Quantized orbits in weakly coupled Belousov-Zhabotinsky reaction - Supplementary material

Stephan Weiss and Robert Deegan ${ }^{1, *}$
${ }^{1}$ Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan

I. STABILITY ANALYSIS FOR TWO SPIRALS ROTATING IN THE SAME DIRECTION

Here we want to examine the stability of the solutions of eq. 9 for which $\left|\Delta z_{k_{0}}\right|$ is constant, i.e., eq. 11. For this, we assume a small variation of the steady solution, of the form

$$
\begin{align*}
\left|\Delta z_{k}\right| & =\left|\Delta z_{k_{0}}\right|+\varepsilon_{k} \\
& =\frac{\lambda}{2 \pi}\left(\frac{\pi}{2}+m \pi-\varphi\right)+\varepsilon_{k}, \text { with } \varepsilon_{k} \ll 1 \tag{14}
\end{align*}
$$

Inserting 14 into eq. 9 (in the paper) and considering only the square of the absolute values, we write:

$$
\begin{align*}
\left(\left|\Delta z_{k_{0}}\right|+\varepsilon_{k+1}\right)^{2}= & \left(\left|\Delta z_{k_{0}}\right|+\varepsilon_{k}\right)^{2}+(2 h \cos (\Delta \psi))^{2} \\
& \left.+4 h \cos (\Delta \psi)\left(\left|\Delta z_{k_{0}}\right|+\varepsilon_{k}\right) \cdot \cos \left(\varphi+\frac{2 \pi}{\lambda}\left|\Delta z_{k_{0}}\right|+\varepsilon_{k} \frac{2 \pi}{\lambda}\right)\right] \tag{15}
\end{align*}
$$

Since ε_{k} and also h are assumed to be small ($\ll 1$), we drop all higher order terms of these quantities. Reformulations of (15) gives then:

$$
\begin{equation*}
\varepsilon_{k+1}=\varepsilon_{k}-(-1)^{m} 2 h \cos (\Delta \psi)\left(1+\frac{\varepsilon_{k}}{\left|z_{k_{0}}\right|}\right) \cdot\left(\varepsilon_{k} 2 \pi / \lambda\right) \tag{16}
\end{equation*}
$$

ε_{k} and $\left|z_{k_{0}}\right|$ are positive. Thus, if $\cos (\Delta \psi)>0[\cos (\Delta \psi)<0]$, for even [odd] m it is $\varepsilon_{k+1}<\varepsilon_{k}$ and thus $\left|\Delta z_{k_{0}}\right|$ is stable. For other $m,\left|\Delta z_{k_{0}}\right|$ is unstable.

Having this said, we show in fig. 1 the vector field of $\delta \Delta z_{k}$ as a function of Δz_{k} (eq. 9) for positive $\cos (\Delta \psi)$. There, the stable and unstable limit cycles are clearly visible.

II. VECTOR FIELD OF $\delta \Delta z$ FOR COUNTER-ROTATING SPIRALS

Figure 2 shows the field of $\delta \Delta z_{k}$ as a function of Δz_{k} (eq. 12). It is clearyly visible that there are fixpoints at $\left|\Delta z_{k_{0}}\right|$ as described by eq. 13. Depending on the angle $\arg \left(\Delta z_{k_{0}}\right)$, these points can be both stable and unstable.

[^0]

FIG. 1. Orientation of $\delta \Delta z$ as a function of Δz, regarding eq. (9), for positive $h \cos (\Delta \psi)=1$. The red and blue curves show the evolution of Δz with time, as it settles on the circular limit cycle starting from different initial conditions.

FIG. 2. Orientation of $\delta \Delta z$ as a function of Δz, regarding eq. (12), for $h=0.1$ and $\cos (\Delta \psi)=0$. The blue curve shows the evolution of Δz with time, starting from its initial value of $(\mathrm{x}=18, \mathrm{y}=9)$.

[^0]: * stwe@umich.edu

