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Abstract. Let Qn be the cube of side length one centered at the origin in Rn,
and let F be an affine (n− d)-dimensional subspace of Rn having distance to the
origin less than or equal to 1

2
, where 0 < d < n. We show that the (n − d)-

dimensional volume of the section Qn ∩ F is bounded below by a value c(d)
depending only on the codimension d but not on the ambient dimension n or a
particular subspace F . In the case of hyperplanes, d = 1, we show that c(1) = 1

17

is a possible choice. We also consider a complex analogue of this problem for a
hyperplane section of the polydisc.

1. Introduction and main results

Consider a cube of a unit volume in the space Kn, where K ∈ {R,C}. The sections
of the cube by linear subspaces are classical objects of study in convex geometry,
and precise estimates of their maximal and minimal volume are known. Namely,
let ‖·‖∞ and | · | denote the supremum and the euclidean norm on Kn, respectively,
where K ∈ {R,C}. For volume calculations, we identify Cn with R2n and use the
volume there. Let

Qn := {x ∈ Kn | ‖x‖∞ ≤ α}
be the n-dimensional cube (polydisc) of volume 1, i.e. α = 1/2 if K = R and
α = 1/

√
π if K = C. In the real case, for any linear subspace of E ⊂ Rn of

dimension n− d,

1 ≤ voln−d(Qn ∩ E) ≤ 2d/2.

The lower estimate is due to Vaaler [Va], and the upper one to Ball [B1]. In the
complex case, Oleszkiewicz and Pelczyński [OP] proved that for codimension 1,
1 ≤ vol2n−2(Qn ∩ E) ≤ 2. Less is known about the non-central sections which are
the subject of the current paper.

Let us discuss the real case first. Fix a subspace E ⊂ Rn and consider sections of
the cube by subspaces parallel to E. More precisely, for a vector v ∈ E⊥, consider
a function

Φ(E, v) := voln−d
(
Qn ∩ (E + v)

)
.

Brunn’s theorem asserts that Φ is an even function achieving the maximal value
at the origin. This, in combination with Ball’s theorem, provides an upper bound
for the function Φ for all E and v. If |v| > 1

2 , then a non-trivial lower bound for
this function is impossible to achieve. Indeed, if E is orthogonal to one of the basic
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vectors ej , and v = tej with t > 1
2 , then Qn ∩ (E + v) = ∅. Our first main result

provides a non-trivial lower estimate for the volume of the section for all E and v as
long as |v| ≤ 1

2 . Moreover, this estimate is independent of the ambient dimension n
and the space E.

Theorem 1.1. For any d ∈ N, there is ε(d) > 0 such that for any n > d and any
(n− d)-dimensional affine subspace F ⊂ Rn whose distance to the origin is smaller
than or equal to 1/2,

voln−d(Qn ∩ F ) ≥ ε(d).

As the discussion above shows, the distance 1/2 is the maximal possible one.
The value of the bound ε(d) can be traced from the proof of Theorem 1.1. We

believe, however, that this value is quite far from the best possible. A better bound
can be obtained for the sections of codimension 1, i.e., whenever d = n− 1. We will
present this bound in the unified way for both real and complex scalars.

To this end, let us introduce some notation. Given a vector a ∈ Kn of length
|a| = 1 and t ∈ K, we introduce the hyperplane section of the cube

S(a, t) := {x ∈ Kn | ‖x‖∞ ≤ α, 〈x, a〉 = αt} = Qn ∩H

where H = {αt · a}+ a⊥, and its volume

A(a, t) := AK(a, t) :=

{
voln−1(S(a, t)) , K = R
vol2n−2(S(a, t)) , K = C

}
.

For a = (aj)
n
j=1 ∈ Kn, let a∗ denote the decreasing rearrangement of the sequence

(|aj |)nj=1. Since the volume is invariant under coordinate permutations and sign

changes (rotation of coordinate discs in the complex case), we have A(a, t) =
A(a∗, |t|). Therefore we will assume in the following that a = (aj)

n
j=1, aj ≥ 0

and t ≥ 0.

By Corollary 5 of König, Koldobsky [KK3] we have that

A(a, t) ≤
√

2

1 + t2
, K = R and A(a, t) ≤ 2

1 + t2
, K = C,

so that A(a, 1) ≤ 1 always holds.

As in the general case, if the distance parameter t is strictly bigger than 1, the
non-central hyperplane H = {αt · a}+ a⊥ might not intersect Qn and A(a, t) might
be 0. Assume that t ∈ [0, 1]. Our second main result gives explicit bounds for A(a, t)
which are independent of the dimension n of the cube and of the direction a.

Theorem 1.2. Let a ∈ Kn with |a| = 1. Then

1

17
< 0.05974 < AR(a, 1) ≤ 1 ,

1

28
< 0.03699 < AC(a, 1) ≤ 1 .
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Clearly, the lower bounds are not optimal. However, they cannot be improved by
more than a factor of ' 5.2 in the real case and by a factor of ' 7.3 in the complex
case, see Remark 6.1.

In the rest of the paper, we prove Theorems 1.1 and 1.2. The proof of Theorem
1.1 is contained in Section 2. In the course of it, we represent the function Φ(E, v)
as the density fX of the projection of a random vector uniformly distributed in Qn
onto the space E⊥. We use both the geometric and the probabilistic definition of
this function passing several times from one to another throughout the proof. If the
space E is almost orthogonal to a coordinate vector and v is almost parallel to it, we
derive the desired estimate by analyzing the characteristic function of fX and using
the log-concavity of this density. The analysis of the characteristic function relies in
turn on its representation as the difference of characteristic functions of some other
sections of the cube. The opposite case splits into two separate subcases. If the
vector v is incompressible, i.e., far from any low-dimensional coordinate subspace,
we prove the required bound probabilistically. If this vector is compressible, we rely
on the previous analysis to reduce the bound to a similar geometric problem but in
dimension depending only on d. The estimate in this case can be obtained directly.

We start preparing the ground for proving Theorem 1.2 in Section 3. In this
section, we use the Fourier transform to represent the volume of a hyperplane section
as a certain integral over the product of n euclidean spheres Sk−1 with respect
to the Haar measure. Here, k = 3 in the real case, and k = 4 in the complex
case. The estimate of these integrals requires a lower bound for the probability that
|
∑n

j=1 ajUj | ≥ 1 where a = (a1, . . . , an) ∈ Sn−1 and U1, . . . , Un are independent

random vectors uniformly distributed in Sk−1. A similar problem with Uj being
scalar random variables has been extensively studied because of its importance in
computer science, see e.g., [HK, BTNR, O, BH] and the references therein. However,
the methods used there do not seem to be suitable to the vector-valued random
variables. In Section 4, we develop a new method based on estimates of the Laplace
transform and duality of Orlicz spaces. This method may be of independent interest
as it is applicable to a broader class of random vectors. The probability itself is
estimated in Section 5. Finally, in Section 6, we apply the toolkit created in three
previous sections to complete the proof of Theorem 1.2.

Acknowlegdment. The first author is grateful to S. Kwapień [Kw] for indicating
the basic idea of the first proof of Proposition 5.1, citing ideas which go back to
Burkholder [Bu], and for providing the reference to Veraar’s paper [V]. Proposition
5.1 is an important step in the proof of Theorem 1.2.

