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Hirsch Conjecture

The Hirsch conjecture has a long history in

linear programming. For a bounded (m ! n)
linear-programming problem, the conjecture concerns

how many simplex iterations (basis changes) are

necessary in going from one extreme point to
another. In a 1957 verbal communication with

George B. Dantzig, Warren M. Hirsch (a probabilist

from New York University who had worked earlier
with Dantzig in the Pentagon) asked: “Does there

exist a sequence of m or less pivot operations, each

generating a new basic feasible solution, which starts
with some given basic feasible solution and ends with

some other given basic feasible solution, where m is

the number of equations?” (Dantzig 1963, p. 160;
Dantzig and Thapa 2003, pp. 25, 31, 33, 34). Over

the years, there have been many attempts to prove or
disprove the Hirsch conjecture; all of them were

eventually shown to be false until Francisco Santos,

University of Cantabria, Spain, announced and
published his paper, “On a counterexample to the

Hirsch conjecture, ”(Santos 2010; also see De Loera

2011; Ziegler 2011).
In geometric terms, the Hirsch conjecture states that

if a polytope (bounded polyhedron) is defined by n
linear inequalities in d variables, then the length of
the longest shortest path among all possible pairs of

vertices (its diameter) should be at most (n – d). That is,
any two vertices of the polytope may be connected
to each other by a path of at most (n – d) edges

(Santos 2010). Santos showed that the conjecture was

false by constructing a 43-dimensional polytope with
86 facets and a diameter greater than 43.
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Introduction

Hit-and-run is a Markov chain Monte Carlo (MCMC)
sampling technique that iteratively generates

a sequence of points in a set by taking steps of

random length in randomly generated directions.
Hit-and-run can be applied to virtually any bounded
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region in <n, and has nice convergence properties.
Hit-and-run can generate a sequence of points that

asymptotically approach a uniform distribution on open
sets, and modifications of hit-and-run can approximate

arbitrary multivariate distributions, including the

Boltzmann distribution. The versatility of hit-and-run
to approximate an arbitrary distribution makes it useful

in a number of settings, including global optimization,

identification of redundant constraints, simulation,
volume estimation and integration estimation. In

addition to converging to a target distribution, a good

MCMC sampler will converge quickly from an arbitrary
starting point, also known as rapid mixing. The mixing

time of the original version of hit-and-run is

polynomially bounded for convex sets, as opposed to
an exponential mixing time for a ball walk.

Hit-and-run was introduced by Smith (1984) as

a way to approximate uniformly distributed points in
an open set, but many other uses emerged. Diverse

applications of hit-and-run include: identifying

non-redundant constraints in linear programs (Berbee
et al. 1987); evaluation of multidimensional integrals

(Chen and Schmeiser 1996); volume estimation of

convex sets (Kannan et al. 1997); statistical model
validation; construction of a confidence interval for

Bayesian inference; discrete-event simulation

(Rubinstein and Kroese 2008), and global
optimization (Bertsimas and Vempala 2004; Kalai

and Vempala 2006; Mete et al. 2011; Romeijn and

Smith 1994; Shen et al. 2007; Zabinsky 2003;
Zabinsky et al. 1992, 1993).

Hit-and-run in its simplest form is discussed next,

followed by its convergence to a uniform distribution
and its mixing time. Then a generalized form of hit-and-

run that converges to an arbitrary target distribution is

discussed, followed by specific variations and
implementation considerations. Next, forms of hit-and-

run that operate on discrete or mixed continuous/integer

sets are discussed, as the previous algorithms assume
that the set to be sampled from is continuous. The final

section describes simulated annealing-type algorithms

for global optimization that embed hit-and-run as a part
of their sampling method.

