.3). Since min{py(n),%?(n)/n} > Cz12logn we therefore
deduce from Theorem 2.12 that on an event € we have

_1 3Y(n)

(10.4) <loge,” - — = o(1).
n

3¢Y(n)

n

1n731/1(n) 1 n—1
=Y log(s)lI(si<7) = Y7 [log(sa-)[I(sn-i < 7)
=1 i=3(n)

(10.5) log 1/62 12) Z I(sp—; < Z log< ) (Sp—i < 7).

=3¢ (n Z 3p(n
where P((92/)¢) < 2/n%. Recalling the definition of 7, from Theorem 2.12 it also follows that
S KT =19 < 0n
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on the event Q. So from (10.5) we deduce that

n—3y(n) on
1 1 n
- Z [log(si)[I(si < 7) < 3-log(1/212) + — 3 log (;)
= i=39(n)
5
(10.6) <d-log(1/co12) — 2/ log x dz,
0

for all large n. Hence, denoting €, := ), U Q" from (10.3)-(10.4) and (10.6) we obtain that
7(9)
|, NoBtiebia @) <m0,

for all large n, on the event Q,,, where k(J) := 26-log (1/c2.12)—2 fO(S log x dxz. Note that lims_,o k() =
0. Therefore given any x > 0 there exists 7, := 7(k), with the property lim,_,o 7x = 0, such that

(10.7) limsupP (/ |log |x||dv (z) > /<c> < limsup P ({/ | log |x||dv,) (z) > n} N Qn) =0.

n—00 —Tr n—00 —T

Next noting that log(-) is a bounded function on a compact interval that is bounded away from
zero, we apply Theorem 2.13 to deduce that

(10.8) / |log |z||dv,) (z) — / |log |z||dv (x) in probability,
(—R,—7x)U(Tx,R) (=R,—7x)U(Tx,R)

for any R > 1. Recall that for w € D, the support of 2 is contained in [—6, 6] (see Lemma 10.1(i)).
On the other hand, using that log|z| < |z|? for |z| > e!/? and choosing R > /2, we have

log R 2log R | S0 _ a2,
[ oglallavy@) < PET [ afvpe) < THET | EHE L pup
(~R.R)° B J-rrye R n°p
The weak law of large numbers for a triangular array (see [17, Theorem 2.2.6]) implies that
> =1 a?yj (n?p) — 1 in probability.

Therefore, given any k > 0 there exists R, := R(x) sufficiently large such that

/ tog Ja v (@) - [ [log|al dvz,(2)| > & | =0
(_RMRN)C (_RMRN)C

From Lemma 10.1(ii) we also have that
for some constant C. As k > 0 is arbitrary and 7., — 0 as k — 0, combining (10.7)-(10.10) we
deduce that

1 oo o
(10.11) Elog\det(An/«/np—wInN :/ log|m|duﬁf(m)—>/ log |z|dvy (), in probability.

—0o0

(10.9) lim sup P (

n—oo

Tk
(10.10) / |log |z||dvy (x) < C1y|log 7yl

— Tk

Now the rest of the proof is completed using Lemma 2.1. Indeed, consider &, the n x n matrix
with i.i.d. centered Gaussian entries with variance one. It is well-known that, for Lebesgue almost
all w,

1 oo
(10.12) ﬁlog|det(®n/\f—w1’n)| —>/ log |z|dvy (z), almost surely.
—0o0
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For example, one can obtain a proof of (10.12) using [13, Lemma 4.11, Lemma 4.12], [1, Theorem
3.4], and [30, Lemma 3.3].

Thus setting D = D, B = Ay /\/np, and B = ®,,/y/n in Lemma 2.1(a) we see that assump-
tion (ii) there is satisfied. The assumption (i) of Lemma 2.1(a) follows from weak laws of large
numbers for triangular arrays. Hence, using Lemma 2.1(i) and the Circular law for i.i.d. Gauss-

ian matrix of unit variance (e.g. [37, Theorem 1.13]), we obtain that for every r > 0 and every
fr € C%(C), supported on D,

1
(10.13) /fr(w)dLn(w) — /fr(w)dm(w), in probability.

