
April 2012

EPL, 98 (2012) 24002 www.epljournal.org

doi: 10.1209/0295-5075/98/24002

Localized structures in vibrated emulsions
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Abstract – We report our observations of localized structures in a thin layer of an emulsion
subjected to vertical oscillations. We observe persistent holes, which are voids that span the layer
depth, and kinks, which are fronts between regions with and without fluid. These structures
form in response to a finite amplitude perturbation. Combining experimental and rheological
measurements, we argue that the ability of these structures to withstand the hydrostatic pressure
of the surrounding fluid is due to convection within their rim. For persistent holes the oscillatory
component of the convection generates a normal stress which opposes contraction, while for kinks
the steady component of the convection generates a shear stress which opposes the hydrostatic
stress of the surrounding fluid.

Copyright c© EPLA, 2012

Introduction. – Out-of-equilibrium systems often
develop structures that form from the balance of two
or more driving mechanisms [1]. A typical example is
the Faraday system in which a shallow layer of fluid
is vertically vibrated [2]. Above a certain excitation
threshold this system displays a wealth of surface wave
patterns from highly regular to spatially and temporally
chaotic. These patterns emerge from the balance of energy
injected by parametric amplification of surface waves with
internal dissipation. The robustness of this mechanism
accounts for the widespread occurrence of Faraday waves
in simple [1,3] and complex [4–6] fluids, and granular
materials [7].
As the study and understanding of spatially extended

patterns in out-of-equilibrium systems has matured, atten-
tion has turned to localized patterns. Unlike in spatially
extended patterns in which the domain is the system size
and hence known a priori, the central question for local-
ized patterns is: what sets their domain size? There are
now many examples of such localized structures in the
Faraday system: defects in standing wave patterns [1,2],
solitons [8], localized jets [9], oscillons in viscous fluids [10],
granular materials [11] and colloidal suspensions [12], to

(a)E-mail: rddeegan@umich.edu

name a few. Recently, a new class of localized structures
—kinks and persistent holes [13–15]— were discovered
in the Faraday system with a particulate suspension as
the working fluid. These structures are markedly different
from the other localized structures: they oscillate about an
unstable state and are inaccessible via infinitesimal pertur-
bation from the weakly nonlinear states.
Persistent holes are cylindrical voids which extend

through almost the entire layer, they can persist indefi-
nitely, and form only in response to a finite perturbation.
Their existence is puzzling because the surrounding fluid
ought to flow into to the void due to the hydrostatic
pressure difference. Kinks are boundaries that form when
the fluid gathers in a subset of the domain; on one side
the fluid has a finite depth, and on the other side there
is no fluid whatsoever. To date persistent holes and kinks
have not been observed in the same system.
The stabilizing mechanism of kinks and persistent holes

is currently unknown. Merkt [13] and Ebata et al. [15]
argued for shear-thickening, i.e., the increase in viscosity
with the increase of the applied shearing stress, as the
key factor. However, kinks were also observed in a shear-
thinning fluid [16], though the presence of a strong
yield stress in that system complicates its interpretation.
Deegan [17] suggested a different mechanism, independent
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of whether the fluid is shear-thinning or -thickening, based
on stress hysteresis. He argued that if the fluid exhibits a
hysteretic shear rate response to applied stress, then the
net flow in response to the superposition of an oscillatory
and a steady stress can be opposite to the direction of
the steady stress. In the context of persistent holes, the
steady force is generated by the hydrostatic pressure of
the surrounding fluid.
In this letter we present an experimental study of

vibrated emulsions. We show for the first time that
persistent holes and kinks can form in an emulsion,
which greatly widens the classes of complex fluid that
support persistent holes and establishes that kinks and
persistent holes can coexist in a single system. We find
that the convection roll identified at a kink in particulate
suspensions [14,17] is also present in kinks and persistent
holes in emulsions. Furthermore, we show that the stresses
generated by this flow can balance the hydrostatic pressure
of the surrounding fluid. We find that the convection roll
is absent in Newtonian fluids, and thus explaining the
stability of these localized structures reduces to identifying
the non-Newtonian effect driving the convection roll.

