
Cleaning Up After Cookies
Version 1.0

Katherine McKinley— kate[at]isecpartners[dot]com

iSEC Partners, Inc
444 Spear Street, Suite 105
San Francisco, CA 94105

https://www.isecpartners.com

December 31, 2008

Abstract

Modern web browsers and plugins are rapidly expanding web developers’ ability to store data on users’ sys-
tems, while simultaneously adding features which allow users the perception of more control over that data.
Users need to be confident that their perceptions match reality. Unfortunately, the privacy modes offered by
browsers are still evolving (several are only available as betas), and none remove all the tracking data users might
expect them to block. A tool was created to set and report on different data stores. This paper presents the
findings from running this tool using several major browsers with two plug-ins across three common operat-
ing systems. We find current browsers are unable to extend tracking protection to third party plug-ins such
as Google Gears and Adobe Flash. Some of these require no user prompting under common configurations
and even expose tracking data saved with one browser sites visited by a different browser. We also recommend
approaches for solving these problems.

1 Introduction

Modernweb browsers and browser plug-ins provide a rich set of interfaces for web sites to store information
on end-users’ systems. This data is used for credentials (username/passwords and equivalents), tracking users,
storing preferences (interface customizations, volume controls), site data (security questions, images, cached
data), identifying tokens, or other data. User’s desire to control tracking data (and other data third-parties store
on their systems) has lead to a number of browser features, but the effectiveness of these tools is difficult for the
average consumer to gauge.

1.1 History

Before 1994, the only way a web-site could receive data about the user on the other end was by placing a ses-
sion identifier in theURL, or as a value in a form. Unfortunately, this makes exchanging links a security problem,
since the session identifier of one user would be given to another. Developers from Netscape Communications
created an extension to the HTTP specification to add a new type of data, which would be set by the server and
sent by the browser in every request to that server. They called this piece of data a cookie, and support first

https://www.isecpartners.com 1/12

https://www.isecpartners.com
https://www.isecpartners.com

appeared in Mosaic Netscape 0.9beta. Its first use was to determine if the user had visited the Netscape website
previously, and if they had, to show them a slightly different page.

Cookies provide four main advantages to a software developer: they can hold session data, as in a shopping
cart, they can be used to store login credentials, they can provide customization or personalization features, or
they can be used to track a user’s activity. These uses are not exclusive, as a single site may use one or more of
these techniques.

One of the main user tracking concerns arises when a third party, other than the web-site they are visit-
ing, is allowed to store data on the user’s system. This is possible when you visit a web page and content at
from another site is referenced (e.g. an advertisement). The third party content is loaded by the browser, and
their server may be able set their own cookies for their domain (some browser settings prevent this). When
a user visits a web site such as http://www.happykittens.example, which specifies an image coming from a dif-
ferent domain, for example, http://ads.adsadsads.example, the server at ads.adsadsads.example sends the user’s
browser a cookie containing a small bit of data, a number indicating a unique user in their system, and stores
which site you are coming from. When the user then visits http://important.news.example, who also uses ads
from http://ads.adsadsads.example, the usre’s cookie is sent to the server at ads.adsadsads.example, effectively
letting the server at ads.adsadsads.example know that you are viewing http://important.news.example.

The concerns over privacy in particular led to an article in the Financial Times[3] in October of 1996, while
in 1996 and 1997, the US Federal Trade Commission began holding privacy workshops to determine in part the
risk of cookies to Internet users’ privacy[4][5][1][2]. This led to regulation restricting the US government’s use
of cookies to identify visitors to its sites. At the same time in Europe, the EU developed a privacy directive
applicable to all member countries1 whereby users must be informed when a web site wishes to store data on
their computer, what that data is used for, and how to prevent that data from being stored. This requires web
sites operating in Europe to allow a version of their services which does not require cookies, allowing users to
opt out of that mechanism.

Due to the limitations of cookies, specifically the number and size of cookies available to a given web-site, as
well as the need to send cookies with every request, Internet Explorer 5 introduced a new mechanism for storing
data on a user’s system called the userData store. This was presented to web developers as a way to increase
storage and site data management capabilities while maintaining the same-origin security policy. It has been
referred to as a “Super Cookie”2 because the default storage for IE userData limits for Internet web sites is up
to 1024KB of storage in documents up to 128KB in size. In contrast, a web server can expect to be able to store
only 20 cookies of up to 4KB each, although in practice most browsers allow a greater number of cookies. Since
the introduction of this feature, the Firefox browser implemented a method of storing key-value pairs called
DOM3 storage, where a web site is allowed to store data locally on a user’s system to be retrieved later. It shares
the same-origin restrictions as userData, and comes in two flavors, one of which (sessionStorage) is cleared on
exit, and the other (globalStorage) which is persisted permanently. Finally, the current, pre-release, version of
the HTML 5 specification includes a storage proposal which has both a key-value storage mechanism similar to
Firefox as well as a method which supports a relational database model. This database feature is currently only
supported in Apple’s Safari browser. Support for it has been added to WebKit, allowing subsequent versions of
other WebKit-based browsers (Google Chrome, Konqueror, Android, etc.) to include support for this feature,
and is planned for Mozilla Firefox.

