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Abstract. A class of autoregressive moving-average (ARMA) models proposed by
J�rgensen and Song [Journal of Applied Probability (1998), vol. 35, pp. 78–92] with
exponential dispersion model margins are useful to deal with non-normal stationary
time series with high-order autocorrelation. One property associated with the class of
models is that the projection process takes the exact form of the classical Box and
Jenkins ARMA representation, leading to considerable ease to establish theories. This
paper focuses on the issue of parameter estimation for such models, which has not
been thoroughly investigated in J�rgensen and Song’s paper. The key of the proposed
approach is to treat the residual process associated with the projection essentially as a
measurement error, which enables us to formulate directly an ARMA representation
for the observed time series. The parameter estimation therefore becomes straightfor-
ward using the existing methods for the Box and Jenkins ARMA models such as the
quasi-likelihood method. The approach is illustrated by simulation studies and by an
analysis of myoclonic seizure counts.

Keywords. Exponential dispersion models; measurement error; non-normal time
series; quasi-likelihood; thinning; time series of counts.

1. INTRODUCTION

There are many stationary time series that do not follow Box and Jenkins
autoregressive moving average (ARMA) models, such as the stationary integer-
valued time series. To be more specific, let fXtg be a stationary AR(1) process
with Poisson marginal distribution P(l) with mean l. It is known (e.g. Steutel and
van Harn, 1979) that this AR(1) process takes the form

Xt ¼ a � Xt�1 þ et ð1Þ

where s denotes the thinning operation defined by

a � Xt�1 ¼
XXt�1

j¼1

Bj � PðalÞ

with independent and identically distributed (i.i.d.) Bernoulli random variables
Bj’s, the probabilities of success of which equal to a 2 [0, 1]. Another example is
the stationary AR(1) gamma process (e.g. Lewis et al., 1989) defined by
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Xt ¼ GtXt�1 þ et ð2Þ

where Xt follows marginally a gamma distribution and the thinning operation is
undertaken by a beta random variable Gt that is independent of both Xt and et
with parameters a 2 [0, 1] and 1 � a.

Both examples clearly indicate that when the marginal distribution of a
stationary process is known to be non-normal, the Box and Jenkins ARMA
representation no longer applies. Joe (1996) proposed a unified definition for
ARMA processes within a class of marginal distributions that are infinitely
divisible, including the Poisson (1) and gamma (2) processes as special cases. A
shortcoming of Joe’s approach is the inflexibility in incorporating high-order
AR processes. As shown in his paper, his construction of AR stationary
processes gets already very complex even at the second order of
autocorrelation.

To overcome this, J�rgensen and Song (1998) proposed another unified
approach to constructing an alternative class of stationary ARMA time series, the
marginal distributions of which are exponential dispersion (ED) models
(J�rgensen, 1997). It is known that the ED models serve as the class of error
distributions for the generalized linear models, including special distributions such
as normal, Poisson, gamma, binomial, negative binomial, inverse Gaussian and
compound Poisson. Note that the problem of extending Box and Jenkins
Gaussian ARMA models to a non-Gaussian framework has long been of great
interest in the statistical literature. To incorporate covariates in such an extension,
both observation- and parameter-driven models have been proposed. Examples of
the parameter-driven model are those of Zeger (1988) and J�rgensen et al. (1999).
Among many observation-driven models, the generalized autoregressive moving
average (GARMA) model of Benjamin et al. (2003) presents a general modelling
framework to analyze non-Gaussian time-series data, including the models
proposed by Zeger and Qaqish (1988) and Li (1994) as special cases. The class of
GARMA models is primarily proposed to address nonstationary behaviour for
the mean of a non-Gaussian time-series, and it becomes somewhat restrictive to
model stationary time series. Given stationarity, a time-series model is deemed to
address autocorrelation behaviour, rather than that of marginal moments. This
paper deals with a class of stationary ARMA models proposed by J�rgensen and
Song (1998), with the focus on the estimation of parameters in the autocorrelation
structure.

According to J�rgensen (1997), an ED distribution is infinitely divisible if its
index set is (0, 1) or (�1, 1). An interesting property associated with the
J�rgensen and Song (1998) construction is that their stationary ARMA(p, q)
process fXtg can be decomposed into the sum of a projection process fYtg and a
residual process fdtg,

Xt ¼ Yt þ dt

where the projection process Yt follows the Box and Jenkins ARMA represen-
tation of the form,
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Yt � /1Yt�1 � � � � � /pYt�p ¼ et þ w1et�1 þ � � � þ wqet�q:

Such a decomposition sheds light on proceeding the statistical analysis of non-
normal stationary time series by borrowing the existing tools from the arsenal of
the Box and Jenkins ARMA models. One aspect that this paper deals with is the
development of parameter estimation through the use of this decomposition.

