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Abstract

We report on high resolution numerical studies of infinite Prandtl number convection using

a simplified model with relevance to the motion of the Earth’s mantle. The simulations are

done using pseudospectral Fourier (x-direction) and Chebyshev methods (z-direction).The

model uses the incompressible Navier-Stokes equations with the Boussinesq approxima-

tion and free-slip velocity boundary conditions that is driven solely by internal heating.

We examine the transition from conduction to steady convection, to unsteady laminar con-

vection, and lastly to chaotic convection.

Introduction

Convection is driven primarily by temperature changes that are introduced either through

the boundaries or internally generated. The temperature variations give rise to variations

in density, which can cause fluid motion. The Navier-Stokes equations with the Boussinesq

approximation are:

∇ · u = 0 (1)

ut + u · ∇u = −
1

ρ
∇p + ν∇2u + gαTk̂ (2)

Tt + u · ∇T = κ∇2T + H (3)

We consider a two dimensional idealized fluid layer with height h that has free-slip bound-

ary conditions at the vertical boundaries. The velocity vector is u = (u, 0, w), p is the

pressure field, ν is the kinematic viscosity, g is the acceleration of gravity that points in the

k direction, α is the thermal expansion coefficient, T is temperature, and κ is the thermal

diffusivity . T = 0 at the top and bottom boundaries and all variables are periodic in the x

direction.

We choose a time-scale of h2/κ, length scale of h (height of the box), and a temperature

scale of Hh2/κ. After scaling, Equation 2 becomes

1

Pr
(ut + u · ∇ u) = −∇p +∇2u + RTk̂ (4)

and Equation 3 becomes

Tt + u · ∇T = ∇2T + 1 (5)

where R =
gαHh5

νκ2 is called the Rayleigh number and Pr = ν
κ is the Prandtl number (both

dimensionless).

The Pr number for the Earth’s mantle is ≈ 1025, thus an infinite Pr number is a good ap-

proximation for our simulations. Looking at the Equation 4 we can see that setting Pr to

infinity drops the term on the left side:

∇p = ∇2u + RTk̂ (6)

The final simplification that we use is to introduce the stream function in order to elim-

inate the continuity equation. This is done by writing the three vector equations in two

dimensional component form, where x-direction is horizontal and z-direction is vertical.

The velocity vector is u = (u, 0, w) and our stream function is defined as ψ = (0, ψ, 0).
Writing u and w in terms of ψ yields,

u = ψz w = −ψx (7)

We substitute into our three dimensionless equations of motion and simplify, elimination

p by taking the curl:

ψxxxx + 2ψxxzz + ψzzzz = RTx (8)

Tt + ψzTx − ψxTz = Txx + Tzz + 1 (9)

Scaling Results on Trestles
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Simulation Results

Figure 1: Aspect ratio 4. Left shows Ra=104 steady state conduction. Right shows Ra=105

steady convection. In all figures, top shows temperature, bottom shows stream function.

Figure 2: Aspect ratio 8 with Ra=104.

Figure 3: Aspect ratio 8 with Ra=105.

Figure 4: Aspect ratio 2 with Ra=106.

Figure 5: Aspect ratio 4 with Ra=106.

Conclusion

We conclude that our Fortran code is working and have been able to compute high resolu-

tion images that are qualitatively correct. We found that for small aspect ratios, Rayleigh

numbers with values of 104, 105, and 106 reached a steady state in two dimensions as the

average scaled temperature decreased. For larger aspect ratios, we found Rayleigh numbers

of 106 leading to unsteady convection.

Further Work

Recent work shows that the average temperature has a lower bound of the form 〈T〉 ≈
c ∗ (R−5/17), where c is an unknown constant[2]. Further work will determine if the data

supports this scaling. Our current data is for moderate Rayleigh numbers. By the end of

the summer, we hope to simulate Rayleigh numbers on the order of 1011.
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