In addition to methods supported directly by web browsers, a user can install third party plugins which may
break out of the restriction on local system access which is normally imposed by the browser. Google’s Gears, a
plug-in for allowing more powerful web applications by caching data and web pages for offline use, is one such
example, and Adobe’s Flash plugin is another. Google’s Gears is a relatively rare plugin, which is installed specifi-

1See http://europa.eu/eur-lex/pri/en/oj/dat/2002/l_201/l_20120020731en00370047.pdf for the current EU privacy directive.
2
http://www.discovermountainbiking.com/userdata.asp

3Document Object Model, see http://en.wikipedia.org/wiki/Document_Object_Model

https://www.isecpartners.com 2/12

http://europa.eu/eur-lex/pri/en/oj/dat/2002/l_201/l_20120020731en00370047.pdf
http://www.discovermountainbiking.com/userdata.asp
http://en.wikipedia.org/wiki/Document_Object_Model
https://www.isecpartners.com

cally to provide this functionality, while themost visibile use ofAdobe’s Flash is presenting video and animations.

Gears gives users control over what data Gears will store on their computer. First, the user must explicitly
install Gears4. Second, Gears also allows users to confirm whether or not they want Gears to be available for a
particular web site. Finally, Gears makes its settings readily available via the browser’s UI, where the user is able
to explicitly allow or deny an individual site. If the site is denied, it appears to that site as if the user had not
allowed the use of Gears at all.

Adobe’s Flash is currently installed on more systems than any specific browser5. Additionally, it is used in
embedded and small scale computing devices such as the Nintendo Wii and the Nokia N770/N800 Internet
Tablets, the SonyPlaystationPortable andPlaystation 3 andLeapfrogEnterprises’ LeapsterMultimediaLearning
System. By default, Flash movies are not allowed to access the client’s microphone or camera until the user has
given explicit permission. Adobe’s published privacy article for Flash6 does not state whether this permission
applies only to movies loaded from the same origin as the user has given permission, or if it is granted more
broadly, such as to any movie allowed by the crossdomain.xml file7. For a given site, users can right click on
the flash movie to modify these settings. There is no permission required for a flash movie to store data locally.
Although the Settings dialogue for a site is loaded locally, the global Settings Manager application is loaded over
the internet. Although parts of it are loaded via HTTPS, it is hosted on an HTTP page, providing no visual
indication to the user that the Adobe web site is genuine.

2 Analysis of Browser-based Storage

This paper presents a simple tool to test the efficacy of browser data clearing mechanisms. It was run on
several different combinations of operating system and browser, including beta versions of upcoming browsers
with new features such as HTML 5 storage and privacy modes. Tested data storage in the initial version include
HTTP cookies, HTML 5 session storage, Mozilla Firefox perisistent storage, HTML 5 database storage, IE
userData, Adobe Flash and Google Gears. Due to the time constraints, Microsoft Silverlight was not included
in this initial version. A Silverlight test and Addendum to this paper is forthcoming.

2.1 Methodology

The test consists of a simplewebpagewhich loads a JavaScript test harness, several JavaScript files containing
the individual tests, and a Flash movie. Each test consists of setting the data, and reading it back out. Each time
a test is run, it first checks to see if the data exists and if so, the test displays the data and updates the modified
time. If the data does not exist on the first run through, or if the that particular data store has been effectively
cleared, the test will report that no data was found, and attempt to insert a small amount of data along with a
creation and modification time. The user can then view that data by either reloading the page or clicking on the
button to re-test a particular item. Additionally, the result column is updated to contain the result of the current
run. This can be one of several states:

1. Data found
4Google’s Chrome browser comes with Gears pre-installed
5For Adobe’s analysis of Flash market penetration, see http://www.adobe.com/products/player_census/flashplayer/version_

penetration.html. A discussion of browser market share can be found at http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

6
http://www.adobe.com/devnet/flashplayer/articles/privacy.html

7For a discussion of security issues with crossdomain.xml, see http://www.isecpartners.com/files/iSEC-Attacking_AJAX_

Applications.BH2006.pdf

https://www.isecpartners.com 3/12

http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://www.adobe.com/devnet/flashplayer/articles/privacy.html
http://www.isecpartners.com/files/iSEC-Attacking_AJAX_Applications.BH2006.pdf
http://www.isecpartners.com/files/iSEC-Attacking_AJAX_Applications.BH2006.pdf
https://www.isecpartners.com