Part of this work was done when the second author visited Weizmann Institute
of Science. He is grateful to the Institute for its hospitality and for the excellent
working conditions. He is also thankful to Ofer Zeitouni for helpful discussions.

We also thank A. Koldobsky for discussions on the contents of this paper.

2. A lower bound for all codimensions

In this section, we prove Theorem 1.1. Let F ⊂ Rn be an affine subspace whose
distance to the origin is 1/2. We will represent F as F = 1

2v+E, where E ⊂ Rn is an
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(n− d)-dimensional linear subspace, and v ∈ E⊥, |v| = 1. Denote by P : Rn → Rn
the orthogonal projection onto E⊥.

The strategy of the proof will depend on the position of the space E and the
magnitude of the largest coordinate of v. We start from the case when E is almost
orthogonal to a coordinate vector and v is almost parallel to this vector.

Lemma 2.1. For any d < n, there exists ε1(d), δ1(d) such that if |Pe1| ≥ 1− δ1(d)

and v = Pe1
|Pe1| , then

voln−d

(
Qn ∩

(
1

2
v + E

))
≥ ε1(d).

Proof. Assume for a moment that e1 ⊥ E, and thus v = e1. Then Qn ∩
(
1
2v + E

)
is

a central section of the (n− 1)-dimensional face of Qn containing 1
2e1. In this case,

voln−d

(
Qn ∩

(
1

2
v + E

))
≥ 1

by Vaaler’s theorem [Va]. This means that we can assume that |Pe1| < 1 for the
rest of the proof.

A random point ξ ∈ Qn can be considered as a random vector of density 1 in
the cube. In this probabilistic interpretation, the volume of the section voln−d(Qn∩
(E + u)) is the density of the random vector Pξ distributed in E⊥ at the point
u ∈ E⊥. It would be more convenient to consider this random vector distributed in
Rd instead. To this end, notice that the singular value decomposition of P yields
the existence of a d× n matrix R satisfying

P = R>R, RR> = Id.

Therefore, fX(u) = voln−d(Qn ∩ (E + u)) can be viewed as the density of the
vector Rξ in Rd. We will use the geometric and the probabilistic interpretation
interchangeably throughout the proof.

The Fourier transform of the random variable X = Rξ can be written as

φX(t) =

∫
Rd
fX(x) exp(−i · 2π 〈x, t〉) dx =

n∏
j=1

sin(π 〈Rej , t〉)
π 〈Rej , t〉

for t ∈ Rd, where we used the normalization by 2π for convenience. By the Fourier
inversion formula,

fX

(
1

2
v

)
=

∫
Rd

exp(iπ 〈v, t〉)φX(t) dt =
1

πd

∫
Rd

cos(〈v, t〉)φX(t/π) dt.
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Hence,

2fX

(
1

2
v

)
=

2

πd

∫
Rd

cos(〈v, t〉)
n∏
j=1

sin(〈Rej , t〉)
〈Rej , t〉

dt

=
1

πd

∫
Rd

sin
((

1
|Re1| + 1

)
〈Re1, t〉

)
〈Re1, t〉

n∏
j=2

sin(〈Rej , t〉)
〈Rej , t〉

dt

− 1

πd

∫
Rd

sin
((

1
|Re1| − 1

)
〈Re1, t〉

)
〈Re1, t〉

n∏
j=2

sin(〈Rej , t〉)
〈Rej , t〉

dt.

Define d× d matrices Λ+,Λ− : Rd → Rd by

Λ± =

( 1

|Re1|
± 1

)2

(Re1)(Re1)
> +

n∑
j=2

(Rej)(Rej)
>

−1/2 .
As |Re1| = |Pe1| < 1, the matrix Λ− is well-defined. Then

Λ−1+ |(Re1)⊥ = Λ−1− |(Re1)⊥ = id|(Re1)⊥ ,
and so

det(Λ+) =
1

det(Λ−1+ )
=

1

|Λ−1+ Re1|
=

(1 + |Re1|)2 +
n∑
j=2

〈Re1, Rej〉2
−1/2

= (2 + 2|Re1|)−1/2.

Similarly,

det(Λ−) =
1

det(Λ−1− )
=

1

|Λ−1− Re1|
=

(1− |Re1|)2 +

n∑
j=2

〈Re1, Rej〉2
−1/2

= (2− 2|Re1|)−1/2.
Using the change of variables in the integrals above, we can write

2fX

(
1

2
v

)
=

1

πd

(
1

|Re1|
+ 1

)
det(Λ+)

∫
Rd

n∏
j=1

sin(〈θj , t〉)
〈θj , t〉

dt

− 1

πd

(
1

|Re1|
− 1

)
det(Λ−)

∫
Rd

n∏
j=1

sin(〈ηj , t〉)
〈ηj , t〉

dt,

where {
θ1 = ( 1

|Re1| + 1)Λ+Re1,

θj = Λ+Rej , for j > 1,

{
η1 = ( 1

|Re1| − 1)Λ−Re1,

ηj = Λ−Rej , for j > 1,

Note that
n∑
j=1

θjθ
>
j =

n∑
j=1

ηjη
>
j = Id.
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This allows to view both integrals above as the volumes of certain sections of Qn by
(n− d)-dimensional linear subspaces. More precisely,

1

πd

∫
Rd

n∏
j=1

sin(〈θj , t〉)
〈θj , t〉

dt = voln−d(Qn ∩ E1)

and

1

πd

∫
Rd

n∏
j=1

sin(〈ηj , t〉)
〈ηj , t〉

dt = voln−d(Qn ∩ E2)

for some linear subspaces E1, E2 ⊂ Rn. This can be easily checked using the Fourier
inversion formula as above. A theorem of Vaaler [Va] asserts that the volume of any
central section of the unit cube is at least 1, and a theorem of Ball [B1] states that
it does not exceed (

√
2)d. Therefore,

2fX

(
1

2
v

)
≥
(

1

|Re1|
+ 1

)
det(Λ+)− (

√
2)d
(

1

|Re1|
− 1

)
det(Λ−)

=
1√

2|Re1|
(1 + |Re1|)1/2 −

(
√

2)d−1

|Re1|
(1− |Re1|)1/2 ≥ ε1(d),

for some ε1(d) > 0 whenever |Pe1| = |Re1| ≥ 1 − δ1(d) for an appropriately small
δ1(d) > 0. �

The previous lemma provided a lower bound for the volume of the section if the
vector v has the form Pe1

|Pe1| . We will now extend this bound to the vectors which

are close to this one.

Lemma 2.2. For any d ∈ N, there exist δ2(d), ε2(d) such that if |Pe1| ≥ 1 − δ1(d)

and v = Pe1
|Pe1| , then for any w ∈ E⊥ with w ⊥ v, |w| < δ2(d),

voln−d

(
Qn ∩

(
1

2
v + w + E

))
≥ ε2(d).

Proof. By Lemma 2.1,

voln−d

(
Qn ∩

(
1

2
v + E

))
≥ ε1(d).

Also, applying the same lemma to the linear subspace Ẽ := span(w,E), we get

voln−d

(
Qn ∩

(
1

2
v + Ẽ

))
≥ ε1(d− 1).

Define the function h : R→ R by

h(x) = voln−d

(
Qn ∩

(
1

2
v + x

w

|w|
+ E

))
.

