Smoothed analysis of random matrices

Roman Vershynin

University of Michigan

Asymptotic Geometric Analysis II
Euler International Mathematical Institute, Saint-Petersburg, Russia, June 2013
Smoothed analysis. [Spielman-Teng '01]

In theoretical computer science:

“An object should become better under a random perturbation.”

Better = non-degenerate (hence algorithms are faster, more accurate).

Objects: polytopes, convex sets (?), polynomials, etc.

In this talk, an $n \times n$ matrix D.

Random perturbation = adding to D a random matrix R:

$$A = D + R.$$

”An $n \times n$ matrix D should become non-degenerate when replaced by $D + R$, where R is a random matrix.”
Non-degeneracy

Qualitatively: A has full rank, invertible.

Quantitatively: control of $\|A^{-1}\|$.

Equivalently, the smallest singular value (smallest eigenvalue of $\sqrt{A^*A}$),

$$s_n(A) = \frac{1}{\|A^{-1}\|} = \min_x \frac{\|Ax\|_2}{\|x\|_2}$$

$$= \text{dist}_{\|\cdot\|}(A, \text{non-invertible matrices}).$$
Problem (Smoothed analysis of matrices)

Let D be a $n \times n$ deterministic matrix, R be an $n \times n$ random matrix (some natural distribution, or “ensemble”). Does the smallest singular value satisfy

$$s_n(D + R) \geq \text{something nice}$$

with high probability?

Intuition in 1D: if R has a continuous distribution, bounded density, then

$$|D + R| \gtrsim 1 \text{ w.h.p.}$$

The bound does not depend on D. Worst case: $D = 0$.
Gaussian random matrices R with iid entries ("Ginibre")

Matrix case: D, R are $n \times n$ matrices.

Theorem [Sankar-Spielman-Teng ’06]

Let D be arbitrary, R be a **Gaussian** random matrix (entries iid $N(0, 1)$). Then

$$\mathbb{P}\{ s_n(D + R) < \varepsilon n^{-1/2} \} \leq \varepsilon, \quad \varepsilon > 0.$$

Hence

$$s_n(D + R) \gtrsim n^{-1/2} \quad \text{with high probability.}$$

The bound is **independent of** D.

“Worst case” is $D = 0$, since $s_n(R) \sim n^{-1/2}$ [Edelman ’88, Szarek ’90].
Theorem [Rudelson-Vershynin ’08]

Let $\|D\| = O(\sqrt{n})$ and R be a random matrix with iid sub-gaussian entries, zero means, unit variances. Then

$$\mathbb{P}\left\{ s_n(D + R) < \varepsilon n^{-1/2} \right\} \leq C\varepsilon + c^n, \quad \varepsilon > 0.$$

Hence:

- if $\|D\| \lesssim \sqrt{n}$, the result does not depend on D, the “worst case” is $D = 0$.
- If $\|D\| \gg n$, the result is generally false:
Example (Rudelson), see also [Tao-Vu ’08]

\[
D = M \cdot \text{diag}(0, 1, \ldots, 1),
\]
\[
R = \text{Bernoulli random matrix (entries iid } \pm 1). \text{ Then}
\]
\[
s_n(D + R) \leq \frac{C \sqrt{n}}{M} \quad \text{with probability } \frac{1}{2}.
\]

Hence \(D = 0 \) is **not** the worst case!

\(D + R \) can become **more degenerate** for \(D \) large.

Open question: How large?

When does \(s_n(D + R) \) start to feel the deterministic part \(D \)?

What we know:

Does not feel for \(\|D\| \lesssim \sqrt{n} \), feels for \(\|D\| \gg n \). **Where is the threshold?**
Polynomiality

In any case:

If \(\|D\| \) is polynomial in \(n \), then \(s_n(A + B) \) is polynomial, too.

Theorem. [Tao-Vu ’08]

For any \(B > 0 \) there exists \(A = A(\alpha, B) \) so that if \(\|D\| \leq n^\alpha \), then

\[
\mathbb{P}\{ s_n(D + R) < C n^{-A} \} \leq n^{-B}.
\]
Symmetric random matrices

R has iid sub-gaussian entries modulo symmetry: $R_{ij} = R_{ji}$. ("general Wigner")

Similar results, more difficult:

Theorem [Vershynin ’11]

$$\mathbb{P}\left\{ s_n(R) < \varepsilon n^{-1/2} \right\} \leq C\varepsilon^{1/9} + \exp(-n^c), \quad \varepsilon > 0.$$

Same for $D + R$ where D is any diagonal matrix. Thus Rudelson’s example is not a problem for symmetric matrices.