2. No data found, setting

3. Unsupported

4. Disallowed

5. Unable to determine status

See appendices for source code. Additionally, themost current versionof the source code and the tool itself is
available at https://labs.isecpartners.com/breadcrumbs/breadcrumbs.html. Your test data may be sent to iSEC
Partners. The browsers tested include: IE 7 and IE 8 Beta 2 on Windows, Mozilla Firefox 3.0.2 and 3.1 Beta 2
on Linux, Windows, and Mac OS X, Safari 3.1.2 on Windows and OS X, Opera 9.62 on Windows, and Google
Chrome 1.0.154.36 on Windows. Google Gears 0.5.4.2 was used on both Linux and Windows. The most current
versions of Adobe Flash were used: 10.0.12.36 for Windows and OS X, and 10.0.15.3 for Linux. Test systems
includeWindowsXPSP3,WindowsVista SP1,MacOSX 10.5, andGentooGNU/Linux current as ofDecember,
2008.

2.2 Browser storage

All of the browsers tested provide a clear and easy method for users to clear the data set on their system by
web sites. In Firefox 3.0.2 and 3.1 Beta 2, the menu item Tools → Clear Private Data brings up a dialog box
which allows the user to choose which data to clear. If a user checks the box next to a data type, such as cookies,
then all cookies are cleared from the user’s system. For Firefox, Opera, and Google Chrome, this functionality
performs as advertised. Both Safari 3.1 and IE 8 Beta 2 did not perform entirely as expected, though. TheHTML
5 Database store on Safari is not cleared when resetting the private data, the user must go to their preferences
and select Security, then click the “Show Databases” button on that tab to review or delete databases. For IE 8
Beta 2, the browser must be closed to actually clear the data for the running instance. In each of these cases, it is
necessary to perform additional actions to effectively clear this data.

A user wanting to viewwhat data is stored can, in Firefox 3.0.2 and 3.1 Beta 2, choose Edit → Preferences in
themenu, select “Privacy”, andwill be able to view all the cookies stored on their system aswell as clear individual
sites if they choose. It is clear, relatively well understood, and all tested browsers include this this functionality
as part of the browser’s user interface.

A major new feature of IE8, Firefox 3.1, Apple Safari and Google Chrome is private browsing. This feature
exists to prevent cookies, local storage, history, and caches frombeing persisted after the completion of a session,
even if the data normally would be. While they are very similar features, each one works slightly differently. See
[8], [6], or [7] for discussion of how these modes are expected to work. In articles reviewed for this paper, the
vendor or commentermakes claims that nodata fromaprivate session is recordedon the user’s computer. In fact,
all of the existing private browsing modes have some form of data which is not cleared when users enter or leave
private browsing modes. Although Chrome cleared the only tested type of data it stored, it was surprising to
find that Gears data was not cleared, sinceGears is included in the browser. However, this behavior is consistent
across all browsers tested, as we will see later. Firefox 3.1 Beta 2 clears cookies and session storage properly, but
the persistent storage (window.globalStorage) is preserved between a normal and private browsing session. With
IE 8 (Beta 2), both cookies and session storage were cleared properly, however the IE userData stores were not
cleared between the normal and private browsing sessions.

Safari on Windows fared the worst of all in these tests with respect to private browsing, and did not clear
any data at all, either before entering or after exiting the private mode. On OS X, Safari’s behavior was quirky; in
no case was the HTML 5 database storage cleared before or after private browsing. Previously set cookies seem

https://www.isecpartners.com 4/12

https://labs.isecpartners.com/breadcrumbs/breadcrumbs.html
https://www.isecpartners.com

to continue to be available if the user entered a private browsing session, but if the user started the browser and
went directly into private browsing, it seemed to behave as expected.

2.3 Google Gears

Gears is an open source project sponsored by Google to allow web sites to store data so that it can be used
offline. This makes web-based alternatives to enterprise and communications applications feasible for use by
laptop users who may not always have access to a network suitable for retrieving that information at the time
they want to edit it. Users who install Gears must do so through the normal application installation process for
their platform. Once it is installed, when the user visits a Gears-enabled web site and Gears has not previously
been allowed for that site, the user is prompted to allow or deny the use of Gears. If they choose to allow Gears
to store data, they are not prompted on subsequent visits. However, if they decide to block Gears at a later date,
they can easily do so via a menu added to the browser. This does not delete the downloaded data, but does block
access to it—the page is not aware that the data even exists. Under all tested browsers’ privacy modes, however,
Gears is still able to access all of its data, allowing a site with Gears access to continue to view previously stored
data.