Then the previous inequalities read h(0) ≥ ε1(d),
∫
R h(x) dx ≥ ε1(d − 1). Assume

that h(|w|) ≤ h(0)/2. Since the function h is even and log-concave, this implies
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h(k|w|) ≤ 2−|k|h(0) for all k ∈ Z, and hence

ε1(d− 1) ≤
∫
R
h(x) dx ≤ 4|w| · h(0) ≤ 4|w| · voln−d (Qn ∩ E) ≤ 4|w| · (

√
2)d,

where we used Ball’s theorem [B1] in the last inequality. This means that the
statement of the lemma holds with

δ2(d) =
ε1(d− 1)

4(
√

2)d
and ε2(d) =

ε1(d)

2

since for |w| < δ2(d) we would get a contradiction to our assumption. Thus h(|w|) >
h(0)/2 ≥ ε2(d), so the proof is complete. �

We summarize Lemmas 2.1 and 2.2 in the following corollary.

Corollary 2.3. For any d ∈ N, there exist δ3(d), ε3(d) such that if v ∈ E⊥, |v| = 1
and ‖v‖∞ ≥ 1− δ3(d) then

voln−d

(
Qn ∩

(
1

2
v + E

))
≥ ε3(d).

Proof. Without loss of generality, assume that v1 = 〈v, e1〉 ≥ 1− δ, where δ = δ3(d)
will be chosen later. Then

|Pe1| ≥ 〈Pe1, v〉 = 〈e1, v〉 ≥ 1− δ,
and ∣∣∣∣v − Pe1

|Pe1|

∣∣∣∣ ≤ |v − Pe1|+ ∣∣∣∣Pe1 − Pe1
|Pe1|

∣∣∣∣
≤
(
|v|2 − 2 〈v, Pe1〉+ |Pe1|2

)1/2
+
(
1− |Pe1|

)
≤ (2− 2(1− δ))1/2 + δ.

This means that choosing δ small enough, we can ensure that the conditions of
Lemma 2.2 are satisfied. �

Let X = Pξ, where ξ is a random vector uniformly distributed in Qn. The density
fX of the vector X is even and log-concave, so the set D := {y ∈ E⊥ : fX(y) ≥
fX(12v)} is convex and symmetric. We need the following simple lemma which would
allow us to reduce the estimate of the density of a multi-dimensional projection to
a bound on a probability of a half-space.

Lemma 2.4. Let

D :=

{
y ∈ E⊥ : fX(y) ≥ fX

(
1

2
v

)}
.

Let S ⊂ E⊥ be a supporting hyperplane to D at v in E⊥, and write S = τu + L,
where L is a linear subspace of E⊥, u ∈ E⊥ ∩ Sn−1 satisfies u ⊥ L, and τ ≥ 0.
Then τ ≤ 1

2 and

fX

(
1

2
v

)
≥ max

(
fX(τu), c(d)(P(〈ξ, u〉 ≥ τ))1+d/2

)
for some c(d) > 0.
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Proof. The inequalities τ ≤ 1
2 and fX(12v) ≥ fX(τu) follows immediately from

τu ∈ S and the convexity of D.
To prove the other inequality, denote ν = P(〈ξ, u〉 ≥ τ) and set

K :=

{
y ∈ E⊥ : 〈y, u〉 ≥ τ and |y| ≤

√
d

ν

}
.

Note that E |X|2 = E |Pξ|2 =
∑n

j=1 |Pej |2 E ξ2j = d
12 . Using Markov’s inequality, we

get

P(X ∈ K) ≥ P (〈X,u〉 ≥ τ)− P

(
|X| ≤

√
d

ν

)
≥ ν − E |X|2

d/ν
≥ ν

2
.

For any y ∈ K, fX(y) ≤ fX(12v) since K ⊂ E⊥ \D. Therefore

fX

(
1

2
v

)
≥ P(X ∈ K)

vold(K)
.

As vold(K) ≤
(√

d/ν
)d

vold(B
d
2) ≤ C(d)ν−d/2, the lemma follows. �

To use Lemma 2.4, we have to bound P(〈ξ, u〉 ≥ τ) for a unit vector u ∈ Sn−1.
This bound is obtained differently depending on whether the vector u is close to
a low-dimensional space. We consider the case when it is far from such spaces,
i.e., it has enough mass supported on small coordinates. The opposite case will be
considered in the proof of Theorem 1.1.

Lemma 2.5. Let u ∈ Sn−1, and let ξ be a random vector uniformly distributed
in Qn. For any ε > 0, there exist δ, η > 0 such that if Jδ = {j : |uj | < δ} and∑

j∈Jδ u
2
j > ε2 then

P(〈ξ, u〉 ≥ 1) ≥ η.

Proof. Denote Y =
∑

j∈Jδ ξjuj , Z =
∑

j /∈Jδ ξjuj , where ξ1, . . . , ξn are i.i.d. random

variables uniformly distributed in [−1
2 ,

1
2 ].

Let g be the standard normal random variable. By the Berry-Esseen theorem,

P(
∑
j∈Jδ

ξjuj ≥ 1) ≥ P(

√∑
j∈Jδ

u2j · g ≥ 1)− cmax
j∈Jδ

|uj |√∑
j∈Jδ u

2
j

≥ P
(
g ≥ 1

ε

)
− cδ

ε
≥ η̃ > 0

if δ = δ(ε) is chosen sufficiently small. Hence,

P(〈ξ, u〉 ≥ 1) ≥ P (Y ≥ 1 and Z ≥ 0) ≥ η̃ · 1

2
=: η,

since Y and Z are independent. The lemma is proved. �

Having proved these lemmas, we can derive Theorem 1.1.

Proof of Theorem 1.1. Recall that

voln−d

(
Qn ∩

(
1

2
v + E

))
= fX

(
1

2
v

)
,
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where X = Pξ and ξ is a random vector uniformly distributed in Qn.
Let u and τ be as in Lemma 2.4. Take

ε =

√
ε3(d)

2

and choose the corresponding δ from Lemma 2.5. Define Jδ as in this lemma. If∑
j∈Jδ u

2
j ≥ ε2, then by Lemmas 2.4 and 2.5,

fX

(
1

2
v

)
≥ c(d)

(
P(〈ξ, u〉 ≥ τ)

)1+d/2 ≥ c(d)η1+d/2

as τ ∈ [0, 12 ].

Assume now that
∑

j∈Jδ u
2
j ≤ ε2. If ‖u‖∞ ≥ 1− ε3(d), then the statement of the

theorem follows from Corollary 2.3 since fX(12v) ≥ fX(τu) ≥ fX(12u). Thus, we can
assume that

(2.1) ‖u‖∞ ≤ 1− ε3(d).

We will use the inequality

fX

(
1

2
v

)
≥ c(d)

(
P(〈ξ, u〉 ≥ τ)

)1+d/2 ≥ c(d)

(
P
(
〈ξ, u〉 ≥ 1

2

))1+d/2

again. This shows that to prove the theorem, it is enough to bound P
(
〈ξ, u〉 ≥ 1

2

)
from below by a quantity depending only on d.

Decompose 〈ξ, u〉 = Y + Z where Y =
∑

j∈Jδ ξjuj , Z =
∑

j /∈Jδ ξjuj as above.
Then

P
(
〈ξ, u〉 ≥ 1

2

)
≥ P

(
Z ≥ 1

2
and Y ≥ 0

)
=

1

2
P
(
Z ≥ 1

2

)

=
1

2
P

∑
j /∈Jδ

ξjwj ≥ θ


where

wj =
uj√∑
j /∈Jδ u

2
j

and θ =
1

2
√∑

j /∈Jδ u
2
j

.