Theorem [Nguyen ’11]

For any $B > 0$ there exists $A = A(\alpha, B)$ so that if $\|D\| \leq n^{\alpha}$, then

$$\mathbb{P}\left\{ s_n(D + R) < Cn^{-A} \right\} \leq n^{-B}.$$
When entries have **continuous** distributions

Conjecture

Suppose the entries of R have uniformly bounded densities. Then $s_n(D + R)$ should **not** feel the deterministic part D. The worst case should be $D = 0$.

What we know: Polynomial bounds **independent** of D, but non-optimal.

Theorem (simple for indep. entries; [Farrell-Vershynin ’12] for symmetric)

$$\mathbb{P}\{s_n(D + R) < \varepsilon n^{-p}\} \leq C\varepsilon, \quad \varepsilon > 0.$$

$p = 3/2$ for indep. entries (maybe better), and $p = 2$ for symmetric. C depends only on the maximal density of the entries of R.

Question. Is $p = 1/2$, i.e. $s_n(D + R) \gtrsim \varepsilon n^{-1/2}$, like in the Gaussian case?
Proof for symmetric matrices [Farrell, Vershynin ’12]

Enough to show that

\[(A^{-1})_{ij} = O(1)\] with high probability.

Influence of \(A_{1n}\) on \((A^{-1})_{1n}\)?

Cramer’s rule: \((A^{-1})_{1n} = \frac{\det A_{(1n)}}{\det A}\)

\[
\begin{vmatrix}
A_{(1n)} & A_{1n} \\
A_{n1} & A_{1n}
\end{vmatrix}
\]

\[
|A| = a A_{11}^2 + 2b A_{11} + c, \quad |A_{(11)}| = a A_{11} + b.
\]

Divide, use that \(A_{1n}\) fluctuates continuously by \(\gtrsim\) const w.h.p. \(\square\)
Proof for non-symmetric matrices: distance argument

\[A := D + R. \quad s_n(D + R) = 1/\|A^{-1}\| \geq ? \]

Negative second moment identity (noticed by [Tao-Vu '08]):

\[\|A^{-1}\|^2 \leq \|A^{-1}\|_{HS}^2 = \sum_{i=1}^{n} d(A_i, H_i)^{-2} \]

where \(A_i = \) columns of \(A \) and \(H_i = \text{span}(A_i)_{i\neq j} \).

Remains to estimate each \(d(A_i, H_i) \); finish by union bound.
Proof for non-symmetric matrices: distance argument

\[d(A_1, H_1) = |\langle A_1, h_1 \rangle| = \left| \sum_{j=1}^{n} h_{1j} A_{1j} \right| \]

where \(h_1 = \text{unit normal for } H_1 \). Condition on \(h_1 \); \(A_1 \) is independent.

Hence we have a **sum of independent random variables**.

\(A_{1j} \) are continuous, densities bounded by \(M \Rightarrow \) same for their sum [Rogozin] + [Ball]. Hence

\[
\mathbb{P}\{d(A_1, H_1) < \varepsilon\} \leq CM\varepsilon. \quad \square
\]

Remark. Discrete distributions - combinatorial arguments [Rudelson-V '08].
Theoretical applications: limit laws in RMT

Polynomial estimates of $s_n(A)$ are essential for validating limit laws of random matrix theory.

Two examples:

Circular law [Girko, Bai, Götze-Tikhomirov, Pan-Zhou, Tao-Vu]
Spectrum of $n^{-1/2}R$ converges to the uniform distribution on the unit disc:

Uses $s_n(R) \geq n^{-c}$ w.h.p.
Random unitary and orthogonal matrices

Conjecture (O. Zeitouni).

Let D be a deterministic matrix, U be a random matrix uniformly distributed in $U(n)$ or $O(n)$. Show that

$$s_n(D + R) \geq n^{-c} \quad \text{w.h.p.} \quad (1 - n^{-10}).$$

This is needed to validate the **Single ring theorem**:

Single ring theorem [Guionnet, Krishnapur, Zeitouni '11]

Distribution of spectrum of UDV is supported in a single ring, where $U, V \in U(n)$ or $O(n)$ random uniform.
Naïve approach:

Instead of using the full power of $U \in U(n)$ just multiply by a random complex number r, $|r| = 1$.

\[s_n(D + U) \equiv s_n(D + U^{-1}) = s_n(D + r^{-1}U^{-1}) = s_n(rUD - I). \]

Condition on U.