An installation ofGears creates a data store for each individual browser. Thismeans that, for example, a user
who downloads Firefox 3.0.2 and usesGears there, and then visits the same site in IE 8Beta 2, it will not have that
data shared between browser instances. This sets up an equivalent expectation to privacy as user cookies—users
donot expect that differentbrowsers share access to this potentially sensitive information. Even thoughGoogle’s
Gears is a model plugin in many ways—requiring user consent to store data, browser isolation—it should warn
users that their data is available even in privacy modes.

2.4 Adobe Flash

AdobeFlashoffers developers the ability to createdynamic applications using a language similar to JavaScript
called ActionScript8. These applications are tied to the network, and have broad capabilities to load code and
data over the internet. Adobe includes methods for developers to bypass the web browser’s same-origin security
policy, allowing an application hosted on one domain to read data or code hosted on another. In the current
version, Flash supports very limited access to local resources. If a user has a camera and / or microphone, a web
site may request to use them. Sites may not turn them on without the user’s consent. Flash does not get user
consentwhenhandling locally stored data via the SharedObject store. Data is silently persisted on the user’s system
and no indication in the browser is available to indicate that Flash has stored data.

Flash is also browser-independent in its storage location. When a user loads a web site with one browser
which sets aFlashobject, theymaywish to view that page anonymously in adifferent browser. Byusing a universal
data store, a Flash provides developers with amethod for persisting data across all the browsers a user might use.
This is an issue because the new private browsing modes becoming available also have access to the same Flash
data as the user’s regular browser instances. A survey of locally stored objects in Flash finds volume control
preferences, potentially identifying information such as user aliases or identification numbers, and bank multi-
factor authentication images or codes9.

Flash does not use the browser interface to offer users the ability to modify their privacy or storage settings.

8Both languages are based on ECMAScript. See http://en.wikipedia.org/wiki/ECMAScript for more information on the ECMAScript
standard

9Examples include the Bank of America http://www.bankofamerica.com/onlinebanking/index.cfm?template=site_key&statecheck=

CA, HampdenBankhttps://www.hampdenbank.com/news/whydoihavetoent_71/, and Security BankCorporationhttp://www.reuters.com/

article/pressRelease/idUS121553+10-Mar-2008+MW20080310, which uses Arcot Systems technology http://www.arcot.com/

https://www.isecpartners.com 5/12

http://en.wikipedia.org/wiki/ECMAScript
http://www.bankofamerica.com/onlinebanking/index.cfm?template=site_key&statecheck=CA
http://www.bankofamerica.com/onlinebanking/index.cfm?template=site_key&statecheck=CA
https://www.hampdenbank.com/news/whydoihavetoent_71/
http://www.reuters.com/article/pressRelease/idUS121553+10-Mar-2008+MW20080310
http://www.reuters.com/article/pressRelease/idUS121553+10-Mar-2008+MW20080310
http://www.arcot.com/
https://www.isecpartners.com

Instead, Flash includes a Settings option in the menu when users right-click a flash movie. Adobe does not allow
developers to hide the Settings menu, and only the settings for the current site can be viewed and manipulated
via the right-click menu10. In order to view or modify the settings for all sites, or see which sites are storing
data, the usermust visit a special Flashmovie hosted onwww.macromedia.com via the insecureHTTP protocol.
This loads a stub Flash application via HTTP, which then loads the remainder of the application via HTTPS. It
does not indicate to the user that they are communicating with Adobe in a secure manner, although it appears
to validate the SSL certificate correctly. A user who is unable to access the website hosting the control (e.g.,
restrictive firewall rules) is consequently unable to view or delete the data stored on their computer. Attempting
to re-host the HTTP or HTTPS portions on a third party site was not attempted.

3 Conclusion

We have presented a tool for testing browsers functionality for clearing private data, and browsing in a pri-
vate mode. While many browsers do a decent job of clearing data when requested, some have minor problems.
Third party plug-ins like Adobe Flash, which is far more popular than any individual browser or platform, seem
to undermine the data protection schemes offered by all common browsers, however. While browsers are in-
troducing more features with privacy implications, such as persistent local storage, they have mostly integrated
themanagement of this type of information into a single location. When users want to ensure their privacy with
respect to information stored via the browser standardmethods, they can go to a single location to clear the data,
use a separate browser, or use a working private browsing mode, if available.

Plug-ins need to take extra steps to ensure the privacy of their users. The clear best practices in this area, as
exemplified by Google’s Gears, prompts users before allowing a site to store data on their system, holds a per-
browser data store, and integrates their management UI into the browser UI. Adobe Flash does none of these
things, instead silently allowing web sites to store data, uses one global data store for all browsers, and uses a
settings UI accessible only when the user is connected to the Internet.

Browser vendors and plug-in vendors should cooperate to make their platforms more trustworthy. A set
of standard APIs to communicate the need for plug-ins to clear data for a particular origin, all sites, or even
a date range needs to be developed, and its use required of all plugins. In the absence of these APIs, plugins
which require use of any local system resources should prompt before allowing web sites to store data locally, and
integrate the management of interface into the standard browser API.