Note that

k := |[n] \ Jδ| = |{j ∈ [n] : |uj | ≥ δ}| ≤ δ−2,
where δ depends only on d. To simplify the notation, assume that [n]\Jδ = [k]. We
can recast P(

∑
j /∈Jδ ξjwj ≥ θ) as

P(
∑
j /∈Jδ

ξjwj ≥ θ) = volk(Qk ∩ (w⊥+ + θw)),

where Qk = [−1
2 ,

1
2 ]k, w ∈ Sk−1 is the vector with coordinates wj , j ∈ [k], and

w⊥+ = {y ∈ Rk : 〈y, w〉 ≥ 0} is a half-space orthogonal to w. Previously, we
reformulated a geometric problem of bounding the volumes of non-central sections
of the cube in a probabilistic language. Here, we reduce it back to a similar geometric
problem but in dimension k which depends only on d and codimension 1.



10 HERMANN KÖNIG AND MARK RUDELSON

By our assumption,

θ ≤ 1

2
√

1− ε2
,

and, in view of (2.1), we have
√

1− ε2
2(1− ε3(d))

w ∈ Qk.

Therefore,

volk(Qk ∩ (w⊥+ + θw))

≥ volk

(
conv

(
Qk ∩ w⊥,

√
1− ε2

2(1− ε3(d))
w

)
∩ (w⊥+ + θw)

)

=

1− θ

( √
1− ε2

2(1− ε3(d))

)−1k

· volk

(
conv

(
Qk ∩ w⊥,

√
1− ε2

2(1− ε3(d))
w

))

≥
(

1− 1− ε3(d)

1− ε2

)k
· 1

k!

( √
1− ε2

2(1− ε3(d))

)k
vol(Qk ∩ w⊥)

≥
(

1− 1− ε3(d)

1− ε2

)k
· 1

k!

( √
1− ε2

2(1− ε3(d))

)k
,

where the last inequality follows from Vaaler’s theorem [Va]. Recalling that ε =√
ε3(d)/2 and k depends only on d, we see that the quantity above is positive and

depends only on d as well. This completes the proof of the theorem. �

3. Volume formulas

To prove Theorem 1.2, we start with the following known volume formulas.

Proposition 3.1. Let a ∈ Rn+, |a| = 1, t ≥ 0. Then

(3.1) AR(a, t) =
2

π

∫ ∞
0

n∏
j=1

sin(ajs)

ajs
cos(ts) ds ,

(3.2) AC(a, t) =
1

2

∫ ∞
0

n∏
j=1

j1(ajs) J0(ts) s ds , j1(x) := 2
J1(x)

x
.

Here J0 and J1 denote the standard Bessel functions.

Formula (3.1) whose multidimensional version was used in the previous section
can be found in Ball’s paper [B] on cubic sections, equation (3.2) in Oleszkiewicz,
Pelczyński [OP]. The case t = 0 of (3.1) goes back to Pólya [P]. A Fourier analytic
proof of Proposition 3.1 is outlined in König, Koldobsky [KK1], [KK2].

Due to the oscillating character of the integrands in (3.1) and (3.2), it is difficult
to find non-trivial lower bounds for A(a, t) using these equations. Therefore we first
prove different formulas for A(a, t).
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Proposition 3.2. Let (Ω,P) be a probability space and Uj : Ω → Sk−1 ⊂ Rk,
j = 1, · · · , n be a sequence of independent, random vectors uniformly distributed
on the sphere Sk−1, where k = 3 if K = R and k = 4 if K = C. Then for any
a ∈ Rn+, |a| = 1 and t ≥ 0

(a) AR(a, t) =

∫
|
∑n
j=1 ajUj |≥t

dP
|
∑n

j=1 ajUj |
,

(b) AC(a, t) =

∫
|
∑n
j=1 ajUj |≥t

dP
|
∑n

j=1 ajUj |2
.

Proof. (a) Let m denote the normalized Lebesgue surface measure on Sk−1 ⊂ Rk
for k ∈ N, k ≥ 2. Then for any fixed vector e ∈ Sk−1∫

Sk−1

exp(it < e, u >) dm(u) =

∫ π
0 cos(t cos(φ)) sin(φ)k−2 dφ∫ π

0 sin(φ)k−2 dφ
= j k

2
−1(t) ,

j k
2
−1(t) = 2

k
2
−1Γ(k2 )

J k
2−1

(t)

t
k
2−1

, t > 0. Again, J k
2
−1 denote the standard Bessel functions

of index k
2 − 1. In particular, for k = 3 and k = 4

(3.3)

∫
S2

exp(it < e, u >) dm(u) =
sin(t)

t
,

∫
S3

exp(it < e, u >) dm(u) = j1(t) .

We may assume that a has at least two non-zero coordinates aj since otherwise the
formulas in (a) and (b) just state 1 = 1 if t ≤ 1 and 0 = 0 if t > 1. By (3.3)

(3.4)
n∏
j=1

sin(ajs)

ajs
=

∫
(S2)n

exp(is < e,
n∑
j=1

ajuj >) dm(u1) · · · dm(un) .

This is O( 1
s2

) as s→∞, therefore Lebesgue-integrable on (0,∞). Since (3.4) holds

for all e ∈ S2, we may integrate over e. Using (3.3) again, we find

n∏
j=1

sin(ajs)

ajs
=

∫
(S2)n

sin(|
∑n

j=1 ajuj |s)
|
∑n

j=1 ajuj |s
dm(u) , dm(u) :=

n∏
j=1

dm(uj) .

The factor |
∑n

j=1 ajuj | results from the necessary normalization
∑n
j=1 ajuj

|
∑n
j=1 ajuj |

∈ S2.

Hence, using Proposition 3.1,

AR(a, t) =
2

π

∫ ∞
0

(∫
(S2)n

sin(|
∑n

j=1 ajuj |s)
|
∑n

j=1 ajuj |s
cos(ts) dm(u)

)
ds

=

∫
(S2)n

(
2

π

∫ ∞
0

sin(|
∑n

j=1 ajuj |s)
|
∑n

j=1 ajuj |s
cos(ts) ds

)
dm(u)

=

∫
(S2)n, |

∑n
j=1 ajuj |≥t

dm(u)

|
∑n

j=1 ajuj |
,(3.5)
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using that

(3.6)
2

π

∫ ∞
0

sin(As)

As
cos(ts) ds =

{
0 , 0 < A < t
1
A , A > t > 0

}
.

Note that m(|
∑n

j=1 ajuj | = t) = 0 since a has at least two non-zero coordinates.