Definition of Hit-and-Run

Hit-and-run, in its simplest form for a bounded open
set S in <n, makes a one-step transition from a point

x 2 S " <n to another point y 2 S by generating
a direction vector uniformly distributed on the

surface of a unit hypersphere centered around x, and
then generating a point y uniformly distributed on the

union of the line segments created by the intersection

of a line along the direction vector and S. This line
sampling is typically accomplished by employing

a one-dimensional rejection method on the line

segment intersected by an enclosing box for S.
Hit-and-run generates a sequence of points

Xk; k ¼ 0; 1; . . .f g in a bounded open set S $ <n as

follows.

Algorithm 1(Hit-and-Run)
Step 0 Initialize X0 2 S and set k ¼ 0
Step 1 Generate a random direction Dk uniformly

distributed over the surface of a unit

hypersphere centered around Xk.
Step 2 Generate a random point Xkþ1 ¼ Xk þ lDk

uniformly distributed over the line set

Lk ¼ fx : x 2 S and x ¼ Xk þ lDk;

l a real-valued scalarg:
If Lk ¼ ;, go to Step 1.

Step 3 If a stopping criterion is met, stop. Otherwise
increment k and return to Step 1.

The hit-and-run chain has two distinguishing
characteristics: (i) it is globally reaching, i.e., it can

move from any point x 2 S " <n to a neighborhood of

any other point y 2 S in one step, and (ii) it can be
implemented easily even when the feasible set S is

defined by membership oracles. As Andersen and

Diaconis (2007) describe, the algorithm “hits a point
on the sphere and runs in that direction.”

Smith (1984) proved that hit-and-run converges

in total variation to a uniform distribution. Of
course, a direct way to sample a point uniformly

from S is to enclose it in a box and sample

uniformly from the box until a point lands in S.
Then this point is exactly uniformly distributed.

However, the expected number of points sampled

until one lands in S is exponential in dimension, so
this is an impractical method for a large-dimensional

set. Thus, Markov chain samplers become attractive

as a means to approximately sample from a uniform
distribution in much less time. Of the MCMC

samplers, hit-and-run converges in polynomial

time, and is considered to be the most efficient
algorithm known to date for generating an
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asymptotically uniform point in a convex set
(Lovász 1999; Lovász and Vempala 2006).

The analysis of the mixing time of hit-and-run on
a convex body in <n by Lovász (1999) assumed that

the initial distribution of the Markov chain was not far

from uniform, i.e., a ‘warm-start’. This assumption
was later relaxed, preserving hit-and-run’s

polynomial efficiency, making it the only known

random walk that converges efficiently to a uniform
distribution starting from any point inside a convex

body (Lovász and Vempala 2006). In contrast, the

ball walk takes an exponential time to get out of
a corner. Moreover, hit-and-run was also shown to be

polynomially efficient for sampling from log-concave

distributions over convex bodies.
Some insight into hit-and-run’s efficiency is

presented by Ghate and Smith (2009), who showed

that the network of points and arcs generated by
hit-and-run is a small world network in which most

nodes are not neighbors of one another, but most nodes

can be reached from every other in a small number of
steps. Thus another interpretation of hit-and-run is that

it generates a small world on the fly.

Given hit-and-run’s success at efficiently
approximating a uniform distribution, many

variations and generalizations have been developed.

Generalizations of Hit-and-Run

The most celebrated Markov chain sampler,

introduced by Metropolis et al. (1953), used the idea

of an acceptance-rejection step to act as a filter and bias
the chain towards a Boltzmann distribution. The

original hit-and-run algorithm was extended by

Romeijn and Smith (1994) to converge to a target
distribution p by adding an appropriate filter, and

later further extended using a conditionalization on p
to the one-dimensional line segment (Bélisle et al.
1993). Thus, hit-and-run converges to an arbitrary

target distribution p in total variation.