4 Acknowledgements

I would like to thank David Thiel for suggesting data storage mechanisms and review, as well as Jesse Burns,
Chris Palmer, and April King for their review and encouragement.

10The author of this paper has observed the Settings menu greyed out, rendering it unusable. This behavior was not reproducable.

https://www.isecpartners.com 6/12

https://www.isecpartners.com

A HTML Source

The HTML Page source used for loading the tests:

1 <html >
2 <head >
3 < t i t l e >Breadcrumbs Tracker < / t i t l e >
4 < s c r i p t s r c = ’ u t i l s . j s ’ > < / s c r i p t >
5 < s c r i p t s r c = ’ t e s t h a r n e s s . j s ’ > < / s c r i p t >
6 < s c r i p t s r c = ’ cookie . j s ’ > < / s c r i p t >
7 < s c r i p t s r c = ” s e s s i o n S t o r a g e . j s ” > </ s c r i p t >
8 < s c r i p t s r c = ” p e r s i s t e n t S t o r a g e . j s ” > </ s c r i p t >
9 < s c r i p t s r c = ” openDatabase . j s ” > </ s c r i p t >

10 < s c r i p t s r c = ” userData . j s ” > </ s c r i p t >
11 < s c r i p t s r c = ” f l a s hTr a cke r . j s ” > </ s c r i p t >
12 < s c r i p t s r c = ” g e a r s . j s ” > </ s c r i p t >
13 < l i n k r e l = s t y l e s h e e t type =” t e x t / c s s ” h r e f = ” breadcrumbs . c s s ” / >
14 </ head >
15 <body onLoad = ’ t e s tHarnes s . i n i t () ; t e s tHarnes s . run () ; ’ >
16 <d i v a l i g n =” l e f t ”> </ div >
17 <h3 >Breadcrumbs < / h3 >
18 <div >
19 Cl ick <a h re f = ” j a v a s c r i p t : r e tu rn f a l s e ; ” onc l i ck = ” window . open (’ he lp . html ’ , ’ Breadcrumbs Help ’ , ’ he i gh t = 2 56 , width = 5 1 2 ’) ; ” > here < / a> fo r he lp . < br >
20 The l a t e s t v e r s i on of the paper can be found <a h re f = ” http : / / www. i s e c p a r t n e r s . com / f i l e s / iSEC_Cleaning_Up_After_Cookies . pdf ” > here . < / a>

21 <d i v id = ’ dynamicChecks ’ >
22
23 <d i v c l a s s = ” testname ” s t y l e = ” text−a l i g n : l e f t ; font−weight : bold ;” > < span c l a s s = ” testname ”>Test name < / span > </ div >
24 <d i v c l a s s = ” p a s s f a i l ” s t y l e = ” text−a l i g n : cen te r ; font−weight : bold ;” > < span c l a s s = ” p a s s f a i l ” > Result < / span > </ div >
25 <d i v c l a s s = ” t e s t v a l u e ” s t y l e = ” text−a l i g n : cen te r ; font−weight : bold ;” > < span c l a s s = ” t e s t v a l u e ” >Contents < / span > </ div >
26 <d i v c l a s s = ” but ton_conta ine r ” s t y l e = ” text−a l i g n : cen te r ; font−weight : bold ;” > < span c l a s s = ” but ton_conta ine r ” >Run t h i s t e s t < / span > </ div >
27

28 <d i v c l a s s = ” c l e a r ”> ; < / div >
29 </ span >
30 </ div >
31 </ div >
32 <!−−
33 <div >
34 <p>
35 <h4> J a v a s c r i p t She l l < / h4>
36 < t e x t a r e a id = ’ i npu tF i e ld ’ c o l s =80 rows =5 name = ’ input ’ v a l u e = ’ ’ >
37 </ t e x t a r e a >
38

39 < input type = submit onClick = ’ s h e l l I npu t () ; r e tu rn t rue ; ’ >
40 </p>
41 </ div >
42 −−>
43 <div >
44 <h4>Log Output < / h4>
45 <p id = ’ logArea ’ >
46 </p>
47 </ div >
48 </ body>
49 </ html >

Listing 1: breadcrumbs.html

B Test Harness Javascript

The code used to load and run the tests:

https://www.isecpartners.com 7/12

https://www.isecpartners.com

1 va r TestHarness = func t ion () {
2 / / each t e s t c o n s i s t s of an ent r y of name va l u e pa i r s , where v a l u e
3 / / i s an ob j e c t implementing the t e s t () method
4 t h i s . t e s t s = [] ;
5 t h i s . t e s t s _ i d x = { } ;
6