Multiplication by $r \Leftrightarrow$ random rotation of spectrum $\sigma(UD)$ in \mathbb{C}.

$\sigma(UD) = \{ n \text{ points} \}$. Rotation separates it from $\sigma(I) = \{ 1 \}$ w.h.p.

\[\Rightarrow \quad \sigma(rUD - I) \quad \text{is bounded away from 0}. \]

Q.E.D.?
Not Q.E.D. Fault:

Spectrum bounded away from 0 \(\not\Rightarrow \) matrix well invertible.

In other words, No eigenvalues near 0 \(\not\Rightarrow \) no singular values near 0.

Example [Trefethen, Viswanath '98] Triangular random Gaussian matrix \(A \):

\[
\sigma(A) = \text{diag}(A) \gtrsim \frac{1}{n} \quad \text{while} \quad s_n(A) \sim e^{-cn}.
\]
Random unitary matrices

Theorem (Unitary perturbations) [Rudelson, Vershynin '12]

Let D be any fixed matrix, and $U \in U(n)$ be random uniform. Then

$$\mathbb{P}\{s_n(D + U) \leq tn^{-C}\} \leq t^c, \quad t > 0.$$

Here $C, c > 0$ are absolute constants (independent of D).

Hence

$$s_n(D + U) \geq tn^{-C} \quad \text{w.h.p.}$$
Random orthogonal matrices

The result fails over \mathbb{R}, for $U \in O(n)$!

Example. If n is odd, every rotation $U \in SO(n)$ has eigenvalue 1.
$\Rightarrow -I + U$ is singular with probability $1/2$.

Moreover: by rotation invariance, every orthogonal matrix D is a counterexample: $D + U$ is singular with probability $1/2$.

Main result: These are the only counterexamples. If D is not approximately orthogonal, then

$$ s_n(D + U) \geq tn^{-C} \quad \text{w.h.p.} $$
Random orthogonal matrices

Theorem (Orthogonal perturbations) [Rudelson, Vershynin ’12]

Let D be a fixed matrix, and $U \in U(n)$ be random uniform. Suppose

$$\inf_{V \in O(n)} \| D - V \| \geq \delta, \quad \| D \| \leq K.$$

Then

$$\mathbb{P}\{s_n(D + U) \leq t(\delta/Kn)^C\} \leq t^c, \quad t > 0.$$

Here $C, c > 0$ are absolute constants (independent of D).

Remarks.

Orthogonal case is harder than unitary.
Nontrivial even in low dimensions $n = 3, 4$.

The bound $\| D \| \leq K$ may not be needed.

Optimal exponents C, c are unknown.
Approach: local perturbations

Difficulty: entries of $U \in U(n)$ are dependent.

Fixing it: like in the naïve approach, do not use the full strength of U. Instead, replace U by *infinitesimal* perturbations of identity $= \text{skew-Hermitian matrices, } S^* = -S$.

Advantage: skew-Hermitian matrices can be forced to have *independent* entries.

Algebraically:

Local structure of Lie group $U(n)$ is given by the associated Lie algebra ($= \text{tangent space at } I$) $= \text{space of skew-Hermitian matrices.}$
Approach: local perturbations

Problem: skew-symmetric matrices themselves are singular (for odd n)!

Indeed, one one hand

$$\det(S) = \det(S^T) = \det(-S) = (-1)^n \det(S).$$

So $\det(S) = 0$.
Approach: complementing by global perturbations

Global perturbation: rotation in one coordinate (say, first) in \mathbb{C}^n. Multiply that coordinate by a random complex number r, $|r| = 1$.

Summary of the approach:
Use both local and global structures of $U(n)$.
Local: skew-symmetric matrices (Lie algebra).
Global: random uniform rotation in one coordinate.
Formalizing local and global perturbations

\[s_n(D + U) \gtrsim ? \]

Local:

\(S := \text{skew-symmetric real Gaussian random matrix, } \varepsilon > 0 \text{ small } (n^{-10}). \)

Then \(I + \varepsilon S \) is approximately unitary. \(\Rightarrow \) Replace \(U \) by \(I + \varepsilon S \).