To utilize the decomposition, technically we may think of the residual term dt
essentially as a kind of measurement error for the underlying process Yt. This
observation enables us to express theXt process itself in a direct form of the Box and
Jenkins ARMA representation with a different noise variate nt, following Box and
Jenkins (1976). Therefore, parameter estimation can be carried out conveniently by
utilizing existing algorithms such as the quasi-likelihood method. Asymptotics are
also naturally followed under some mild moment assumptions.

The paper is organized as follows. After giving a brief description of the
J�rgensen and Song ARMA models in Section 2, we investigate the properties of
the residual process dt in Section 3. Section 4 presents details of parameter
estimation for general J�rgensen and Song ARMA(p,q) models, and Section 5
focuses on the AR(1) process on which a simulation study is demonstrated.
Section 6 presents a data analysis example, and Section 7 provides some
discussions.

2. PRELIMINARIES

We start with a brief summary of the theory of exponential dispersion models,
and more details about these models can be found from J�rgensen (1997). Let
X � ED�(h, k) denote an additive exponential dispersion model with probability
density function

pðx; h; kÞ ¼ cðx; kÞ exp hx� kjðhÞf g; ð3Þ

for x 2 R, with respect to a suitable measure, where the domain of h, denoted by
U, is an interval and k 2 K � Rþ. The model is infinitely divisible if and only if
the domain of the index parameter k is K ¼ Rþ. For h 2 intU, the mean and
variance of X are

EðX Þ ¼ ksðhÞ and varðX Þ ¼ ks0ðhÞ;

where s(h) ¼ j0(h). The additive exponential dispersion model satisfies the
convolution formula

ED�ðh; k1Þ � ED�ðh; k2Þ ¼ ED�ðh; k1 þ k2Þ; ð4Þ

which implies that the model is closed under convolution of the members with a
common value of the canonical parameter h. Note that with different cumulant
generating functions j(Æ) in eqn (3), the density functions of the ED� models
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correspond to normal, Poisson, gamma, binomial, negative binomial, inverse
Gaussian and many other distributions.

By eqn (4), a general definition of the thinning operation (Joe, 1996) is given as
follows. Let X1 and X2 be independent ED� random variables, with
Xi � ED�(h, ki), i ¼ 1, 2. Their sum is denoted by W ¼ X1 þ X2 � ED�(h, k),
where k ¼ k1 þ k2. Clearly, W is sufficient for the parameter h, so the conditional
distribution of X1 given W ¼ x does not depend on the parameter h, and is
therefore denoted by

X1jX1 þ X2 ¼ x � Gðk1; k2; xÞ:

The distribution G(k1, k2, x) is termed the contraction corresponding to
ED�(h, k) by J�rgensen and Song (1998). This terminology is made according
to the fact that when ED�(h, k) is non-negative the support of G(k1, k2, x) is
between 0 and x. Table 2 of J�rgensen and Song (1998) lists a number of
contractions for different ED� marginals.

A thinning operator, denoted by A(Æ; a), a 2 [0, 1], is a stochastic function of a
random variable X � ED�(h, k) whose conditional distribution is given by

AðX ; aÞjX ¼ x � Gðak; �ak; xÞ;

where �a ¼ 1� a. It follows immediately from Proposition 3.1 of J�rgensen and
Song (1998) that A(X; a) � ED�(h, ak), which means A(X; a) is the thinning of X
by the proportion a. In addition, it is known that X � AðX ; aÞ � ED � ðh; �akÞ is
independent of A(X ; a). According to Joe (1996),

EðAðX ; aÞjX ¼ xÞ ¼ ax: ð5Þ
In the extreme cases a ¼ 0, 1, A(X; 1) ¼ X and A(X; 0) ¼ 0, respectively.
Generalizing the definition of the thinning operation for a pair of independent

variables, J�rgensen and Song (1998) defined a class of infinite-order moving
average processes for infinitely divisible ED� model marginals. Furthermore, they
defined causal ARMA processes with ED� model marginals through the
representation of the infinite-order moving average process. A brief summary is
given as follows.