7 t h i s . i n i t = func t i on () {
8 va r dchecks = getElementById (’ dynamicChecks ’) ;
9 f o r (v a r k in t h i s . t e s t s) {

10 t h i s . i n i t _ t e s t e r (dchecks , t h i s . t e s t s [k]) ;
11 }
12 }
13

14 t h i s . r e s u l t s = {
15 ’ data_found ’ : ’ Data Found ’ ,
16 ’ nodata ’ : ’No data found , s e t t i n g . . . ’ ,
17 ’ undetermined ’ : ’ Unable to determine s t a t u s ’ ,
18 ’ unsupported ’ : ’Method unsupported ’ ,
19 ’ e r ro r ’ : ’ Error s e t t i n g or r e t r i e v i n g data ’
20 } ;
21

22 t h i s . s e t _ r e s u l t = func t i on (testname , r e s u l t) {
23 t r y {
24 va r elem = getElementById (’ p a s s f a i l _ ’ + testname) ;
25 va r oelem = getElementById (’ p a s s f a i l _ r e s u l t _ ’ + testname) ;
26 va r msg = t h i s . r e s u l t s [r e s u l t] ;
27 i f (! msg) {
28 msg = t h i s . r e s u l t s [’ undetermined ’] ;
29 }
30

31 elem . removeChild (oelem) ;
32 va r nelem = mkElem (’ span ’ , { ’ id ’ : ’ p a s s f a i l _ r e s u l t _ ’ + testname , ’ c l a s s ’ : ’ p a s s f a i l ’ }) ;
33 nelem . innerHTML = msg ;
34 nelem . className = ” p a s s f a i l ” ;
35 elem . appendChild (nelem) ;
36 r e tu rn msg ;
37 } ca tch (e) {
38 p r i n t f (” Exception in s e t _ r e s u l t : %s \ n ” , e) ;
39 }
40 r e tu rn ’ e r r o r s e t t i n g r e s u l t ’ ;
41 }
42

43 t h i s . run = func t i on () {
44 p r i n t f (” running ” + t h i s . t e s t s . l eng th + ” t e s t s \ n ”) ;
45

46 f o r (v a r k in t h i s . t e s t s) {
47 p r i n t f (” Running %s \ n ” , t h i s . t e s t s [k] . name) ;
48

49 t h i s . r un_ t e s t (t h i s . t e s t s [k] . name) ;
50 }
51 }
52

53 t h i s . r un_ t e s t = func t i on (name) {
54 va r t e s t = t h i s . t e s t s [t h i s . t e s t s _ i d x [name]] ;
55 p r i n t f (” r un_ t e s t %s \ n ” , t e s t . name) ;
56 i f (t e s t == n u l l | | ! i sDef ined (t e s t)) {
57 r e tu rn ;
58 }
59 t h i s . i n i t _ t e s t e r (getElementById (’ dynamicChecks ’) , t e s t) ;
60 va r sp = mkElem (’ span ’ , { ’ id ’ : ’ check_span_ ’ + t e s t . name }) ;
61

62 va r hd = mkElem (’ div ’ , { ’ c l a s s ’ : ’ testname ’ }) ;
63 hd . innerHTML = ’ < span c l a s s = ” testname ” > ’ + t e s t . print_name + ’ < / span > ’ ;
64 hd . className = ” testname ” ;
65 sp . appendChild (hd) ;

https://www.isecpartners.com 8/12

https://www.isecpartners.com

66

67 va r p a s s f a i l = mkElem (’ div ’ , { ’ id ’ : ’ p a s s f a i l _ ’ + t e s t . name , ’ name ’ : ’ p a s s f a i l _ ’ + t e s t . name , ’ c l a s s ’ : ’ p a s s f a i l ’ }) ;
68 p a s s f a i l . innerHTML = ’ < span id = p a s s f a i l _ r e s u l t _ ’ + t e s t . name + ’ c l a s s = ” p a s s f a i l ”> ; < / span > ’ ;
69 p a s s f a i l . className = ” p a s s f a i l ” ;
70 sp . appendChild (p a s s f a i l) ;
71

72 va r r e s = mkElem (’ div ’ , { ’ id ’ : ’ t e s t v a l u e _ ’ + t e s t . name , ’ name ’ : ’ t e s t v a l u e _ ’ + t e s t . name , ’ c l a s s ’ : ’ t e s t v a l u e ’ }) ;
73 va r r e s _ con t en t s = mkElem (’ span ’ , { ’ id ’ : ’ t e s t v a l u e _ con t en t s _ ’ + t e s t . name , ’ name ’ : ’ t e s t v a l u e _ con t en t s _ ’ + t e s t . name , ’ c l a s s ’ : ’ t e s t v a l u e ’ }) ;
74 r e s _ con t en t s . innerHTML = t e s t . t e s t () ;
75 r e s . className = ” t e s t v a l u e ” ;
76 r e s _ con t en t s . className = ” t e s t v a l u e ” ;
77 r e s . appendChild (r e s _ con t en t s) ;
78 sp . appendChild (r e s) ;
79