Andersen and Diaconis (2007) proposed
a generalization of hit-and-run algorithms for MCMC

samplers and related it to the Gibbs sampler,

Swendsen-Wang block spin dynamics, data
augmentation, auxiliary variables, slice sampling, and

the Burnside process under a unifying scheme. They

describe choosing the point Xkþ1 according to the
density p restricted to the line determined by the

direction vector, as in Bélisle et al. (1993). The
choice of the uniform distribution for direction is

replaced by a general choice, and even the concept of
a one-dimensional Euclidean line determined by the

direction vector is generalized to include subsets of S.
The following algorithm generalizes hit-and-run

with a general direction distribution and a Metropolis

filter that converges to an arbitrary target distribution p
on S, where v is an absolutely continuous probability
distribution defined on the surface of an n-dimensional

unit sphere, with density bounded away from zero.

Algorithm 2 (Hit-and-Run for Target
Distribution p)
Step 0 Initialize X0 2 S and set k ¼ 0.
Step 1 Generate a random direction Dk from the

direction distribution v on the surface of

a unit hypersphere centered around Xk.
Step 2 Generate a candidate point Z ¼ Xk þ lDk

uniformly distributed over the line set

Lk ¼ x : x 2f S and x ¼ Xk þ lDk;

l a real-valued scalarg
If Lk ¼ ;, go to Step 1.

Step 3 Accept or reject the candidate point Z with
a Metropolis filter for the target distribution p,

Xkþ1 ¼
Z w:p: min 1; pðZÞ=pðXkÞf g
Xk otherwise:

!

Step 4 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.

Note that if p is a uniform distribution, then all

candidate points are accepted and Algorithm 1 is
a special case of Algorithm 2.

Specific variations and implementations of

hit-and-run are discussed next.

Variations and Implementations of
Hit-and-Run

Several variations with specific direction distributions
and candidate point sampling methods have been

studied in the literature.

The most common direction distribution, and
one that is readily implemented, is the uniform

distribution on the surface of an n-dimensional

hypersphere, termed hyperspherical direction (HD) in
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Berbee et al. (1987); Zabinsky et al. (1992). It is easily
implemented by generating n independent values

di; i ¼ 1; 2; . . . ; n from a standard normal distribution,
Nð0; 1Þ and scaling them to determine the unit

direction vector D:

D ¼ ðd1; d2; . . . ; dnÞ
Xn

i¼1

di
2

 !(1=2

: (1)

Another natural choice for direction distribution,

termed coordinate direction (CD), is a uniform

distribution over the n coordinate vectors (spanning <n).
Both HD and CD versions of direction choice were

presented and applied to identifying nonredundant linear

constraints in Berbee et al. (1987).
While hit-and-run is guaranteed to converge for

a wide class of target distributions p when using the

HD choice, the same is not true when using the CD
choice. It is possible to construct situations where CD

will not converge to p. For example, CD will fail to

converge to a uniform distribution on disconnected
regions with the property that some points cannot be

reached from others along a sequence of coordinate

direction moves.
Another modification of the direction choice,

introduced by Romeijn et al. (1999), is called

a reflection generator. The reflection generator was
motivated by the problem of stalling, which may

occur if the line intersects a small portion of the
feasible set. For example, when the current point x is

near a corner of a hypercube, there is a high probability

that the next sample point is very close to x, and a very
low probability that the next point generated is

a substantial distance from x, especially when the

number of dimensions is large. This problem is
similar to jamming, a well-known problem in

nonlinear programming. The reflection generator

essentially lengthens the line associated with
a chosen direction by reflecting it off the boundaries

of the feasible region into the interior. This increases

the probability of sampling a point far away from the
current point. A general reflection generator is defined

in Romeijn et al. (1999), with a straightforward

component-by-component reflection implementation.
Convergence results are preserved, and positive

numerical experience was reported.

