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Motivation

Scaling and Numerical Precision

Problem of interest: Nonlinear Schrödinger Equation

iut = −∆u + u|u|2
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Want to use more cores to get an accurate result to large problem
sizes faster. However, roundoff error can accumulate for large
problem sizes over long times, leading to inaccurate results.
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Numerical Methods

Sine-Gordon Equation

utt − uxx + sin u = 0 (1)

Factorizes into:

ut + ux = v (2)

vt − vx = − sin u (3)

Conserved Hamiltonian:

1

2

(
u2
t + u2

x

)
+ 1− cos u (4)
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Numerical Methods

Numerical Method Overview

Spectral method

spacial derivatives computed with FFTs

Implicit Runge Kutta for temporal derivatives

For every s there exists a IRK method order 2s

Fixed point iteration to solve nonlinear part (ŝin u 6= sin û)

Each iteration requires 1 FFT/IFFT pair to recompute nonlinear
term

Each iteration requires solving a 2s × 2s system for s-stage IRK
method

Can simplify this by using a diagonally implicit method, then
only system of 2s independent equations
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Numerical Methods

Spectral Methods

Spectral methods use Discrete Fourier Transforms (DFTs) to
approximate derivatives. The DFT and inverse DFT are given by

v̂k = h
N∑
j=1

e−ikxjvj , k = −N

2
+ 1, . . . ,

N

2
(5)

vj =
1

2π

N/2∑
k=−N/2+1

e ikxj v̂k , j = 1, . . . ,N (6)

For smooth functions, fourier coefficients converge faster than
any polynomial.
Can be computed in O(n log n) operations with Fast Fourier
Transform (FFT)
Given a function u with Fourier coefficients ûk , the derivative ∂u

∂x

has Fourier coefficients ikûk .
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Numerical Methods

Runge-Kutta Methods

Given an evolution equation of the form ut = f (u), a Runge-Kutta
method for u is

Ui = un + h
s∑

j=1

aij f (Uj) (7)

un+1 = un + h
s∑

i=1

bi f (Ui) (8)

where h is the timestep, A = (aij) and b = (bi) are the Runge-Kutta
coefficients, and Ui are the s intermediate stage variables.

If aij = 0 for j ≥ i , the method is explicit, implicit otherwise.

Important fact: Runge-Kutta methods based on Gauss-Legendre
quadrature have convergence 2s, exist for all s (implicit)
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Numerical Methods

IRK Methods for sine-Gordon

An s-stage IRK scheme for sine-Gordon is

Ûi = ûn + ∆t
s∑

j=1

aij
(
−ikÛj + V̂j

)
, i = 1, . . . , s (9)

V̂i = v̂n + ∆t
s∑

j=1

aij
(
ikV̂j − ŝin(Uj)

)
, i = 1, . . . , s (10)

ûn+1 = ûn + ∆t
s∑

i=1

bi
(
−ikÛi + V̂j

)
(11)

v̂n+1 = v̂n + ∆t
s∑

i=1

bi
(
ikV̂i − ŝin(Ui)

)
(12)
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Numerical Methods

Fully Implicit

(
I + ∆tki

A
−A + ∆t

A
)(

Û ′

V̂ ′

)
=

(
ûne

v̂ne− dtA ̂sin(U ′−1)

)
(13)

Û ′ is the next iteration, Û ′−1 is the previous iteration

Must solve 2s × 2s system at each wavenumber, every iteration

Our FORTRAN implementation prefactorizes LHS matrix-
O(Nxs

2) space
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Numerical Methods

Diagonally Implicit

(1 + kiaii)Û
′
i = ûn + ∆t

s∑
j=1

−ikãij Û ′−1
j + aij V̂

′−1
j , i = 1, . . . , s

(14)

(1 + kiaii)V̂
′
i = v̂n + ∆t

s∑
j=1

ikãij V̂
′−1
j − aij

̂sin(U ′−1
j ), i = 1, . . . , s

(15)

ãij = aij if i 6= j , 0 otherwise

Off-diagonal linear terms and nonlinear term solved iteratively
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Implementation

Some Implementation Details

Compilers: ifort, gfortran

Netlib lapack (modified for quad precision operations)

Ooura’s FFT Library (not particularly tuned, also modified for
quad precision)

Python script to generate arbitrary precision IRK coefficients for
any number of stages
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Implementation

IRK Coefficients

Algorithm:
1 Find approximate values (double precision) for the roots of the

s-degree Legendre polynomial
2 Find higher-precision values for each root with arbitrary precision

iterative solver
3 ci = 1

2
(ri + 1) for every root ri

4 For each i = 1, . . . , s, ai ,j is the solution to
∑s

j=1 aijc
k−1
j = 1

k
cki

for k = 1, . . . , s
5 For each j = 1, . . . , s find bj as the solution to

∑s
j=1 bjc

k−1
j = 1

k

for k = 1, . . . , s

Compute in higher precision than the final precision of the
coefficients. If it is computed with the same precision, accumulated
roundoff will lead to some error and codes using these coeffecients
will not converge to machine precision.
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Implementation

Test Solution

u = −4 tan−1

(
m√

m2 − 1

sinh(t
√
m2 − 1)

cosh(mx)

)
(16)

Plotted for m = 4 on
x ∈ [−4π, 4π].

Fixed point iteration tolerance =
100ε(h)

Hamiltonian, L2 error computed
at end time (t = 1)

(Loading Video...)
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Measured Results
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Measured Results
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Measured Results
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Measured Results
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Measured Results
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Measured Results
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Measured Results

Homoclinic Orbit

Exact solution

u(x , t) = π + 4 tan−1

(
tan ν cos[(cos ν)x ]

cosh[(sin ν)t]

)
.

Unstable equilibrium, interesting benchmark for accuracy of
numerical scheme
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Measured Results

(Loading Video...)
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Conclusion

Summary

Single precision did not offer a significant speedup versus double
precision (may be untrue for SIMD architectures)

Penalty of 100× moving a method from double to quad
precision (hardware+compiler dependent)

8th order method best for double precision

14th order method best so far for quad precision

Fully implicit methods more stable than diagonally implicit, also
faster

Using higher numerical precision allows unstable solutions to be
followed longer
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Conclusion

Further Work

Examine convergence of iterative methods.

Parallel computations for nonlinear Schrödinger equation using
Runge-Kutta methods.

Look at even higher order methods for quad precision
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Conclusion
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Conclusion
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