Let / and w denote polynomials of degree p and q with no common roots,
respectively, given by

/ðzÞ ¼ 1� /1z� � � � � /pz
p;wðzÞ ¼ 1þ w1zþ � � � þ wqz

q;

and let ai 2 [0, 1], i ¼ 0, 1, . . . , be the coefficients determined by the following
power-series expansion

wðzÞ
/ðzÞ ¼

X1
j¼0

ajzj; jzj � 1; ð6Þ

where /(z) 6¼ 0 for |z| � 1, a0 ¼ 1 and aþ ¼
P

j aj < 1. Obviously, with given
coefficients /k’s and wk’s, the aj’s are determined by the following recursive
equations,
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aj �
X
0<k�j

/kaj�k ¼ wj; 0 � j < maxðp; qþ 1Þ;

and

aj �
X
0<k�j

/kaj�k ¼ 0; j � maxðp; qþ 1Þ; ð7Þ

with w0 ¼ 1, wj ¼ 0, j > q and aj ¼ 0, j < 0. Assume that the innovations
fet, t ¼ 0, ± 1, . . .g are i.i.d. random variables with a marginal distribution
ED�(h, k/aþ) and that given the innovations fet, t ¼ 0, ± 1, . . .g the thinning
operators fAt,j (et�j; aj), j ¼ 0, 1, . . . , t ¼ 0, ± 1, . . .g are conditionally inde-
pendent. According to J�rgensen and Song (1998), an ARMA(p, q) process fXtg
with ED�(h, k) margin takes the following form of infinite independent sum

Xt ¼ et þ
X1
j¼1

At;jðet�j; ajÞ; ð8Þ

where the thinning operator At,j (et�j; aj) follows marginally ED�(h, ajk/aþ) and
conditionally the contraction distribution G(ajk, (1 � aj)k, et�j) given et�j.

Denote the r-algebras by Mk ¼ rfek, ek�1, . . .g and Ma ¼ rf. . . ,
e�1, e0, e1, . . .g. In the case of finite expectation, the projection process fYtg is
obtained as the projection of the observation process fXtg onto the space generated
by the innovations, that is,

Yt ¼ EðXtjMaÞ ¼ EðXtjMtÞ;

and it is easy to see by eqn (5) that the Yt forms a linear process given by

Yt ¼
X1
j¼0

ajet�j: ð9Þ

Therefore, with the so-chosen coefficients aj’s in eqn (6), the projection process
can be rewritten in the form

Yt � /1Yt�1 � � � � � /pYt�p ¼ et þ w1et�1 þ � � � þ wqet�q: ð10Þ

It is noticeable that this representation is of the same form as the Box and
Jenkins ARMA process, where, however, the et’s are the ED innovations that
have possibly non-zero mean le and variance r2e , rather than the regular mean-
zero white noise. Moreover, the residual process is yielded as the difference
between the observed fXtg process and its projection process fYtg, namely dt ¼
Xt � Yt. As shown in Proposition 5 below, the residual process dt turns out to be
uncorrelated with the Yt process, indicating that the stationary process Xt can be
decomposed as an orthogonal sum of the stationary projection process Yt and the
residual process dt,

Xt ¼ Yt þ dt:
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By orthogonality between two random variables, we mean that the two
variables are uncorrelated (Stout, 1974, p. 14).

3. PROPERTIES

We now present some basic properties of the J�rgensen and Song ARMA
processes, which are useful for the development of parameter estimation in the
next section. Although some of results seem to be obvious, to have a self-
contained framework for this paper we keep them here without proofs.

It is easy to see that the projection process fYtg is the minimum mean squared
error prediction for the fXtg process on the basis of the innovations.

Proposition 1. For an arbitrary function f,

EfXt � EðXtjMtÞg2 � EfXt � f ðet; et�1; . . .Þg2;

provided that the expectations exist.

Moreover, by eqn (9) this optimal process is obviously linear and unbiased
since E(Xt � Yt) ¼ 0.

Proposition 2. With the normal margin, the residual process dt is marginally
normally distributed according to Nð0; k

P1
j¼1 ajajÞ.

This result is valid simply because of the fact that the thinning operator

At;jðet�j; ajÞ ¼ ajet�j þ dt;j with dt;j � N 0; kaj�aj
� �

according to J�rgensen and Song (1998, p. 83). In general, we have the following
moment properties.

Proposition 3. A J�rgensen and Song ARMA(p, q) process (8) and its projection
process (10) have the same mean and the same autocovariance function (ACVF) for
all lags except zero.