Kaufman and Smith (1998) exploited the robustness
in direction distribution to accelerate the rate of

convergence of hit-and-run. They derived a unique
non-uniform direction distribution that optimizes the

rate of convergence of hit-and-run to a uniform
distribution on a convex set. They used sampled

points to fit an ellipsoid to the convex set, and used

the parameters of the ellipsoid as bootstrap parameters
in the direction distribution to approximate the optimal

direction distribution; calling the Markov chain

artificial centering hit-and-run.
In addition to variations on choosing the direction

distribution in Step 1, there are variations on choosing

the random candidate point on the line in Step 2.
Theoretically, the point could be chosen according to

the target distribution p restricted to the line. However,

in practice, this may be computationally difficult to
implement. The line sampling is often referred to as

step-size distribution. In hit-and-run as stated in

Algorithm 1 and Algorithm 2, the step size l is
uniformly distributed on the intersection of the

random bidirection with the feasible region. Other

variations include a fixed step-size or a variable
length interval that can shrink or expand.

A parametrized step-size distribution is used in

Ghate and Smith (2009) for solving the Small World
problem. The probability density function for the

step-size l is parametrized by a, and is roughly

proportional to ð1=jljaÞ. When a ¼ 0, the distribution
is the familiar uniform sampling distribution. Ghate and

Smith (2009) showed that the expected hitting time

for the Small World problem is minimized when the
parameter a ¼ 1 for the step-size distribution, and that

a ¼ 1 is the unique choice of a that is scale invariant

among all nonnegative values. This parameterized
step-size distribution was further explored with

hit-and-run in the context of global optimization.

Another consideration in implementing Step 2 is
the difficulty in identifying the intersection of the line

determined by the random direction, and the feasible

set S, even when S is convex. Step 2 can be
straightforward to implement if it is possible to

determine the points of intersection on the line, i.e.,

find lmin and lmax such that Xk þ lDk 2 S for
lmin ) l ) lmax. When S is defined by linear

inequalities, or analytically invertible functions, the

intersection points can be easily expressed (Zabinsky
2003). Then l can be chosen uniformly over that

interval, or according to the conditionalization of p,
thus producing the random candidate point.
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However, if the feasible region S is nonconvex,
and/or the intersection points are not easily

determined, then a common implementation is to
enclose the feasible set S in a box B, or any regular

shape that is easy to determine intersection points, and

use a one-dimensional acceptance-rejection scheme to
produce the random candidate point.

The following algorithm on an enclosing box B is

a modification of hit-and-run with a general direction
distribution, as in Bélisle et al. (1993), with details of

the one-dimensional acceptance-rejection sampling, as

provided in Kiatsupaibul et al. (2011).

Algorithm 3. (Hit-and-Run on a Box)
Step 1 Generate a random direction Dk with direction

distribution n and set i ¼ 1.

Step 2 Generate lk;i from the step-size (typically

uniform) distribution on

Rk ¼ fr 2 < : Xk þ rDk 2 Bg:

Step 3 If Xk þ lk;iDk is not in S, set i ¼ iþ 1 and

return to Step 2. Otherwise, set

Z ¼ Xk þ lk;iDk.

Step 4 Accept or reject the candidate point Z with
a Metropolis filter for the target distribution p,

Xkþ1

Z w:pmin f1,pðZÞ=pðXkÞg
Xk otherwise

(

Step 5 If a stopping criterion is met, stop. Otherwise
increment k and return to Step 1.

The additional computation due to the

one-dimensional acceptance-rejection has been

analyzed by Kiatsupaibul et al. (2011) for the case
when p is a uniform distribution. They show that the

size of the box is not a critical factor to the overall

computational effort. More precisely, bounds on the
expected mixing time of hit-and-run on a box

including all sample points increases only by

a linear function of the box diameter (i.e., longest
chord in the box).

Another variation to speed up the convergence rate

and reduce the number of rejected sample points is to
incorporate the shrinking algorithm, also known as

a slice sampler, into hit-and-run. The idea is to shrink

the interval for selecting l, as follows.

Algorithm 4. (Hit-and-Run on a Box with Shrinking
Step-Size)
Step 0 Initialize X0 2 S and set k ¼ 0.