80 va r but ton_conta ine r = mkElem (’ div ’ , { ’ c l a s s ’ : ’ but ton_conta iner ’ }) ;
81 va r bspan = mkElem (’ span ’ , { ’ c l a s s ’ : ’ but ton_conta iner ’ }) ;
82 va r rerun = mkElem (’ button ’ , { ’ onc l i ck ’ : ’ t e s tHarnes s . r un_ t e s t (” ’ + name + ’ ”) ; ’ }) ;
83 re run . onc l i ck = func t ion () { t e s tHarnes s . r un_ t e s t (name) ; } ;
84 re run . innerHTML = ”Run t h i s t e s t a g a in ” ;
85 re run . className = ” but ton_conta ine r ” ;
86 bspan . appendChild (re run) ;
87 but ton_conta ine r . appendChild (bspan) ;
88 sp . appendChild (bu t ton_conta ine r) ;
89 va r cd = mkElem (’ div ’ , { ’ c l a s s ’ : ’ c l e a r ’ }) ;
90 cd . className = ’ c l e a r ’ ;
91 sp . appendChild (cd) ;
92 t e s t . d i v . appendChild (sp) ;
93 t e s t . f i n a l i z e () ;
94 t h i s . s e t _ r e s u l t (t e s t . name , t e s t . r e s u l t) ;
95 }
96

97 t h i s . r e g i s t e r = func t i on (ob j) {
98 t h i s . t e s t s _ i d x [ob j . name] = t h i s . t e s t s . l eng th ;
99 t h i s . t e s t s . push (ob j) ;

100 }
101

102 t h i s . i n i t _ t e s t e r = func t i on (parentElem , ob j) {
103 va r ndiv = mkElem (’ div ’ , { ’ id ’ : ob j . name , ’ name ’ : ob j . name , ’ c l a s s ’ : ’ t e s t e r ’ }) ;
104 i f (ob j . d i v) {
105 parentElem . r ep l a c eCh i l d (ndiv , ob j . d i v) ;
106 } e l s e {
107 parentElem . appendChild (ndiv) ;
108 }
109 obj . d i v = ndiv ;
110 }
111

112 t h i s . g e tTes t s = func t i on () { r e tu rn t h i s . t e s t s ; }
113

114 t h i s . p r i n t S t o r a g e = func t i on () {
115 va r storSupp = ” ” ;
116 f o r (v a r i in window) {
117 i f (i == ” s e s s i o n S t o r a g e ”) {
118 storSupp += ” Se s s i on Sto rage ” ;
119 }
120 e l s e i f (i == ” g l o b a l S t o r a g e ”) {
121 storSupp += ” Global S to rage ” ;
122 }
123 e l s e i f (i == ” l o c a l S t o r a g e ”) {
124 storSupp += ” Loca l S to rage ” ;
125 }
126 e l s e i f (i == ” openDatabase ”) {
127 storSupp += ” Database S to rage ” ;
128 }
129 }
130 p r i n t f (”% s \ n ” , s torSupp) ;

https://www.isecpartners.com 9/12

https://www.isecpartners.com

131 }
132

133 t h i s . s e t P a s s F a i l = f unc t i on (name , msg) {
134 va r pf = getElementById (” p a s s f a i l _ ” + name) ;
135 i f (pf) {
136 pf . innerHTML = ”< span c l a s s = p a s s f a i l >” + msg + ” < / span > ” ;
137 }
138 }
139 }
140

141 va r t e s t = func t ion (ob j) {
142 }
143

144 va r t e s tHarnes s = new TestHarness () ;
145

146

147 va r Nul lTest = func t ion () {
148 t h i s . name = ” Nul lTest ” ;
149 t h i s . print_name = ” Null Test ” ;
150 t h i s . d i v = n u l l ;
151 t h i s . r e s u l t = n u l l ;
152

153 t h i s . f i n a l i z e = func t i on () { r e tu rn ; }
154

155 t h i s . t e s t = func t i on () {
156 t h i s . r e s u l t = ’ nodata ’ ;
157 r e tu rn t h i s . name + ” Completed ” ;
158 }
159 }
160

161 / / t e s tHarnes s . r e g i s t e r (new Nul lTest ()) ;

Listing 2: testharness.js

C Cookie test

The code for testing setting and retrieving cookies in Javascript:

1 / *
2 document . cookie = ” xyzzy = grue ; e x p i r e s = Jan 19 2038 0 3 : 1 4 : 0 8 UTC; path = / ” ;
3 document . cookie = ” foo = bar ; path = / ” ;
4 (new Cookie ()) . parseCookie () ;
5 * /
6