T

To finish the proof it now remains to show that one can extend the convergence of (10.13) to all
f € C%(C). Tt follows from a standard argument.
To this end, fix any arbitrary sequence {r,,} such that r,, | 0 as m — oo. Also fix a f € C%(C).
Define a function i, € C?(C) such that i, is supported on D, and i, = 1 on Dy,.. Denote f,, := fi,,,.
Recall that if a sequence of random variables converges in probability then given any subse-
quence there exists a further subsequence such that almost sure convergence hold along the latter

subsequence. Therefore we can find a subsequence {n,(cl)} along which (10.13) holds almost surely
for f,, and i,,. This, in particular implies that

fim s / (1= iy (W)L, o (0) = / (1 — ir, (w))dm(w) < 1— % /D  dnw
(10.14) <dri(1—r)+ 8% < 8r1,

almost surely. Thus writing f = f,, + (1 — i,,)f and assuming that || f|lcc < K, by the triangle
inequality we also obtain

(10.15) lim sup ’ /f(w)dLnS)(w) -

k—o0

1/ f(w)dm(w)| < 16K, almost surely.

T JBe(0,1)

Repeating the same argument we can find a further subsequence {n,(f)} C {n,(cl)} such that (10.15)
holds for the subsequence {n,(f)} and r = r9. Proceeding by induction we therefore deduce that for
any m > 0 there exists a subsequence {n;m)} C {ném_l)} such that

(10.16) lim sup ‘ / F()dL, g (w) - !

k—o00 ™

/ f(w)dm(w)‘ < 16Kr,,, almost surely.
Bg(0,1)

Since r, | 0 as m — oo, proceeding along the diagonal subsequence {nﬁ,’zn )} we further obtain that

lim ‘/f(w)dLn%ﬂ) (w) — 1 /B o f(w)dm(w)‘ = 0, almost surely.
c\Y,

m—oo ;
The above argument also shows that given any subsequence {n;} there exists a further subsequence
{nk,, } such that [ f(w)dLy,, (w) — %IBC(O 1 fw)dm(w), as m — oo, almost surely, for every

f € C?(C). Hence,

/ F(w)dLn(w) — =

T JBc(0,1)

f(w)dm(w), in probability.
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This completes the proof of the first part of the theorem. To prove the second part of the theorem
we note that under the assumption (1.2), using Theorem 2.2 it follows

P 21-0(55)

Q’n = {Smin (An — wIn> > 5n} , and ¢, := cogexp (CZ.QIOg(l/pn)> 73,
/TP log(npy,)

Therefore, proceeding similarly as above, applying Borel-Cantelli lemma, and using Theorem
2.13(ii) we see that the conclusions of (10.7)-(10.8) hold almost surely. To show that (10.9) holds
almost surely one needs to use a strong law large number for a triangular array. This can be
obtained using Markov inequality and Borel-Cantelli lemma. We omit further details.

Thus under the assumption (1.2) we have shown that (10.11) holds almost surely. Therefore

proceeding same as above and using Lemma 2.1(ii) we obtain that for every r > 0 and every
fr € C2(C), supported on D,

(10.17) /fr(w)dLn(w) — i/fr(w)dm(w), almost surely.

Hence, arguing similarly as in (10.15) we also deduce that for every f € C2?(C), with ||f|l < K,
and any r € (0,1),

where

lim sup ‘ /f )d Ly ( / f(w)dm(w)| < 16Kr, almost surely.
n—00 Bc(0,1)
Since r is arbitrary the proof follows. This completes the proof of the theorem. O

11. PROOF OF THEOREM 1.8

In this section we provide the proof of Theorem 1.8. It follows from a simple adaptation of the
proof of Theorem 1.3. Recall the three key ingredients to the proof of Theorem 1.3 are Theorem
2.2, Theorem 2.12, and Theorem 2.13. So we need to find analogues of these three theorems.

First let us state the analogue of Theorem 2.13.

Theorem 11.1. Let Adj, be the adjacency matriz of a directed Erdds-Rényi graph with edge
connectiwity probability p. Fiz w € Bc(0,1) and denote U to be the ESD of Adjy where

0 ——L—Adj,, — wl,

aw L p(1—p)
(11.1) AdjY = L Adi—al, 0
np(1-p)

Further denote p := min{p,1 —p}. If p= w(log”) then DY

n

converges weakly to v¥, almost surely.