Experiments. – In our experiments a mineral-oil-in-
glycerol emulsion 6.0mm deep was vertically oscillated
at a frequency f from 40 to 120Hz and at an accel-
eration a up to 50 g (g being the acceleration of grav-
ity) in a cylindrical container consisting of a plexiglass
sidewall (internal diameter 11.2 cm) and an aluminum
base. The vibration was actuated by an electromechan-
ical shaker (ET-140 from Labworks Inc.) driven with a
frequency generator (Agilent 3320A) via a power ampli-
fier (pa-141 from Labworks Inc.). Illumination and acqui-
sition techniques are given in [13]. We used a stable emul-
sion prepared by dripping paraffin oil (Acros, USA) at
0.3ml/min into a continuously stirred premixed solution
2.49 : 100 by weight of dioctyl sulfosuccinate sodium salt
(Sigma-Aldrich) in glycerol (Mallinkrodt). Prior to taking
any data the freshly prepared emulsion was vibrated at
55 g and 40Hz for 200 s. This step was necessary to elimi-
nate aging of the sample that would otherwise cause irre-
producibility. During the experimental runs, our emulsion
is stable and no qualitative change is observed. The result-
ing surfactant-stabilized emulsion had a 0.60 volume frac-
tion of oil and a density ρ= 1020 kg/m3. The distribution
of droplet sizes was determined using optical microscopy
and image processing. The average diameter was 3.5µm
with a standard deviation of 1.0µm.

Phenomenology. – We observed the presence of Fara-
day waves, kinks, and persistent holes as a function of
acceleration and frequency (cf. fig. 2). As acceleration
increases at a fixed frequency, the first transition is from
a flat surface to a wavy surface; this is the well-known
onset of Faraday waves [2]. In this case, the standing wave
response is harmonic with respect to the forcing. This
feature can be taken as a signature of the non-Newtonian
character of the fluid [6,18]. The transition to Faraday
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Fig. 1: Localized and extended structures in a 6.0mm deep
layer of an oil-in-glycerol emulsion vibrated at f = 40Hz:
(a) holes (a= 49.9 g); (b) circular kink (a= 29.8 g); (c) straight
kink (a= 29.8 g); and (d) delocalized state (a= 55.5 g). The
gray scale is indicative of the fluid height with white and black
corresponding to the highest and lowest points, respectively. In
(c) the left side of the image is the bottom of the container. Side
view of kink at peak downward (e) and upward (f) acceleration
at f = 40Hz and a= 29.8 g.

waves is subcritical (the transition threshold changes as
we increase or decrease the acceleration) appearing over a
narrow range near the transition line (cf. fig. 2). At higher
accelerations (∼ 40 g), persistent holes (cf. fig. 1(a)) form
in response to external perturbations of order the layer
depth, generated in our experiment by a brief pulse of
compressed air directed at the surface [13,17]. The forma-
tion of a hole is insensitive to the parameters of the air jet,
provided the jet is sufficiently strong to push aside fluid
over a region of order the layer depth. Below the transition
line no persistent holes form regardless of the duration or
strength of the air jet.
Persistent holes present themselves to the naked eye as

axially symmetric voids 0.8–1.5 cm in diameter surrounded
by a raised torus of fluid (cf. fig. 1(a)). The typical
radius of a persistent hole decreases with forcing frequency,
from 0.8 cm at 40Hz to 0.4 cm at 120Hz, but does not
change appreciably with acceleration. Persistent holes
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Fig. 2: (Color online) Phase space for a vibrated glyc-
erol/mineral oil emulsion as a function of acceleration a and
frequency f . The transition from the flat surface to the Faraday
wave state is similar to the usual transition in Newtonian fluids
except that it is subcritical in the narrow region which smears
out the transition point (shown as a hatched region). Persistent
holes and kinks manifest throughout the entire experimental
range of frequencies in response to a finite amplitude perturba-
tion. The cross-hatched region indicates the metastable regime
for persistent holes. The threshold for kinks is lower than that
of persistent holes at low frequencies but the converse at high
frequencies. In the region labeled kink-hole coexistence both
persistent holes and kinks are possible depending on the initial
perturbation. In the delocalized regime, seen at low frequencies
and large accelerations, the flow is highly erratic as shown in
fig. 1(d).