7 va r Cookie = func t ion () {
8 va r tha t = new Nul lTest () ;
9 t h i s . name = ” Cookie ” ;

10 t h i s . print_name = ” Cookie ” ;
11 t h i s . domain = document . domain ;
12 t h i s . d i v = n u l l ;
13 t h i s . cookie = { } ;
14 t h i s . r e s u l t = n u l l ;
15

16 t h i s . parseCookie = func t i on () {
17 t h i s . cookie = { } ;
18 i f (n u l l == document . cookie | | ’ ’ == document . cookie) {
19 r e tu rn ;
20 }
21 va r content s = document . cookie . s p l i t (’ ; ’) ;
22 f o r (v a r crumb in content s) {

https://www.isecpartners.com 10/12

https://www.isecpartners.com

23 va r tmp = content s [crumb] . r e p l a c e (’ s / \ s +$ / / ’) . s p l i t (’ = ’) ;
24 t h i s . cookie [tmp [0]] = tmp [1] ;
25 }
26 }
27

28 t h i s . f i n a l i z e = func t i on () { r e tu rn ; }
29

30 t h i s . t e s t = func t i on () {
31 t h i s . parseCookie () ;
32 document . cookie = ” xyzzy = grue ” + (new Date ()) . getTime () + ” ; e x p i r e s = Jan 19 2038 0 3 : 1 4 : 0 8 UTC; path = / ” ;
33 document . cookie = ” foo = bar ” + (new Date ()) . getTime () + ” ; path = / ” ;
34 i f (n u l l == t h i s . cookie) {
35 t h i s . r e s u l t = ’ nodata ’ ;
36 r e tu rn ” Cookies Disab led ” ;
37 }
38 va r r e t = ” < t ab l e > ” ;
39 r e t += ” < tr ><th >Name< / th ><th >Value < / th > </ t r > ” ;
40 t r y {
41 t h i s . r e s u l t = ’ nodata ’ ;
42 f o r (v a r k in t h i s . cookie) {
43 r e t += ” < tr ><td >” + k + ” < / td ><td >” + t h i s . cookie [k] + ” < / td > </ t r > ” ;
44 t h i s . r e s u l t = ’ data_found ’ ;
45 }
46 } ca tch (e) {
47 p r i n t f (” Caught except ion : %s \ n ” + e) ;
48 t h i s . r e s u l t = ’ e r ro r ’ ;
49 }
50 r e t += ” < / t ab l e > ” ;
51 i f (t h i s . r e s u l t == ’ nodata ’) {
52 r e t = ’ Attempted to s e t cookie to : ’ + document . cookie ;
53 }
54 r e tu rn r e t ;
55 }
56 }
57

58 t e s tHarnes s . r e g i s t e r (new Cookie ()) ;

Listing 3: cookie.js

D Changelog

v1.0 30 December, 2008

* Initial revision

https://www.isecpartners.com 11/12

https://www.isecpartners.com

References

[1] J. Berman, J. Goldman, D. J. Weitzner, and D. K. Mulligan. Statement of the Center for Democracy and
Technology before the Federal Trade Commission Workshop on Consumer Privacy on the Global Informa-
tion Infrastructure. http://www.cdt.org/testimony/960605berman.shtml, June 1996. 2

[2] J. Berman and D. Mulligan. CDT Comments to the FTC Consumer and Children’s Online Privacy.
http://www.cdt.org/privacy/issues/pii/970415_cdt_ftc2.shtml, April 1997. 2

[3] L. Bransten. Cookies leave a bitter taste: Invasive data collection is widespread. Financial Times, London,
October 1996. 2

[4] U. S. FTC. FTC Workshop On Consumer Privacy In Cyberspace To Be Held In June 1996.
http://www.ftc.gov/opa/1996/05/privinit.shtm, May 1996. 2

[5] U. S. FTC. Consumers’ and Children’s Privacy Online, Computer Database, and Unsolicited E-Mail: To Be
Explored at FTC Privacy Week — June 10-13. http://www.ftc.gov/opa/1997/06/privweek.shtm, June 1997. 2

[6] G.Keizer. Firefox finally gets privacymode. http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9122939,
December 2008. 4

[7] R. Naraine. Google Chrome, the security tidbits. http://blogs.zdnet.com/security/?p=1837, September 2008.
4

[8] A. Zeigler. IE8 and privacy. http://blogs.msdn.com/ie/archive/2008/08/25/ie8-and-privacy.aspx, August 2008.
4

https://www.isecpartners.com 12/12

https://www.isecpartners.com

	Introduction
	History

	Analysis of Browser-based Storage
	Methodology
	Browser storage
	Google Gears
	Adobe Flash

	Conclusion
	Acknowledgements
	HTML Source
	Test Harness Javascript
	Cookie test
	Changelog
	References