Proof. Let Adjn denote the matrix of i.i.d. Ber(p) entries. That is, unlike the matrix Adj,,, the

diagonal entries of Adjn are also Bernoulli random variables. Define AdJn similarly as in (11.1).
Using Hoffman- Wlelandt inequality (see [3, Lemma 2.1.19]) we see that it is enough to prove that

the ESD of Adjn converges weakly to vy, almost surely. Hence, for the purpose of this proof we
can assume that Adj,, is a matrix of i.i. d Ber(p) entries. Also using the rank inequality (see [7,
Lemma 2.2]) we see that, without loss of generality, we can assume that p < 1/2 and so p = p.
Now recall that the key to the proof of Theorem 2.13 is Theorem 9.3, where the proof of the latter
theorem is based on the formula for the inverse of a block matrix and Talagrand’s concentration
inequality. We already derived relevant concentration inequalities for the Bernoulli set-up in Lemma
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9.7(ii). Using Lemma 9.7(ii) one can proceed exactly same as in the proof of Theorem 9.3 to derive
an analogue of Theorem 9.3 in the current set-up, from which the proof of the current theorem
follows. We omit the tedious details. g

Turning to prove an analogue of Theorem 2.12 for Adj,, we recall that the key to the proof of
Theorem 2.12 is Lemma 8.1 where the latter is borrowed from [12]. Though the current set-up of
Bernoulli random variables does not directly fit the framework of Lemma 8.1, one can repeat its
proof to deduce that

) P (dstlao ) < 5VH0 - P G ) < exp(-cpl1 - phol)

for any sub-space H with 1 < dim(H) < n—1(n), where ag := (6;—Ed;) 1, {d;}}_; areii.d. Ber(p),
and 9 : N +— N be such that ¢(n) — oo and C'y/n/(p(1 —p)) < ¢(n) < n for some large absolute

constant C and c is some small absolute constant.
Next note that dist(a, H) < dist(ao, span{H,1}) where a := (8;)/"; and 1 is the vector of ones.
Using (11.2) and proceeding same as in the proof of Theorem 2.12 we derive the following result.

Theorem 11.2. Let Adj, be the adjacency matriz of a directed Erdds-Rényi graph with edge
connectivity probability p. There exist absolute constants Ci12 and ci1.2 such that the following
holds: Let ¢ : N +— N be such that Ci1.2+/n/(p(1 —p)) <¢(n) <n. Then for any w € Bc(0,1) we

have
n—1 . .
Adj,, i 2
P U {Sni ( P - wjn) < Cll.Qn} < ﬁ

i=39(n)

Now it remains to find analogue of Theorem 2.2. Similar to [3] we first extend Theorem 2.2 to
accommodate non-zero mean. This is done in the result below.

Theorem 11.3. Let A, be an n x n matriz with zero diagonal and i.i.d. off-diagonal entries
a;j = 0;;&.;, where 6;, i,j € [n] are independent Bernoulli random variables taking value 1
with probability p € (0,1], and & j, i,j € [n] are i.i.d. sub-Gaussian (not necessarily centered)
with unit variance. Let R > 1, r € (0,1] and let D,, be a diagonal matriz such that |D,| <
R\/np and Im(D,) = r'\/npl, for some r’" with |r'| € [r,1]. Then there exists constants 0 <
611.3,511_3,6/11.3,011_3,011.3,611.3 < o0, depending only on R,r, and the sub-Gaussian moment of
{&.j}, such that for any € > 0 we have the following:

(i) If o
pZ 011,310gn7
n
then 1/p) )
_ log(1/p P Ciis
P min An Dn S . —C 37 7 N - S —.
(s Pu) < enaeemp (~Ouaisily) 2 ) <+ o

(i1) Additionally, if
log(1/p) < ¢11.3(lognp)?,
then

- log(1/p) p /
: < . — g— """ — | < — .
P <Smm(An + D) < ci138€xp < Ci13 Tog(np) g € + exp(—c}1.3v/1P)
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Proof. The proof follows from a straightforward adaptation of that of Theorem 2.2. We outline the
necessary changes.

Recall that to find bounds on spyin(-) we need to treat the compressible and dominated vectors
first and then the rest. To find bounds on the infimum over compressible and dominated vectors
we adapt the proof of [3, Theorem 7.1]. Note that a key to the proof of of [¢, Theorem 7.1] is [,
Proposition 7.3]. One can check that [3, Proposition 7.3] holds also for complex valued diagonal
matrix D,,. Therefore, repeating the same steps as in the proof of [8, Theorem 7.1] we deduce that
Proposition 3.4 continue to hold for the non-centered case. This takes care of the infimum over
compressible and dominated vectors.

Now it remains to obtain bounds on the infimum over vectors that are neither compressible nor
dominated. Since (7.4) follows from Berry-Esséen Theorem and the Lévy concentration function is
invariant under translation we deduce that (7.4) continues to hold in the non-centered set-up. This
finishes the proof of part (i).