do not move significantly within the layer, nor do they
interact with each other provided their rims do not
overlap. The transition to persistent holes is preceded
by a metastable regime in which persistent holes survive
for many thousand of cycles. We define stable persistent
holes as those with lifetimes greater than 105 cycles. The
metastable regime is marked by cross-hatched region in
fig. 2.
The vertical cross-section of persistent holes was

deduced by shining a 2.0 cm wide laser sheet perpendicu-
lar to the surface and recording its intersection with the
surface using a high-speed camera [13]. Typical profiles
at opposite phases of the vibration cycle are shown in
fig. 3(a). Persistent holes reach to within 1.0mm of the
container bottom. The diameter of the hole oscillates
harmonically with the forcing frequency. The fluid at
the lower part of the hole is approximately static and
thus the oscillation results in overhangs during the
contraction phase, similar to the one visible on a kink in
fig. 1(e).
The fluid in the rim of a persistent hole convects as

shown in fig. 3(c). We measured this flow by dispersing
fine pepper grains in the emulsion and tracing their paths
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Fig. 3: (a) Oscillating hole profiles at f = 40Hz for an accelera-
tion a= 34.5 g. The radius oscillates with the forcing frequency
from a low of ≃ 0.4 cm to a high of ≃ 0.8 cm. The dashed
part of the curve indicates a lack of data due to the upper
part of the hole obscuring the lower part. (b) Stresses acting
on a hole. (c) Schematic of a vertical cross-section through
a kink or the rim of a hole. (d) Surface velocity uc vs.
time measured from the particle tracking at f = 60Hz and
a= 30.6 g (circles). The solid line corresponds to the mean
velocity u. The dashed line corresponds to the peak veloc-
ity U . Note that u= 3.4 cm/s is 10 times smaller than
U = 42 cm/s.

on the surface of the hole with a high-speed camera (see
supplementary video HoleFlow.avi). This flow consists
of a small steady flow u which takes particles along the
free surface from the bottom of the rim to the top and
back through the bulk superimposed on a larger oscillatory
flow with peak speed U that oscillates with the same
frequency as the forcing and is directed along the same
path as the steady flow. Thus, the speed at any point in the
convection roll is uc = u+U cos(2πft). The typical speed
for the steady and oscillatory flows at the free surface
were 2.0–4.0mm/s and 20.0–30.0 cm/s, respectively. The
pepper particles when emerging from the bulk reappeared
at least 2.0–2.5mm from the bottom of the container; we
took this distance as the boundary layer thickness δ. This
distance was constant for all f and a within the range of
our experiments.
We tried but were unable to recreate the convection

roll in Newtonian fluids with viscosities η similar to that
of the emulsion (glycerol η= 8.5Pa s and silicone oil η=
9.7Pa s) and with the similar driving parameters. Thus,
we conclude that the roll is a non-Newtonian effect.
If the applied perturbation forms a sufficiently large void

(larger than 2.0 cm in diameter), the void will continue to
grow after the perturbing air jet is shut off. Eventually the
growth saturates and the resulting void is either circularly
shaped as shown in fig. 1(b) or front-like with a straight
edge that runs from one side of the container to the other
as shown in fig. 1(c). Even though circularly shaped kinks
may look like a big persistent hole (e.g., fig. 1(b)), their
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ability to unroll into a straight front distinguishes them
from persistent holes. Irrespectively of their configuration,
circular or straight, we call these structures kinks because
of the discontinuity in surface height.
In the transition from a flat state to circular kinks, the

size of the perturbation matters. Stable kink radii are
always larger than 2.0 cm, and thus perturbations with
radii less than this will disappear. This feature permits
kinks to occur well below the onset of persistent holes
at lower frequencies. As in the rim of persistent holes,
the fluid within a kink convects (see supplementary video
KinkFlow.avi). The flow speed was measured as with
the holes, and we obtained u= 2.5–4.0 cm/s (note this
is an order of magnitude larger than for holes) and U =
22.0–45.0 cm/s.
Kinks and holes can coexist in the region shown in fig. 2.