The integral in (3.6) is only conditionally convergent, which requires justification of
interchanging the order of integration in (3.5). This is allowed if

(3.7) lim
N→∞

∫
(S2)n

(
2

π

∫ ∞
N

sin(|
∑n

j=1 ajuj |s)
|
∑n

j=1 ajuj |s
cos(ts) ds

)
dm(u) = 0

is shown. We have in terms of the Sine integral Si, Si(x) := 2
π

∫ x
0

sin(t)
t dt, x ∈ R

that

2

π

∫ ∞
N

sin(As)

As
cos(ts) ds =

{
Si((t−A)N)−Si((t+A)N)

πA , 0 < A < t
π−Si((A−t)N)−Si((A+t)N)

πA , A > t > 0

}
and hence∫

(S2)n

(
2

π

∫ ∞
N

sin(|
∑n

j=1 ajuj |s)
|
∑n

j=1 ajuj |s
cos(ts) ds

)
dm(u)

=

∫
(S2)n,|

∑n
j=1 ajuj |<t

1

π|
∑n

j=1 ajuj |

Si
(t− |

n∑
j=1

ajuj |)N



− Si

(t+ |
n∑
j=1

ajuj |)N

 dm(u)

+

∫
(S2)n,|

∑n
j=1 ajuj |>t

1

π|
∑n

j=1 ajuj |

π − Si
(|

n∑
j=1

ajuj | − t)N



− Si

(t+ |
n∑
j=1

ajuj |)N

 dm(u)

Since for all b ∈ S2 and β > 0∫
S2

dm(u1)

|b+ βu1|
=

1

2

∫ 1

−1
(|b|2 + β2 + 2β|b|v)−

1
2 dv =

{
1
|b| , 0 < β < |b|
1
β , β > |b| > 0

}
<∞

and since the Si-function is bounded in modulus by 2, the two integrands involving
the Si-function are bounded in modulus by an integrable function independent of
N . Since for any c > 0 we have that limN→∞ Si(cN) = π

2 , the integrands converge
to 0 pointwise. By the Lebesgue theorem, (3.7) follows and (3.5) is proven.
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(b) Using (3.3), we find similarly as in (a)

n∏
j=1

j1(ajs) =

∫
(S3)n

j1(|
n∑
j=1

ajuj |s) dm(u) , dm(u) :=

n∏
j=1

dm(uj),

and by Proposition 3.1

AC(a, t) =
1

2

∫ ∞
0

∫
(S3)n

j1(|
n∑
j=1

ajuj |s) J0(ts) dm(u)

 s ds

=

∫
(S3)n

1

2

∫ ∞
0

j1(|
n∑
j=1

ajuj |s) J0(ts) s ds

 dm(u)

=

∫
(S3)n

∫ ∞
0

J1(|
n∑
j=1

ajuj |s) J0(ts) ds

 dm(u)

|
∑n

j=1 ajuj |

=

∫
(S3)n, |

∑n
j=1 ajuj |≥t

dm(u)

|
∑n

j=1 ajuj |2
,(3.8)

since by Gradstein, Ryshik [GR], 6.51.

(3.9)

∫ ∞
0

J1(As) J0(ts) ds =

{
0 , 0 < A < t
1
A , A > t > 0

}
,

which is a conditionally convergent integral. To justify exchanging the order of
integration in (3.8), we employ the product formula for Bessel functions

J0(u) J0(v) =
1

π

∫ π

0
J0(
√
u2 + v2 + 2uv cos(φ) ) dφ , u, v ∈ R ,

cf. Watson [W], 11.1. Since J ′0 = −J1, differentiating this with respect to u, inserting
u = As, v = ts and integrating with respect to s yields that for all N,A, t > 0∣∣∣∣∫ N

0
J1(As)J0(ts) ds

∣∣∣∣
=

∣∣∣∣∣ 1π
∫ π

0

(∫ N

0
J1(
√
A2 + t2 + 2At cos(φ)s)ds

)
A+ t cos(φ)√

A2 + t2 + 2At cos(φ)
dφ

∣∣∣∣∣
=

∣∣∣∣ 1π
∫ π

0

(
1− J0(

√
A2 + t2 + 2At cos(φ)N)

) A+ t cos(φ)

A2 + t2 + 2At cos(φ)
dφ

∣∣∣∣
≤ 2

π

∫ π

0

|A+ t cos(φ)|
A2 + t2 + 2At cos(φ)

dφ =: I(A, t) ,

where we also used that |J0| ≤ 1 holds. Since∫
A+ t cos(φ)

A2 + t2 + 2At cos(φ)
dφ =

1

A

(
φ

2
+ arctan(

A− t
A+ t

tan(
φ

2
))

)
=: Ψ(φ) ,
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we find for A > t that I(A, t) = 2
A , I(A,A) = 1

A and for A < t that I(A, t) =
2
π2Ψ(φ0) ≤ 2

A where cos(φ0) = −A
t . Thus I(A, t) ≤ 2

A which implies using (3.9)∣∣∣∣∫ ∞
N

J1(As) J0(ts) ds

∣∣∣∣ ≤ 3

A
.

Moreover limN→∞
∫∞
N J1(As) J0(ts) ds = 0 pointwise and

∫
(S3)n

dm(u)
|
∑n
j=1 ajuj |2

< ∞,

so that we find similarly as in part (a)

lim
N→∞

∫
(S3)n

∫ ∞
N

J1(|
n∑
j=1

ajuj |s) J0(ts) ds

 dm(u) = 0 ,

and (3.8) follows. We basically replaced the Si-function in part (a) by
∫ x
0 J1(t) dt =

1− J0(x).
Formulas (3.5) and (3.8) yield a concrete realization of the formulas in Proposition
3.2 involving independent, uniformly distributed random vectors on Sk−1 for k =
3, 4. �

4. Exponential estimates and Orlicz spaces duality

To prove Theorem 1.2, we use lower estimates for the probability that certain
quadratic forms of random variables on spheres Sk−1 are non-negative. In this
section, we develop a new method of estimating such probabilities. The estimate
itself will be obtained in the next section. Our bound relies on the estimate of
the norm of the quadratic form in the Orlicz space whose Orlicz function is of an
exponential type. The Orlicz function we use is close to the ψ1 function used in the
large deviations theory. The lower bound on probability is obtained in terms of the
norm of the indicator function in the dual of this Orlicz space.

We start with a simple lemma showing that a random vector uniformly distributed
over the sphere is subgaussian.

Lemma 4.1. Let U be a random vector uniformly distributed in Sk−1. Then the
vector U is (1/

√
k)-subgaussian, i.e.,

∀y ∈ Rk E exp(〈U, y〉) ≤ E exp

(
|y|2√
k
g

)
,

where g ∈ R denotes the standard normal random variable.

Proof. Due to the rotational invariance, we can assume that y = λe1 for some λ > 0.
Notice that for any p ∈ N,

(4.1) E 〈U, e1〉2p ≤ k−p E g2p.

Indeed, denoting by g(k) the standard Gaussian vector in Rk, we can write

E g2p = E
〈
g(k), e1

〉2p
= E |g(k)|2p · E 〈U, e1〉2p
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and E |g(k)|2p ≥ (E |g(k)|2)p = kp by Jensen’s inequality. Decomposing eλx into
Taylor series and using (4.1), we derive that

E exp(λ 〈U, e1〉) ≤ E exp

(
λ√
k
g

)
.

The result follows. �

The next lemma provides an estimate of the Laplace transform of the relevant
quadratic form.

Lemma 4.2. Let U1, . . . , Un be i.i.d. random vectors uniformly distributed in Sk−1.
Let a = (a1, . . . , an) ∈ Sn−1, and define

S :=
∑

1≤i<j≤n
aiaj 〈Ui, Uj〉 .

Then for any λ ∈ (−
√
k/2,

√
k/2),

E exp

(
λ

S

(ES2)1/2

)
≤
(

1− 2λ2

k

)−k/2
.

Proof. To simplify the notation, let us estimate E exp(λS). Since S is a quadratic
form of subgaussian vectors U1, . . . , Un, such estimate can be derived from the
Hanson-Writght inequality, see [HW, RV]. However, the bound obtained in this
way would be too loose for our purposes. Instead, we will use the specific informa-
tion about this quadratic form to obtain a tighter bound.