To prove part (ii) we need to make appropriate changes to the results of Section 3, Section 5,
and Section 6. Beginning with Section 3 we recall that the main result there is Proposition 3.1.
Turning to derive an analogue of Proposition 3.1 we see that, as {¢; ;} are non-centered, we do not
have ||A,|| < K,/np. Instead we have that ||A, — EA,| < K,/np with high probability, for large
enough K. So in the analogue of Proposition 3.1 we should replace the condition ||A,| < K /P
by ||A, — EA,| < K,/np in (3.2). Hence we need to modify the steps where bounds on ||4,]|| have
been used.

With the above in mind and noting that E(Re (BP)) = up(U,, — I,,) where U,, is the (n —1) x n
matrix of all ones and u = E[¢; ;], we see that (3.5) changes to

| Tm (BP)y — (Re (BP) — E(Re (BD))>’J.’L'[1:M] - upUnaUH2 < 3cpy/np,

where we have used the fact that ;1) = 0(n°M) = o(y/n), and ¢, M, J,p,z, and y as in (3.5).
Proceeding same as in the proof of (3.6) we obtain that for some v € R with |y| < u/r,

1] gony — (Re (BP) = E(Re (BP))|szpiag — 11, < 3~ Lep.

This necessitates to define & := span{&y, 1;} where now &} := span{(Re (B”)—~E(Re (B?)))|,R/}
and & is as in (3.7). Since dim(&) < dim(&) + 1, repeating the rest of the proof of Lemma 3.3
we see that it continues to hold in this set-up.

Now we move on to find an analogue of Proposition 5.2. Recall that the proof of Proposition 5.2
relies on finding bounds on Lévy concentration function, which as already noted is invariant under
translation. Thus the proof of Proposition 5.2 extends in the non-centered set-up. We follow the
ideas of the proofs of [8, Theorem 7.1] and [3, Proposition 7.2].

Since (5.20) is obtained using bounds on Lévy concentration function and the cardinality of the
net of genuinely complex vectors, we see that (5.20) extends to the following:

P (Hw e N(D,A,d) H(BD —upU,)w — UH2 < Z—Ostmalng . \/M) < exp(—2n),

where v is any fixed vector. Recalling the definition of ¢y (see (5.16)) we see that the set of vectors

{71, 7| € uy/np} admits a M-net of cardinality at most O(exp(,/np)). So using an union
bound and the triangle inequality we also see that

. €0
f BP —upU,)w — 71|, < Zlwemanllz - Vo1 | < —(3/2)n).
(wGN(fod)JwSunp It upUn)w = 71]l; < g lmanll2 pn) < exp(=(3/2)n)
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Since ||BP — upU,|ls = O(y/np) and U,z = 1 for any z € Sg~! with |y| < y/n, the rest of the
argument follows similarly as before. This yields the analogue of Proposition 5.2. The proof of the
analogue of Proposition 6.4 is similar. This finishes the proof of Theorem 11.3. g

Building on Theorem 11.3 we derive the following result on the smallest singular value of Adj,.

Theorem 11.4. Let Adj,, be the adjacency matriz of a directed Erdds-Rényi graph, with edge
connectivity probability p € (0,1). Denote p := min{p,1 — p}. Fiz w € Bc(0,1) such that [Imw| >
r for some r € (0,1). Then there exists constants 0 < c11.4,¢C11.4,¢1 4,C11.4,C11 4, C114 < 00,
depending only on r, such that for any € > 0 we have the following:
(i) If B
]7 2 011,410gn?
n
then

%Y = I
P (smin(Adjn — wy/np(l = p)In) < 1148 exp (—011_41054(1/1’)) p) Clia

log(np)
(i1) Additionally, if
log(1/p) < ¢11.4(lognp)?,
then

log(1/p D
P <smm(Adjn —wy/np(1 —p)I,) < c11.4€ €xp <_Cll‘4l()(;gg((n/]5p))> 2) < e+ exp(—cy; 4v/1D).

Fix p € (0,1/2]. Then a Ber(p) can be written as the product of a Ber(2p) random variable and
a Ber(1/2) random variables. So, Theorem 11.4 is a direct consequence of Theorem 11.3. Proof of
the case p € (1/2,1) is similar but requires an additional e-net argument. See [3, Theorem 1.11]
for more details.

Now the proof of Theorem 1.8 finishes from Theorem 11.1, Theorem 11.2, and Theorem 11.4.

Acknowledgements. A.B. thanks Amir Dembo and Ofer Zeitouni for suggesting the problem
and helpful conversations.
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