For example, we can form persistent holes on the fluid
side of a kink provided the rim of the hole and the kink
are far apart. The formation from the initial flat state
of a kink rather than a hole in the coexistence regime
depends on the strength of initial perturbation: stronger
perturbations are needed to create a kink. A kink can
lose stability following a change of the acceleration a or
frequency f , and shrink; most often it continues to shrink
until it vanishes; rarely, the kink shrinks to form a hole;
we have never observed the converse.
At high accelerations (∼ 50 g) and low frequencies

(<70Hz), we observe a delocalized state analogous to the
one observed in particulate suspensions (see fig. 1(d)).
A single perturbation nucleates a growing array of
persistent holes which ultimately spans the entire domain
(see fig. 1(d)). The pattern displays erratic dynamics as
the holes merge or move past one another. A Fourier
transform of the pattern indicates that the spacing of
the persistent holes within the array is similar to the
wavelength of underlying Faraday waves.

Rheology. – The convection roll observed in kinks and
persistent holes is a non-Newtonian effect, as shown by
the inability of a Newtonian fluid to sustain a roll. To
determine the stress within persistent holes and kinks,
we characterize the emulsion’s rheology with a stress-
controlled rheometer (AR-2000ex, TA Instruments) using
a cone-plate geometry with an acrylic cone (radius Rc =
3.0 cm, angle α= 2◦00′) at 20 ◦C. We performed tests with
steady shear stress (fig. 4(a), (b) and (c)), oscillatory
shear stress in the linear regime (fig. 4(d) and (e)), and
oscillatory shear stress in the nonlinear regime (example
at f = 1Hz and shear stress magnitude of 500Pa shown in
fig. 4(e)). For the latter, the stress was varied sinusoidally
with fixed amplitude and a fixed frequency, the shear
rate was recorded, and the inertia of the instrument was
subtracted as described in [17]. Sample-to-sample and
run-to-run reproducibility was ±10%. Above steady shear
rates γ̇ ≈ 100 s−1 non-rheometric flows developed in the
test fixture.
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Fig. 4: (Color online) (a) Shear stress σs vs. strain rate
γ̇ from steady measurements. (b) Shear viscosity η from
steady measurements. (c) Normal stress σn vs. γ̇ from steady
shear measurements. (d) In-phase G′(ω) (•) and out-of-phase
G′′(ω) ( ) components of the shear modulii as a function of
the angular frequency ω. (e) Oscillatory first normal stress
coefficient ψ1(ω) vs. angular frequency ω in the linear (•)
and weakly nonlinear at γ̇ ≃ 100 s−1 ( ) regimes. (f) Shear
stress σs vs. γ̇ from oscillatory measurements at f = 1Hz and
shear stress magnitude of 500Pa. Steady measurements (�)
are shown for comparison.

The steady shear stress and viscosity measurements
(fig. 4(a) and (b)) show that the emulsion is shear-
thinning, which is the expected behavior of surfactant
stabilized emulsions [19–21]. The yield stress —if present
at all— is weaker than 0.3Pa. The first normal stress
difference N1 follows a power law in γ̇

α, with α∼ 1.7,
which given our limited range of γ̇ is consistent with
the expected γ̇2 behavior. As shown in fig. 4(d), the
oscillatory measurements in the linear regime show
that the out-of-phase component of the shear modulus
G′′(ω) is 10 times larger than the in-phase component
G′(ω) as a function of ω, indicating that the response
is primarily viscous for low frequencies [20,21]. We
computed the oscillatory first normal stress coefficient
ψ1(ω) =N1(ω)/γ̇(ω)