Our argument is based on a Laplace transform estimate as in [RV]. Let g
(k)
1 , . . . , g

(k)
n

be independent standard Gaussian vectors in Rk. By Lemma 4.1

E exp(〈Un, y〉) ≤ E exp

(
1√
k

〈
g(k)n , y

〉)
.

Using this inequality with fixed U1, . . . , Un−1, we get

E exp(λS) = E exp

λ ∑
1≤i<j≤n−1

aiaj 〈Ui, Uj〉+

〈
λ

∑
1≤i<j≤n−1

aiajUi, Un

〉
≤ E exp

λ ∑
1≤i<j≤n−1

aiaj 〈Ui, Uj〉+

〈
λ

∑
1≤i<j≤n−1

aiajUi,
g
(k)
n√
k

〉 ,

Repeating the same argument for other Uj , we obtain

E exp(λS) ≤ E exp

λ
k

∑
1≤i<j≤n

aiaj

〈
g
(k)
i , g

(k)
j

〉
=

E exp

λ
k

∑
1≤i<j≤n

aiajgigj

k ,
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where g1, . . . , gn are i.i.d. N(0, 1) random variables. To derive the last equality, we

notice that
〈
g
(k)
i , g

(k)
j

〉
is the sum of k i.i.d. random variables distributed like gigj .

The previous inequality can be rewritten as

(4.2) E exp(λS) ≤
[
E exp

(
λ

2k
(g(n))>Bg(n)

)]k
,

where g(n) = (g1, . . . , gn) ∈ Rn is the standard Gaussian vector, andB is a symmetric
n× n matrix with the entries bi,j = aiaj when i 6= j and 0 otherwise, i.e.,

B = aa> − diag(a21, . . . , a
2
n).

Denote the eigenvalues of B by µ1 ≥ · · · ≥ µn. Then by interlacing µ1 > 0 ≥ µ2 ≥
· · · ≥ µn. Also,

µ1 ≤ ‖B‖HS =

∑
i 6=j

a2i a
2
j

1/2

, and
n∑
j=1

µj = tr(B) = 0.

By the rotational invariance, we have

E exp

(
λ

2k
(g(n))>Bg(n)

)
= E exp

 λ

2k

n∑
j=1

µjg
2
j

 =
n∏
j=1

(
1− λµj

k

)−1/2
provided that

λµj
k < 1 for all j ∈ [n]. Since

(4.3) |µj | ≤ ‖B‖HS =
√

2k

1

k

∑
1≤i<j≤n

a2i a
2
j

1/2

=
√

2k
(
ES2

)1/2
,

this restriction is satisfied if we assume that

(4.4)

√
2|λ|√
k

(
ES2

)1/2
< 1.

Assume that this restriction holds. Recall that 0 ≥ µ2 ≥ · · · ≥ µn, and
∑n

j=2 µj =
−µ1. Applying the inequality

n∏
j=2

(1 + yj) ≥ 1 +
n∑
j=2

yj

valid for all y2, . . . yn ∈ (−1, 1) having the same sign, we derive that

n∏
j=1

(
1− λµj

k

)
≥
(

1− λµ1
k

)
·

1−
n∑
j=2

λµj
k

 =

(
1− λµ1

k

)
·
(

1 +
λµ1
k

)

= 1−
(
λµ1
k

)2

.

In combination with (4.3), this yields

E exp

(
λ

2k
(g(n))>Bg(n)

)
≤

(
1−

(
λµ1
k

)2
)−1/2

≤
(

1− λ2 · 2ES2

k

)−1/2
.
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Taking into account (4.2), it shows that if (4.4) holds, then

E exp(λS) ≤
(

1− λ2 · 2ES2

k

)−k/2
.

The result follows if we replace λ by λ/(ES2)1/2 in the inequality above. �

We now use the duality of Orlicz norms to estimate the probability that S > 0.

Lemma 4.3. Let Y be a real-valued random variable. Let λ ∈ (0, 1), and let 0 <
q ≤ EY+. Assume that E exp(λY+) <∞.Then

P(Y > 0) ≥
[(
t+

1

λq

)
log

(
1 +

1

λqt

)
− 1

λq

]−1
for any

0 < t ≤ 1

E exp(λY+)− λq − 1
.

Proof. Let t > 0. Define the functions L,M : (0,∞)→ (0,∞) by

L(x) = t(ex − x− 1), M(x) = (t+ x) log
(

1 +
x

t

)
− x, x ∈ (0,∞).

Then L and M are Orlicz functions. Denote by ‖·‖L the norm in the Orlicz space
XL. Then the dual norm is ‖·‖M .

If t satisfies the assumption of the lemma, then EL(λY+) ≤ 1, and so

‖Y+‖L ≤
1

λ
.

Hence, by duality of Orlicz norms,

q ≤ E(Y+ · 1(0,∞)) ≤ ‖Y+‖L ·
∥∥1(0,∞)(Y )

∥∥
M
≤ 1

λ
·
∥∥1(0,∞)(Y )

∥∥
M
,

or
∥∥∥ 1
λq1(0,∞)(Y )

∥∥∥
M
≥ 1. This inequality reads

1 ≤
∥∥∥∥ 1

λq
1(0,∞)(Y )

∥∥∥∥
M

=

[(
t+

1

λq

)
log

(
1 +

1

λqt

)
− 1

λq

]
· P(Y > 0),

which proves the lemma. �

In order to apply Lemma 4.3, we need an upper bound for E exp(λY+). This is
our next task.

Lemma 4.4. Let Y be a real-valued random variable such that EY = 0. Then for
any λ > 0,

E exp(λY+) ≤ E exp(λY ) +
1

4
E exp(−λY ).

Proof. Denote p = P(Y ≥ 0). Then

E exp(λY+) = E exp(λY ) + (1− p)− E[exp(λY )1(−∞,0)(Y )].
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We can estimate the last term from below by Cauchy-Schwarz inequality:

(1− p)2 =
(
E1(−∞,0)(Y )

)2
≤ E[exp(λY )1(−∞,0)(Y )] · E[exp(−λY )1(−∞,0)(Y )]

≤ E[exp(λY )1(−∞,0)(Y )] · E exp(−λY ).

This implies that

E exp(λY+) ≤ E exp(λY ) + 1− p− (1− p)2
(
E exp(−λY )

)−1
.

The proof finishes by maximizing this expression over p ∈ R. �

Remark 4.5. If E exp(−λY ) > 2, the maximum of the function above is attained
outside of the interval [0, 1]. In this case one can obtain a better bound

E exp(λY+) ≤ E exp(λY )−
(
E exp(−λY )

)−1
+ 1

by taking p = 0. However, we are not going to use this improvement.

5. Tail estimates

To estimate A(a, 1) from below, we need a lower estimate of P(|
∑n

j=1 ajUj | ≥ 1)

and tail estimates for the random vectors
∑n

j=1 ajUj in Proposition 3.2.

Proposition 5.1. Let (Uj)
n
j=1 be a sequence of independent random vectors uni-

formly distributed on the sphere Sk−1 ⊂ Rk for k ≥ 2. Let a ∈ Rn+, |a| = 1. Then

P(|
n∑
j=1

ajUj | ≥ 1) ≥ 2
√

3− 3

3 + 4
k

=: γk .