Step 1 Generate a random direction Dk with direction

distribution v, defining the step-size set as

Rk ¼ fr 2 < : Xk þ rDk 2 Bg:

Set lþ1 ¼ maxrRk and l(1 ¼ minrRk, and set

i ¼ 1.
Step 2 Generate lk;i from the uniform distribution on

the open interval ðl(i ; lþi Þ.
Step 3 If Xk þ lk;iDk is not in S, set lþiþ1 and l(iþ1 as

follows:

if lk;i > 0, set lþiþ1 ¼ lk;i and keep l(iþ1 ¼ l(i ;
if lk;i < 0, set l(iþ1 ¼ lk;i and keep lþiþ1 ¼ lþi .
Then, set i ¼ iþ 1 and return to Step 2.

Otherwise, if Xk þ lk;iDk is in S, set

Z ¼ Xk þ lk;iDk.

Step 4 Accept or reject the candidate point Z
with a Metropolis filter for the target
distribution p,

Xkþ1 ¼
Z w:p: min 1; pðZÞ=pðXkÞf g
Xk otherwise:

!

Step 5 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.

Algorithm 4 differs from Algorithm 3 in that the

step-size interval is shrinking. This shrinkage increases
the probability of acceptance in Steps 2 and 3. Because

every open subset S can still be reached in one step, the
convergence property of the new Markov chain
remains the same.

When S is convex, the iteration point process

generated by Algorithm 4 is the same as that
generated by Algorithm 3, so the mixing rate of the

two processes is the same. However, when S is not

convex, the iteration point processes from the two
algorithms distribute differently, and, hence, the

mixing rates may be different. Computational results

in Kiatsupaibul et al. (2011) suggest that Algorithm 4
is faster than Algorithm 3 when S is not convex.

Other computational results are given in Chen and

Schmeiser (1996), where empirical comparisons are
made between variations of hit-and-run and other

sampling methods including the Gibbs sampler.
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Hit-and-run for Discrete and Mixed
Continuous/Integer Sets

Given the exceptional performance of hit-and-run on
continuous sets in<n, it is natural to wonder if it can be

extended to discrete sets, or mixed sets in <n ! Zm.

The generalized line set in Andersen and Diaconis
(2007) with conditions for convergence allows a wide

variety of versions that converge to a target

distribution. Baumert et al. (2009) provide a detailed
definition of discrete hit-and-run (DHR) with mixing

times for some specific classes of problems. Mete et al.

(2011) introduces a variation on DHR, called pattern
hit-and-run (PHR) that is efficiently implemented on

both discrete and mixed continuous/integer sets. Both

DHR and PHR, summarized next, maintain many of
the nice convergence properties of hit-and-run,

including polynomial mixing time for some classes

of sets.
DHR defines its line set using a bidirectional

random walk, called a biwalk. Whereas classical

Markov chains such as the nearest neighbor
random walk or the coordinate direction random

walk fail to converge to a target distribution p on

general discrete sets, because they can get trapped
in isolated regions of the support set, DHR

converges because it retains the global reaching

property of hit-and-run.
Consider a finite set Swith amembership oracle that

is a subset of B given by a a bounded hyper-rectangle

intersected with the n dimensional integer lattice n.
The third step applies aMetropolis filter with respect to

the target distribution to accept or p reject the

candidate point and complete the transition of DHR.
The DHR algorithm follows.

Discrete Hit-and-Run (DHR)

Step 0 Initialize X0 2 S and set k ¼ 0.
Step 1 Generate a biwalk by generating two

independent, nearest neighbor random walks
inB that start at Xk and end before they step out

of B. The biwalk may have loops but has finite

length with probability one. The sequence of
points visited by the biwalk is stored in an

ordered list.

Step 2 Generate a candidate point Z by choosing
a point uniformly distributed from the

intersection of the list and S. Note the
intersection always contains at least one

point, the current point Xk.
Step 3 Accept or reject the candidate point Z with

a Metropolis filter for the target distribution p,

Xkþ1 ¼
Z w:p: min 1; pðZÞ=pðXkÞf g
Xk otherwise:

!