2 as shown in fig. 4(d), where N1(ω)
and γ̇(ω) are the normal stress and shear rate Fourier
amplitudes at angular frequency ω. In the linear regime,
ψ1(ω) is roughly constant. At oscillatory stress amplitudes
exceeding σo = 200Pa, the response becomes hysteretic
and weakly nonlinear (cubic nonlinearities are less than
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5% of the linear response for stress amplitudes between
200 and 600Pa) as is shown in fig. 4(f). This is observed
also in fig. 4(e) as ψ1(ω) decreases with increasing ω when
the stress amplitude is larger than σo.
Besides the direct measurement of N1, by partially

filling the measurement geometry we can estimate the
second normal stress difference N2 for a given γ̇ following
the procedure described in [22,23]. We performed this
procedure for γ̇ between 10 and 100 s−1 (not shown here),
which we can use to characterize all the normal stress
differences in our emulsion.

Force balance. – We now show that the measured
stress response of the fluid is sufficient to account for
the ability of persistent holes and kinks to withstand the
hydrostatic pressure of the surrounding fluid. We calculate
the force on a stationary convection roll in a kink by
integrating the stress tensor over the surfaces surrounding
the kink: Sh, Ss, and the free surface (see fig. 3(c)). Sh is
acted on by the hydrostatic pressure of the surrounding
fluid, Ss is acted on by the drag from container bottom
and the free-surface is stress free. The forces per unit
length acting on the kink are thus Fp ≃

1
2ρah

2 (from the
hydrostatic term) and Fη ≃ σsλ (from the drag term).
The force per unit length coming from surface tension
is negligible, as it is estimated to be 10 times smaller
than both contributions. The geometrical parameters are
shown in fig. 3(c): h is the layer depth behind the kink,
which is higher than the initial layer depth due to volume
conservation, and λ is the kink’s width. σs is the shear
stress at steady shear rate γ̇. In what follows, we use
our rheological measurements to estimate the stresses
produced by the flow.
For a stationary kink we can use a simple block model

as the one described in [14,17] where a kink can be
thought as a two dimensional structure that extends
infinitely out of the page (see fig. 3(c)). We approxi-
mate the shear rate γ̇ ≈ uc/δ where δ is the boundary
layer thickness. We assume that to leading order the
average over one oscillation yields the average of the

terms: ah2 = ah
2
and σsλ= σs(γ̇)λ, where · · · connotes

the average. Averaging over one oscillation cycle of a= g
and γ̇ = u/δ. Measurements at f = 40Hz and a= 30.6g
yield h= 7.5mm, λ= 7.0mm, u= 35.0mm/s, δ= 2.5mm.
Thus, γ̇ = 14 s−1 and σs = 44Pa at that shear rate, Fη ≈
308mN/m, and Fp ≈ 275mN/m. Hence, the reaction force
on the convection roll is the right order of magnitude
to balance the hydrostatic pressure of the surround-
ing fluid. This near equality holds for all frequencies
and accelerations along the transition line to kinks in
fig. 2.
The foregoing force balance calculation fails for persis-

tent holes because the steady flow velocity is about ten
times smaller than in a kink, and thus the mechanism
sustaining persistent holes must be different. Our results,
as we now show, suggest that a hoop stress, similar in
spirit to that in the rod-climbing effect, provides the force

needed to resist the hydrostatic pressure of the surround-
ing fluid. Consider an angular wedge from the torus of fluid
convecting in the rim (see fig. 3(b)). The normal stress
component acting in the direction tangent to the center
line of the torus pushes on the sides of the wedge (labeled
Sn) resulting in a net force per unit angle FN = σnλh
pushing outwards. The hydrostatic force pushing inwards
per unit angle is Fp =

