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Abstract

We examine numerical precision effects for the Sine-Gordon equation. We implement high or-

der implicit Runge Kutta solvers using fixed-point iteration and compare diagonally and fully

implicit schemes. We find that in quadruple precision, fourteenth order time stepping schemes

are very efficient.

Introduction

The sine-Gordon Equation is given by utt − uxx + sin u = 0 and factorizes into:

ut + ux = v vt − vx = − sin u

Spectral Methods

Spectral methods use Discrete Fourier Transforms (DFTs) to approximate derivatives. The DFT

is given by:

v̂k = h
N

∑
j=1

e−ikxjvj, k = −N
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Given a function u with Fourier coefficients ûk, the derivative ∂u
∂x has Fourier coefficients ikûk.

For smooth functions, Fourier coefficients converge faster than any polynomial, so approximat-

ing derivatives is very accurate with a relatively small number of grid points. The DFT can be

computed efficiently in O(n log n) operations with the Fast Fourier Transform (FFT).

Runge-Kutta Methods

Given an evolution equation of the form ut = f (u), a Runge-Kutta method for u is

Ui = un + h
s

∑
j=1

aij f (Uj) un+1 = un + h
s

∑
i=1

bi f (Ui)

where h is the timestep, A = (aij) and b = (bi) are the Runge-Kutta coefficients, and Ui are

the s intermediate stage variables. Implicit Runge-Kutta methods based on Gauss-Legendre

quadrature have convergence 2s and exist for all s. If f (u) is nonlinear, as is the case for the

sine-Gordon equation, we must iteratively solve a nonlinear system of equations. We use two

approaches: a fully implicit method and a diagonally implicit method.

Fully Implicit
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U and V are vectors of the s intermediate variables, Û′ and V̂′ are the next iterations. This

method must solve a 2s × 2s system at each wavenumber for every iteration.

Diagonally Implicit
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′
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−ikãijÛj + aijV̂j i = 1, . . . , s
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where ãij = aij if i 6= j, 0 otherwise. The off-diagonal linear terms and nonlinear term are both

solved iteratively.

Implementation Details

The solver was written in FORTRAN using Intel and GNU compilers. We used Netlib lapack

and Ooura’s FFT Library, which were both modified to also use quad precision. We also used

a python script to generate the IRK coefficients.

Measured Results

Figure 1: Diagonally implicit methods have some problems converging. Fully implicit 8th

order appears to be the best method.

Figure 2: Again, diagonally implicit methods have some problems converging. Fully implicit

14th order appears to be the best method.

The test solution is u = −4 tan−1
(

m√
m2−1

sinh(t
√

m2−1)
cosh(mx)

)
plotted for m = 4 on x ∈ [−4π, 4π]. The fixed point iteration

tolerance is 100 times the machine precision of the timestep, and the errors were computed at t = 1.

Homoclinic Orbit

u(x, t) = π + 4 tan−1
(

tan ν cos[(cos ν)x]

cosh[(sin ν)t]

)
.

This solution tends to an unstable equilibrium of the equation at u(x, t → ∞) = π, which is an

interesting benchmark for accuracy of numerical schemes.

Figure 3: Both single and double precision solvers track the exact solution for some time,

before the single precision loses it around t = 9.3. Some time later, the double precision solver

also looses the exact solution. By t = 14.2, neither solver resembles the exact solution.

Conclusion

• Penalty of 100× moving a method from double to quad precision (hardware+compiler de-

pendent)

• 8th order method best for double precision

• 14th order method best so far for quad precision

• Fully implicit methods more stable than diagonally implicit, also faster

• Using higher numerical precision allows unstable solutions to be followed longer

Further Work

Examine convergence of iterative methods. Parallel computations for nonlinear Schrödinger

equation using Runge-Kutta methods. Look at even higher order methods for quad precision
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