Step 4 If a stopping criterion is met, stop. Otherwise

increment k and return to Step 1.
The reason for employing two independent nearest

neighbor walks to define the line set in Step 1 instead of

one walk, and for working with the ordered sequence
of points in Step 2 as opposed to the set of distinct

points visited, is to ensure symmetry of the candidate

generator Markov chain. It is easy to construct
examples where symmetry fails by employing

a single nearest neighbor random walk and/or use the

set of distinct points visited (Baumert et al. 2009). The
Markov chain of DHR is globally reaching. The global

reaching property together with symmetry and other

characteristics imply that DHR converges to the target
distribution p as desired.

An upper bound on the mixing time of DHR to

a uniform distribution is given in Baumert et al.
(2009), and polynomial upper bounds for four

examples are given. The four examples include:

a box within a box, a wedge inside a cube, multiple
cubes inside a cube, and isolated yet aligned points

within a cube. Note that conventional random walks

such as the nearest neighbor random walk and the
coordinate direction random walk also mix in

polynomial time on the first two examples; however,
both of these walks get stuck in isolated regions of S in
the third and fourth examples and fail to converge to

a uniform distribution. A fifth example given in
Baumert et al. (2009) of diagonal points inside a cube

only yields exponential bounds for the mixing time,

although convergence is still maintained.
The success of discrete hit-and-run with random

biwalks inspired the development of pattern

hit-and-run for mixed continuous/integer domains.
The biwalk in DHR is computationally expensive to

implement because each move in the biwalk requires

a randomization, and the list associated with the biwalk
must be stored to perform the acceptance-rejection

step. A more efficient implementation was introduced

in Mete et al. (2011), where the biwalk is defined
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with the use of patterns, visualized as a repetition
of n step-sizes. An advantage to the use of

a pattern-generated biwalk is that the pattern is easily
generated with only n random number generations, and

the acceptance-rejection on the biwalk can be

performed by generating a single random number and
analytically mapping it to a point on the biwalk. In

Mete et al. (2011), two methods for generating patterns

are defined; a sphere biwalk and a box biwalk. PHR
with either sphere or box biwalk preserves the

convergence properties of hit-and-run to a target

distribution, and PHR with sphere biwalk converges
to continuous hit-and-run as the mesh of the discretized

points becomes finer, approaching a continuum. PHR

with box biwalk converges to a variation of hit-and-run
where the direction distribution is uniform on the

surface of a box, instead of the common surface of

a hypersphere.
When the feasible set S is ill-structured, the

acceptance-rejection on the intersection of the biwalk

and S is inevitable. However, a well-structured set of
interest is an integer or mixed continuous/integer

polytope, as often arises in integer programming or

mixed integer linear programming feasible sets.
Mete and Zabinsky (2012) remove the inefficiency

that arises from rejecting infeasible points, and utilize

the linearity of the constraints defining the polytope
to directly sample from the intersection of the biwalk

and the polytope. This provides an efficient variation

of pattern hit-and-run that converges to a target
distribution on a discrete or mixed continuous/discrete

polytope.

Convergence to p on a general discrete polytope is
not simple to attain. For example, a nearest neighbor

random walk will not converge to a uniform

distribution on a thin polytope that has isolated points
without feasible adjacent neighbors. PHR is able to

maintain the global reaching property on any

polytope by determining all the feasible points on the
biwalk, even though they may not be adjacent. Mete

and Zabinsky (2012) derive a method to analytically

generate a uniform point on the intersection of a biwalk
and a discrete polytope by determining the number of

feasible points on the biwalk and mapping a uniform

point on ½0; 1+ to a uniform feasible point on the biwalk.
They extend the idea to a mixed continuous/discrete

lattice of a polytope.

Moreover, PHR converges to a uniform distribution
in polynomial time on a class of discrete polytopes;

specifically, discrete polytopes that are defined by
a finite number of knapsack constraints i.e.,Pn

j¼1 aijxj ) bi where aij are nonnegative and bi are

positive for i ¼ 1; . . . ;m and the number of constraints
m is independent of the number of dimensions n. This
polynomial time performance and the convergence of

PHR to hit-and-run on continuous sets suggests the
potential efficiency for hit-and-run samplers on

a broad class of sets.