Global:

\(R := \text{diag}(r, 1, \ldots, 1), \text{ where } r \text{ random uniform, } |r| = 1. \)

Replace further \(I + \varepsilon S \) by \(R^{-1}(I + \varepsilon S) \).

\[s_n(D + U) \cong s_n(D + R^{-1}(I + \varepsilon S)) \cong s_n(RD' + I + \varepsilon S). \]
Formalizing local and global perturbations

\[s_n(D + U) \cong s_n(RD' + I + \varepsilon S) \geq ? \]

Condition on \(V \).

Summary: two layers of randomness, local \(S \) (Gaussian skew-symmetric); global \(R \) (rotation in first coordinate).

Advantages: \(S \) has *independent entries* (modulo skew-symmetry); \(R \) is very simple (determined by one random variable \(r \)).

Challenges: skew-symmetry \(\Rightarrow \) dependences in half of the entries. Otherwise we would finish by the *distance argument* like before.
Distance argument revisited

Distance argument: estimating $s_n(A)$ reduces to estimating

$$d(A_1, H_1) = |h_1^T A_1| \geq \cdots \text{ w.h.p.}$$

where $A_1 =$ first column of A and $H_1 = \text{span}(A_j)_{i>1}$, and $h_1 = H_1^\perp$.

Challenge of skew-symmetry: In our matrix $A = RVD + I + \epsilon S$, the first column A_1 is correlated with H_1 through the first row.

How to express $h_1^T A_1$?
Distance argument revisited

\[A = RD' + I + \varepsilon S \]

\[= \begin{bmatrix} A_{11} & Y^T \\ X & B^T \end{bmatrix} \]

Lemma (distance via quadratic forms)

\[|h_1^TA_1| = \frac{|A_{11} - X^TMY|}{\sqrt{1 + \|MY\|^2_2}}, \quad \text{where } M = B^{-1}. \]

Our situation: \(Z \in \mathbb{R}^{n-1} \) random Gaussian vector,

\[S = \begin{bmatrix} 0 & -Z^T \\ Z & 0 \end{bmatrix}, \quad D' = \begin{bmatrix} p & v^T \\ u & Q \end{bmatrix} \quad \Rightarrow \quad A = \begin{bmatrix} rp + 1 & (rv - \varepsilon Z)^T \\ u + \varepsilon Z & I + Q \end{bmatrix} \]

Good: \(h_1^TA_1 \) is a self-normalized quadratic form in Gaussian random variables \(Z \). Essentially a linear form \(\varepsilon^2 = \text{second order term} \).

Bad: bound it below without knowing much about \(M = (I + Q)^{-1} \).

Idea (local/global): Use \(r \) or \(Z \) (or both) depending on \(\|M\| \).
Orthogonal perturbations

Same approach (local/global, via quadratic forms), with one difference:

Global perturbation: instead of random rotation in *one* coordinate, rotate in *two* coordinates.

Argument is more challenging.
Seems to differentiate odd and even n; reduces the problem to $n = 3$.
Entries of the inverse matrix

Question.

For A a random matrix, what is the magnitude of the entries of A^{-1}?

Is \(\max_{ij} |(A^{-1})_{ij}| \lesssim n^{-1/2} \) w.h.p. (up to log-factors)?

This would imply \(\|A^{-1}\| \leq \|A^{-1}\|_{HS} \lesssim n^{1/2} \), so

\[s_n(A) \gtrsim n^{-1/2} \] w.h.p., as before.

Work by [L. Erdös-Schlein-Yau+Yin ’12], [Tao-Vu ’12].
Entries of the inverse matrix and delocalization

Question.

Is $\max_{ij} |(A^{-1})_{ij}| \lesssim n^{-1/2}$ w.h.p. (up to log-factors)?

Related to **delocalization** of eigenvectors of A.

Heuristics. Say, A is symmetric, iid entries. Spectral decomposition:

$$A = \sum \lambda_i u_i u_i^T \quad \Rightarrow \quad A^{-1} = \sum \lambda_i^{-1} u_i u_i^T \approx \lambda_n^{-1} u_n u_n^T$$

where λ_n is the smallest eigenvalue in magnitude.

$$\max_{ij} |(A^{-1})_{ij}| \approx |\lambda_n^{-1} u_n(i) u_n(j)|.$$

Invertibility as before $\Rightarrow \lambda_n \gtrsim n^{-1/2}$. **Delocalization:** all $|u_n(i)| \lesssim n^{-1/2}$.

$$\Rightarrow \max_{ij} |(A^{-1})_{ij}| \lesssim n^{-1/2}.$$