For k = 3, 4 we have the better numerical estimates

P(|
n∑
j=1

ajUj | ≥ 1) ≥ 0.1268 , k = 3 ,

P(|
n∑
j=1

ajUj | ≥ 1) ≥ 0.1407 , k = 4 .

Remark 5.2. (a) In the case of the Rademacher variables (rj)
n
j=1, Oleszkiewicz [O]

showed that

P(|
n∑
j=1

ajrj | ≥ 1) ≥ 1

10

holds. His beautiful scalar proof does not seem to generalize to our case of spherical
variables.

(b) The estimate of Proposition 5.1 is not optimal. It is unclear whether the
minimum occurs for an = 1√

n
(1, · · · , 1). In the Rademacher case, k = 1, this is not

true, as Zhubr showed around 1995 for n = 9 (unpublished). For k ≥ 2 and n→∞,
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an yields that no better lower bound than the following is possible: By the central
limit theorem

1√
n

n∑
j=1

Uj → N (0,Σ) , Σ =
1

k
Idk

with density function f(x) =
(
k
2π

) k
2 exp(−k

2 |x|
2). Therefore

lim
n→∞

P(
1√
n
|
n∑
j=1

Uj | ≥ 1) = |Sk−1|
(
k

2π

) k
2
∫ ∞
1

rk−1 exp(−k
2
r2) dr

=
1

Γ(k2 )

∫ ∞
k
2

s
k
2
−1 exp(−s) ds =: φ(k)

The sequence (φ(k))k≥2 is increasing, with

φ(2) =
1

e
' 0.3679 < φ(3) ' 0.3916 < φ(4) =

3

e2
' 0.4060 and lim

k→∞
φ(k) =

1

2
.

Proof of Proposition 5.1. (a) Let S :=
∑

1≤i<j≤n aiaj < Ui, Uj >. Since |
∑n

j=1 ajUj |2 =
1 + 2S,

P(|
n∑
j=1

ajUj | ≥ 1) = P(S ≥ 0) .

Since E(Uj) = 0, E(S) = 0. By Proposition 2.3 of Veraar’s paper [V] on lower
probability estimates for centered random variables we have the estimate

P(S ≥ 0) ≥ (2
√

3− 3)
E(S2)2

E(S4)
.

We claim that (3 + 4
k ) E(S2)2 ≥ E(S4) so that the statement of Proposition 5.1 for

general k (not being 3 or 4)
P(S ≥ 0) ≥ γk

will follow.

(b) To prove the claim, we calculate E(S2) and E(S4).

E(S2) =
∑
i<j

∑
l<m

aiajalam E(< Ui, Uj >< Ul, Um >) .

The expectation terms on the right are non-zero only if i = l < j = m. Thus

E(S2) =
∑

1≤i<j≤n
a2i a

2
j E(< Ui, Uj >

2) = (
1

k

∑
1≤i<j≤n

a2i a
2
j )

since E(< Ui, Uj >
2) =

∫
Sk−1 v

2
1 dm(v) = 1

k

∫
Sk−1 |v|2 dm(v) = 1

k .

For E(S4), we have to evaluate E(
∏4
l=1 < Uil , Ujl >) with il < jl, l = 1, 2, 3, 4.

By the independence of the variables Uj , this is non-zero only if products of squares,
fourth powers or cyclic combinations show up in the index combinations, yielding
cases such as

E(< U1, U2 >
2< U3, U4 >

2) = E(< U1, U2 >
2) E(< U3, U4 >

2) =
1

k2
,
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E(< U1, U2 >
2< U1, U3 >

2) = E(< U1, U2 >
2) E(< U1, U3 >

2) =
1

k2
,

E(< U1, U2 >
4) =

∫
Sk−1

v41 dm(v) =

∫ π
0 cos(t)4 sin(t)k−2 dt∫ π

0 sin(t)k−2 dt
=

3

k(k + 2)
,

or

E(< U1, U2 >< U2, U3 >< U3, U4 >< U1, U4 >) = (

∫
Sk−1

v21 dm(v))3 =
1

k3
.

Each product of squares < Ui, Uj >
2< Ul, Um >2 with i < j, l < m and (i, j) 6=

(l,m) occurs
(
4
2

)
= 6 times and each cyclic combination 4! = 24 times in the fourth

power expansion of S. Therefore

E(S4) =
6

k2
(

∑
i<j,l<m,(i,j)6=(l,m)

a2i a
2
ja

2
l a

2
m ) +

3

k(k + 2)

∑
i<j

a4i a
4
j

+
24

k3
(
∑

i<j<l<m

a2i a
2
ja

2
l a

2
m ) .

Expanding (
∑

i<j a
2
i a

2
j )(
∑

l<m a
2
l a

2
m), besides cases of equalities of indices, increas-

ing index combinations show up 6 times, namely i < j < l < m, l < m < i <
j, i < k < j < l, i < k < l < j, k < i < j < l, k < i < l < j which implies
24 (

∑
i<j<l<m a

2
i a

2
ja

2
l a

2
m) ≤ 4 (

∑
i<j a

2
i a

2
j )

2 . Hence

E(S4) ≤ (3 +
4

k
)

1

k

∑
1≤i<j≤n

a2i a
2
j

2

− (
3

k2
− 3

k(k + 2)
)
∑

1≤i<j≤n
a4i a

4
j

≤ (3 +
4

k
)

1

k

∑
1≤i<j≤n

a2i a
2
j

2

= (3 +
4

k
) E(S2)2 .

This proves the claim for general k. To prove the better numerical estimates for
k = 3, 4, we use an Orlicz-space duality instead of the L2 −L2-duality employed by
Veraar.

(c) Using the Lemmas of the previous section, we now prove the better estimates
for P(|

∑n
j=1 ajUj | ≥ 1) = P(S ≥ 0) in the cases k = 3, 4. Set

Y =
S

(ES2)1/2
.

Combining Lemmas 4.2 and 4.4, we obtain

E exp(λY+) ≤ 5

4

(
1− 2λ2

k

)−k/2
for any λ ∈ (0,

√
k/2). Also, since ES = 0,

EY+ =
1

2

E |S|
(ES2)1/2

≥ 1

2

(
(ES2)2

ES4

)1/2

≥ 1

2

(
1

3 + 4/k

)1/2

=
1

2

√
k

3k + 4
,
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where we used Hölder’s inequality and the moment estimate from part (b). Hence,
Lemma 4.3 can be applied with

q =
1

2

√
k

3k + 4
and t =

1

5
4

(
1− 2λ2

k

)−k/2
− λq − 1

.

Substituting these values in the estimate of Lemma 4.3, and using a numerical
maximization of the right hand side estimate, we obtain the desired lower bounds
0.1268 with λ ≈ 0.7111 for k = 3 and 0.1407 with λ ≈ 0.7508 for k = 4. �

Remark 5.3. At the limit k →∞, our approach yields a bound

P (S ≥ 0) > 0.205475,

which is about 1
3 better than the bound 2√

3
− 1 ∼ 0.154700 following from Veraar’s

inequality. For k ≥ 100, our lower bound is greater than 0.2.

We will now consider the upper tail of |
∑n

j=1 ajUj |. A bound for the upper tail
follows directly from Lemma 4.1 and the Hanson-Wright inequality. Yet, as we strive
for good constants, we need a tighter estimate.