Hit-and-Run for Global Optimization

Hit-and-run has been successfully applied to

optimization, initially continuous problems, and
expanded to mixed continuous/integer problems

(Bertsimas and Vempala 2004; Kalai and Vempala

2006; Mete et al. 2011; Romeijn and Smith 1994;
Shen et al. 2007; Zabinsky 2003; Zabinsky et al. 1993).

Consider the following global optimization

problem:

minimize f ðxÞ
subject to x 2 S " B:

An initial application of hit-and-run to optimization

was called Improving Hit-and-Run (IHR) by Zabinsky

et al. (1993), which modifies Step 3 in Algorithm 2 by
simply accepting a candidate point only if it has an

improving objective function value, as follows:

Step 3 Complete the transition to Xkþ1 where,

Xkþ1 ¼
Z if fðZÞ < fðXkÞ
Xk otherwise:

!

IHR has been successfully applied to realistic
problems (Zabinsky et al. 1992, 2006). The

complexity of IHR is, on average, of Oðn5=2Þ for

a certain class of convex programs (Zabinsky et al.
1993). The direction distribution of IHR on elliptical

programs, as defined in Zabinsky et al. (1993), is

a multivariate normal distribution with mean zero
and covariance matrix equal to the Hessian inverse of

the objective function, H(1. If the covariance matrix is

the identity matrix, then the direction distribution is
simply HD. Although the Hessian is not typically

known, the results indicate the ability to guide the

direction distribution for better performance.
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Romeijn and Smith (1994) embedded hit-and-run
into a simulated annealing algorithm and called it

Hide-and-Seek. They added acceptance probabilities
according to the Metropolis criterion with

a temperature parameter Tk so that Step 3 becomes

Step 3. Accept or reject the candidate point Z
according to a Metropolis filter with temperature Tk,

Xkþ1 ¼ Z w:p: min 1; e(ðfðZÞ(fðXkÞÞ=Tk
" #

Xk otherwise:

!

A property of Hide-and-Seek is that it converges to

a Boltzmann T distribution, for a fixed temperature
(Bélisle et al. 1993). For a general cooling schedule,

Romeijn and Smith (1994) showed that if

Hide-and-Seek ran long enough at each temperature
value to converge to its stationary Boltzmann

distribution, then the number of these temperature
values would be linear in dimension. This led to an

analytically derived adaptive cooling schedule, which

was later extended to apply to both continuous and
discrete global optimization problems (Shen et al.

2007). The analysis was motivated by the result that

a sequence of such Boltzmann distributions achieves
a linear complexity on the average number of function

evaluations. Hit-and-run embedded as a candidate

generator in simulated annealing has both analytical
and numerical success.

Even though the acceptance probability for

simulated annealing is interpreted as aiding the
algorithm to escape local optima, simulated annealing

has also been successfully applied to convex programs.

Bertsimas and Vempala (2004) and Kalai and Vempala
(2006) used hit-and-run as a candidate generator in

a simulated annealing-type algorithm for solving

convex programs with a membership oracle. In Kalai
and Vempala (2006), simulated annealing is shown to

converge quickly, and under certain conditions, the

Boltzmann distribution is proven to be optimal for
annealing on convex problems.

Simulated annealing on finite combinatorial

problems has been successful; however, the candidate
point generator is specifically chosen for each

problem. Pattern hit-and-run, for integer or mixed

continuous/integer sets, has been embedded into
simulated annealing in Mete et al. (2011) and

numerically shown to be very effective on many test

problems.

See

▶Global Optimization

▶Markov Chain Monte Carlo
▶Monte Carlo Simulation

▶ Simulation of Stochastic Discrete-Event Systems
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Homogeneous Lanchester Equations

Simple Lanchester equations with one equation for
each side. These equations are used when the

weapons for each side are homogeneous in nature (all

small-arms) or as a simplified approximation of
a heterogeneous situation.

