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I. STABILITY ANALYSIS FOR TWO SPIRALS ROTATING IN THE SAME DIRECTION

Here we want to examine the stability of the solutions of eq. 9 for which |∆zk0
| is constant, i.e., eq. 11. For this,

we assume a small variation of the steady solution, of the form

|∆zk| = |∆zk0
|+ εk

=
λ

2π

(π

2
+mπ − ϕ

)

+ εk, with εk ≪ 1. (14)

Inserting 14 into eq. 9 (in the paper) and considering only the square of the absolute values, we write:

(|∆zk0
|+ εk+1)

2 =(|∆zk0
|+ εk)

2 + (2h cos(∆ψ))
2

+ 4h cos(∆ψ)(|∆zk0
|+ εk) · cos(ϕ+

2π

λ
|∆zk0

|+ εk
2π

λ
)]. (15)

Since εk and also h are assumed to be small (≪ 1), we drop all higher order terms of these quantities. Reformulations
of (15) gives then:

εk+1 = εk − (−1)m2h cos(∆ψ)

(

1 +
εk
|zk0

|

)

· (εk2π/λ). (16)

εk and |zk0
| are positive. Thus, if cos(∆ψ) > 0 [cos(∆ψ) < 0], for even [odd] m it is εk+1 < εk and thus |∆zk0

| is
stable. For other m, |∆zk0

| is unstable.
Having this said, we show in fig. 1 the vector field of δ∆zk as a function of ∆zk (eq. 9) for positive cos(∆ψ). There,

the stable and unstable limit cycles are clearly visible.

II. VECTOR FIELD OF δ∆z FOR COUNTER-ROTATING SPIRALS

Figure 2 shows the field of δ∆zk as a function of ∆zk (eq. 12). It is clearyly visible that there are fixpoints at |∆zk0
|

as described by eq. 13. Depending on the angle arg(∆zk0
), these points can be both stable and unstable.
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FIG. 1. Orientation of δ∆z as a function of ∆z, regarding eq. (9), for positive h cos(∆ψ) = 1. The red and blue curves show
the evolution of ∆z with time, as it settles on the circular limit cycle starting from different initial conditions.
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FIG. 2. Orientation of δ∆z as a function of ∆z, regarding eq. (12), for h = 0.1 and cos(∆ψ) = 0. The blue curve shows the
evolution of ∆z with time, starting from its initial value of (x=18, y= 9).