Proposition 5.4. (Uj)
n
j=1 be a sequence of independent, random vectors uniformly

distributed on the sphere Sk−1 for k ∈ N, k ≥ 2. Let a ∈ Rn+, |a| = 1. Then for any
t > 1

P(|
n∑
j=1

ajUj | ≥ t) ≤ tk exp(
k

2
− k

2
t2) .

Proof. The Khintchine inequality for the variables (Uj) states for any p ≥ 2

||
n∑
j=1

ajUj ||Lp(Sk−1) ≤ bp,k|a| = bp,k :=

√
2

k

(
Γ(p+k2 )

Γ(k2 )

) 1
p

,

cf. König, Kwapień [KKw], Theorem 3. The constants bp,k are the best possible.
We find for c > 0∫

Sk−1

exp(c|
n∑
j=1

ajUj |2) dP =

∞∑
m=0

cm

m!

∫
Sk−1

|
n∑
j=1

ajUj |2m dP

≤
∞∑
m=0

cm

m!
b2m2m,k =: fk(c) .

We evaluate fk(c) explicitly. For 0 < c < k
2 , we have

fk(c) =

∞∑
m=0

cm

m!

(
2

k

)m Γ(m+ k
2 )

Γ(k2 )
=

∞∑
m=0

(
−k

2

m

)(
−2c

m

)m
=

(
1− 2c

k

)− k
2

.

Therefore for any fixed t > 1

P(|
n∑
j=1

ajUj | ≥ t) exp(ct2) ≤
∫
Sk−1

exp(c|
n∑
j=1

ajUj |2) dP = fk(c) ,
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P(|
n∑
j=1

ajUj | ≥ t) ≤ fk(c) exp(−ct2) =: gk(c) .

For a given t > 1, gk is minimal for c̄ = k
2 (1− 1

t2
). This yields

P(|
n∑
j=1

ajUj | ≥ t) ≤ tk exp(
k

2
− k

2
t2) .

�

6. A lower bound for hyperplane sections

In this section, we prove Theorem 1.2.
We first consider the real case. By Proposition 3.2

AR(a, 1) =

∫
|
∑n
j=1 ajUj |≥1

dP
|
∑n

j=1 ajUj |
,

where the (Uj)
n
j=1 are independent random vectors uniformly distributed on the

sphere S2 ⊂ R3. The Cauchy-Schwarz inequality yields

P(|
n∑
j=1

ajUj | ≥ 1)2 = (

∫
|
∑n
j=1 ajUj |≥1

dP )2

≤ AR(a, 1)

∫
|
∑n
j=1 ajUj |≥1

|
n∑
j=1

ajUj | dP

= AR(a, 1)

∫ ∞
0

P(|
n∑
j=1

ajUj | χ[|
∑n
j=1 ajUj |≥1] ≥ s) ds

= AR(a, 1)

 P(|
n∑
j=1

ajUj | ≥ 1) +

∫ ∞
1

P(|
n∑
j=1

ajUj | ≥ s) ds

 .

For any t > 1,

P(|
n∑
j=1

ajUj | ≥ 1)2 ≤ AR(a, 1)

 t P(|
n∑
j=1

ajUj | ≥ 1) +

∫ ∞
t

P(|
n∑
j=1

ajUj | ≥ s) ds


≤ AR(a, 1)

 t P(|
n∑
j=1

ajUj | ≥ 1) +

∫ ∞
t

s3 exp(
3

2
− 3

2
s2) ds


= AR(a, 1)

 t P(|
n∑
j=1

ajUj | ≥ 1) +
3t2 + 2

9
exp(

3

2
− 3

2
t2)

 ,
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where we applied the tail estimate of Proposition 5.4 for k = 3. Therefore

AR(a, 1) ≥
P(|
∑n

j=1 ajUj | ≥ 1)2

tP(|
∑n

j=1 ajUj | ≥ 1) + 3t2+2
9 exp(32 −

3
2 t

2)

≥ γ23

tγ3 + 3t2+2
9 exp(32 −

3
2 t

2)
,

with γ3 := 0.1268, using Proposition 5.1 for k = 3. Choosing t = 1.92 yields

AR(a, 1) ≥ 0.05974 >
1

17
,

which is the claim of Theorem 1.2 in the real case.

In the complex case, by Proposition 3.2

AC(a, 1) =

∫
|
∑n
j=1 ajUj |≥1

dP
|
∑n

j=1 ajUj |2
,

where the (Uj)
n
j=1 now are independent uniformly distributed random vectors on

S3 ⊂ R4. We then find, using Propositions 5.4 and 5.1 for k = 4

P(|
n∑
j=1

ajUj | ≥ 1)2 = (

∫
|
∑n
j=1 ajUj |≥1

dP )2

≤ AC(a, 1)

∫
|
∑n
j=1 ajUj |≥1

|
n∑
j=1

ajUj |2 dP

= AC(a, 1)

 P(|
n∑
j=1

ajUj | ≥ 1) + 2

∫ ∞
1

s P(|
n∑
j=1

ajUj | ≥ s) ds


≤ AC(a, 1)

 t2 P(|
n∑
j=1

ajUj | ≥ 1) + 2

∫ ∞
1

s P(|
n∑
j=1

ajUj | ≥ s) ds


≤ AC(a, 1)

 t2 P(|
n∑
j=1

ajUj | ≥ 1) + 2

∫ ∞
t

s5 exp(2− 2s2) ds


= AC(a, 1)

 t2 P(|
n∑
j=1

ajUj | ≥ 1) +
2t4 + 2t2 + 1

4
exp(2− 2t2)

 ,
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for any t > 1. Hence

AC(a, 1) ≥
P(|
∑n

j=1 ajUj | ≥ 1)2

t2P(|
∑n

j=1 ajUj | ≥ 1) + 2t4+2t2+1
4 exp(2− 2t2)

≥ γ24

t2γ4 + 2t4+2t2+1
4 exp(2− 2t2)

,

with γ4 := 0.1407. Choosing t = 1.77 yields

AC(a, 1) ≥ 0.03699 >
1

28

which proves Theorem 1.2 also in the complex case of the polydisc sections.

Remark 6.1. The estimates of Theorem 1.2 cannot be improved by more than a
factor of ' 5.2 in the real case and by a factor of ' 7.3 in the complex case. Indeed,
consider the diagonal directions. Let an := 1√

n
(1, · · · , 1) ∈ Rn, |an| = 1. For

n = 2, 3 the vectors a2 ∈ R2 and a3 ∈ R3 yield the minimal values of hyperplane
sections AR(a, 1), |a| = 1 in Q2 and in Q3,

AR(a2, 1) =
√

2− 1 ' 0.4142 > AR(a3, 1) =
6
√

3− 9

4
' 0.3481,

cf. König, Koldobsky [KK1]. It is unclear whether A(an, 1) provides the mini-
mal value of hyperplane section volumes in Qn for n > 3. Actually, the sequence
(A(an, 1))∞n=2 is decreasing with

lim
n→∞

AR(an, 1) =
2

π

∫ ∞
0

exp(−s
2

6
) cos(s) ds =

√
6

πe3
' 0.3084 .

Therefore no improvement of the lower bound beyond
√

6
πe3
' 5.2·0.05974 is possible

in the real case. In the complex case

lim
n→∞

AC(an, 1) =
1

2

∫ ∞
0

exp(−s
2

8
) J0(s) s ds =

2

e2
' 0.2707 .
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