See

▶Lanchester’s Equations

Homogeneous Linear Equations

A set of linear equations of the form Ax ¼ 0.

Homogeneous Solution

A solution to the set of equations Ax ¼ 0. The solution
x ¼ 0 is called a trivial solution, while a solution

x 6¼ 0 is called a nontrivial solution.

Horn Clause

A logical expression of the formA ! C, where A (the

antecedent) is a simple conjunction of basic (atomic)

propositions and C (the consequent) is either null or is
a single atomic proposition.

See

▶Artificial Intelligence

Hospitals
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Introduction

Hospitals represented a growing $760 billion industry

in the U.S. in 2009 and were responsible at that time for
about 32.6% of the nation’s health care expenditures.

There are 5,815 registered hospitals in U.S., and they

have treated 127 million people in emergency
departments, admitted 35.1 million for in patient

care, and provided 642 million outpatient visits.

These hospitals employ 5.4 million professionals or
34.6% of the all health care jobs in U.S. The effect of

hospital expenditures on total output in U.S. economy

reaches $2.5 trillion (AHA 2011).

Hospitals 729 H

H


	H
	Half Space
	Hamiltonian Tour
	See

	Hamilton-Jacobi-Bellman Equation
	See

	Hazard Rate
	Health Care Management
	Introduction
	Simulation and Stochastic Models
	Mathematical Programming
	Decision Analysis in Medical Decision Making
	Concluding Remarks
	See
	References

	Health Care Strategic Decision Making
	Introduction
	Clusters: An Emerging Concept in Health Care
	Patterns of System Formation in the US
	The Clusters
	Analytical Challenges in Studying Clusters
	See
	References

	Heavy-Tailed Distribution
	See

	Heavy-Traffic Approximation
	See

	Hedging
	See

	Hessenberg Matrix
	See

	Hessian Matrix
	See

	Heterogeneous Lanchester Equations
	See

	Heuristic Procedure
	See

	Heuristics
	Introduction
	Illustrative Examples
	The Role of Heuristics
	Classification of Heuristics
	Construction Search Heuristics
	Local Search Heuristics
	See
	References

	Hidden Markov Models
	Introduction
	Hidden Markov Models
	HMM Parameter Estimation
	The Baum Algorithm
	The Re-Estimation Formulas
	The Forward-Backward Formulas

	See
	References

	Hierarchical Production Planning
	Introduction
	Hierarchical Production Planning
	Aggregate Production Planning for Product Types
	The Family Disaggregation Model
	The Item Disaggregation Model
	See
	References

	Higher Education
	Introduction
	Historical Background
	The Literature
	The Complexity of OR/MS in Higher Education
	See
	References

	Hirsch Conjecture
	References

	Hit-and-Run Methods
	Introduction
	Definition of Hit-and-Run
	Generalizations of Hit-and-Run
	Variations and Implementations of Hit-and-Run
	Hit-and-run for Discrete and Mixed Continuous/Integer Sets
	Discrete Hit-and-Run (DHR)
	Hit-and-Run for Global Optimization
	See
	References

	Homogeneous Lanchester Equations
	See

	Homogeneous Linear Equations
	Homogeneous Solution
	Horn Clause
	See

	Hospitals
	Introduction
	Major Trends and Issues in Hospital Industry
	Role of OR/MS
	Concluding Remarks
	See
	References

	Hundred Percent Rule
	See
	References

	Hungarian Method
	See
	References

	Hybrid System
	See
	References

	Hypercube Queueing Model
	Introduction
	Early Work
	Central Ideas on State, Transition, and Probabilities
	The Physical Assumptions of the Original Model
	Approximations
	Additional Hypercube Model Applications

	Implementations
	See
	References

	Hyperexponential Distribution
	See

	Hypergame Analysis
	See

	Hyperplane