1
2ρgh

2R, from the integration of
the hydrostatic pressure over the angular section of the
outer surface (labeled So). As with the kinks, we average
over a cycle. The oscillatory contribution to the hydro-
static pressure vanishes, but the normal stress is positive
regardless of the flow direction and therefore averaging
picks up contributions from both the steady and oscilla-
tory shear rate. The latter is dominant because u≪U and
γ̇ ≈U/δ= 80–100 s−1.
Using the conventional nomenclature for normal stresses

directions, we designate the radial direction in the plane
of circulation of the roll to be the first direction, the
circulation direction of the roll to be the second direc-
tion, and the direction perpendicular to plane of circula-
tion to be the third direction. The corresponding normal
stress differences are N1, N2, and N3 where N3 =−(N1+
N2). The hoop stress arises from the third component
of the normal stress, and thus σn =N1+N2. At f =
40Hz, a= 32.3 g and γ̇ ≃ 100 s−1, h= 6.0mm, λ= 7.0mm,
R= 18.0mm. Our rheological measurements give N1 ≃
200Pa in the linear regime and 60Pa in the weakly
nonlinear regime at γ̇ ≃ 100 s−1 (evaluating ψ1(ω) at
ω= 2πf , using the estimated amplitude of the oscilla-
tory shear rate and averaging over a cycle) and N2 =
8Pa. Thus, FN ≃ 2.5–8.2mN (using linear and weakly
nonlinear measurements as estimation bounds) and Fp ≃
3.2mN. Hence, the normal stress is of the right order of
magnitude to oppose the hydrostatic pressure from the
surrounding fluid that would otherwise collapse the hole.
These results suggest that the normal stresses stabilize
holes.
We also tested an attractive emulsion, selected because

it exhibits a negative normal stress [24] and would provide
a critical test of the importance of normal stresses. This
oil-in-water emulsion was prepared by dripping mineral oil
(Acros) into a premixed solution of water and a nonionic
surfactant, Span 80 (Sigma-Aldrich), in proportion such
that the weight of the surfactant equaled 5% of the final
weight of the emulsion. Various volume fractions of oil
were tested ranging from 0.2 to 0.8. We characterized
the emulsion’s rheology with a strain-controlled rheome-
ter (ARES-LS1, TA Instruments) using a steel plate-
plate geometry (diameter φ= 2.5 cm, separation gap d=
1.00mm) at 20 ◦C. Figure 5 shows the steady measure-
ments of shear viscosity η and the magnitude of the normal
stress |N1| as a function of shear stress γ̇ for the 60%. This
emulsion is shear-thinning, and in the shear rate range
γ̇ ∼ 1–10 s−1 the normal stress is negative. We were able
to form kinks in these samples, but not persistent holes.
The absence of the latter is consistent with our argument
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Fig. 5: (Color online) Shear viscosity η (◦) and magnitude of
the normal stress (�) vs. γ̇ for an attractive water/oil emulsion
(0.6 oil concentration). Filled symbols indicate negative N1.

that normal forces are essential for sustaining persistent
holes.

Discussion and conclusions. – We find that a verti-
cally vibrated shear-thinning emulsion can sustain kinks
and holes. Thus, shear-thickening is unnecessary for these
structure to form contrary to previous claims [13]. Further-
more, we show through order-of-magnitude calculations
that these structures are stabilized by stresses arising from
convection localized within a kink or the rim of a persis-
tent hole. In the case of kinks, we argued that the drag
on the container’s base caused by the convection opposes
the hydrostatic stress of the surrounding fluid. The recti-
fied flow in the roll is crucial for sustaining this stress, but
we do not currently understand its origin. One plausible
mechanism, suggested by the observation of stress hystere-
sis in our emulsion, is the model proposed by Deegan [17]
in which stress hysteresis produces an average displace-
ment opposite to the average stress.
In the case of persistent holes, we argued that the

normal stress generated by the oscillatory flow in the
convection roll produces a hoop stress which opposes
contraction of the rim. This effect is analogous to the rod
climbing effect [20]. The back-and-forth motion of the rim
in response to the applied sinusoidal acceleration appears
to be sufficient to generate the shearing responsible for the
normal stress.
The presence of kinks and persistent holes has now

been observed in particulate suspensions, viscoplastic
fluids and now emulsion. This growing list of examples
and the simplicity of the mechanisms we invoked to
motivate their stability suggests that kinks and persistent
holes are generic to complex fluids subjected to vertical
vibrations.
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