Proposition 3 implies that although the two processes Xt and Yt look very
different in expressions, they have the same first moment, lx ¼ leaþ, and the same
second moments (except the variance). This is true because for h > 0, their
ACVFs are

cxðhÞ ¼ E covðXt;XtþhjMaÞf g þ cov EðXtjMaÞ;EðXtþhjMaÞf g ¼ cyðhÞ;

where Xt and Xtþh are conditionally independent given fetg.
Clearly, var(Xt) and var(Yt) are different and equal to, respectively,

cxð0Þ ¼ r2e
X
j

aj and cyð0Þ ¼ r2e
X
j

a2j :
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Thus, cy(0) < cx (0) because of the fact that aj 2 (0, 1), which implies that the
observation process Xt is more volatile than the projection process Yt. Moreover,
their autocorrelation functions (ACFs), qx(h) and qy(h), are related in the form of

qxðhÞ ¼
P

j a
2
j

aþ
qyðhÞ ¼ xqyðhÞ; for h � 1; ð11Þ

where the factor x ¼
P

j a
2
j=aþ being constant in the interval (0, 1). An

interpretation of the factor x can be given from the perspective of measurement
error. In the context of time series with measurement error, the so-called
corruption coefficient (Ashley and Vaughan, 1986) is the ratio equal to

r2d
cxð0Þ

¼
cxð0Þ � cyð0Þ

cxð0Þ
¼ 1� x;

where the first equality is due to Proposition 5(c) in this section. As opposed to
corruption, x indicates the percent of the observed variation attributed to the
underlying true process, and therefore it is referred to as the anticorruption
coefficient. This coefficient may also be taken as to indicate the degree of similarity
between the two processes.

Since the two ACFs are proportional by the time-independent anticorruption
coefficient x, both show the same pattern, with the ACF of the Yt being on the
top of the ACF of the Xt. This property is practically useful to select possible
orders p and q for the projection process Yt by the pattern of the empirical
(sample) ACF based on the observed process Xt. In some simple cases, this
coefficient can easily be obtained. For instance, as shown in Section 5, the
J�rgensen and Song AR(1) process gives x ¼ 1/(1 þ /) where / is the
autocorrelation coefficient.

It is easy to see that the projection process fYtg is (weakly) stationary. Thus, the
projection transformation preserves not only the stationarity but also the same
moments of the mean and autocovariance function.

Let us now consider autoregressive models. A J�rgensen and Song
autoregressive process of order p, AR(p), is defined as effectively to be a
J�rgensen and Song ARMA(p, 0) process. A justification for such a definition is
given by Theorem 6.2 of J�rgensen and Song (1998), i.e. the partial ACF of the
so-defined AR(p) process is zero for lags greater than p. An advantage of the
J�rgensen and Song AR processes is that they preserve the recursion in computing
its ACF. Followed directly from the recursive formula for the ACF of the Box
and Jenkins AR process (10), it gives

Proposition 4. The ACF of a J�rgensen and Song AR(p) process fXtg has a
recursive relation given by

qxðhÞ ¼ /1qxðh� 1Þ þ � � � þ /pqxðh� pÞ; for h � 1;

where qx(0) ¼ x�1 defined in eqn (11).
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This recursive relation is useful to compute the autocorrelation function of
process fXtg numerically. Consequently, the Yule–Walker equation can be
formulated directly from this recursive relation. We now end the section by listing
some useful moment properties for the residual term dt. Although some of them
seem to be trivial, we list them here anyway simply for completeness.

Proposition 5. Let dt ¼ Xt � Yt be the residual, where fXtg follows a J�rgensen
and Song ARMA(p, q) process and fYtg is its projection. Then,
(a) the residual has zero expectation, E(dt) ¼ 0;
(b) the residual is uncorrelated with the projection, cov(Yt, dt) ¼ 0 for all t;
(c) varðdtÞ ¼ r2x � r2y ¼ r2e

P
j ajð1� ajÞ;

(d) the residual process fdtg and the innovation process fetg are uncorrelated,
namely, cov(dt, es) ¼ 0, for all t, s.

(e) the residuals are uncorrelated, cov(dt, ds) ¼ 0, t 6¼ s. Moreover, fdtg is a
white noise.

The proofs of these results are straightforward and thus are omitted.

4. ESTIMATION

To begin, let us first formulate J�rgensen and Song ARMA models from the
perspective of time series with measurement errors. That is, Xt may be thought of
essentially as the observed process of the underlying true process Yt with
measurement errors dt, where process Yt is a latent Box and Jenkins ARMA(p, q)
process. Substitution of Yt by Xt � dt in the ARMA eqn (10) results in

ðXt � dtÞ � /1ðXt�1 � dt�1Þ � � � � � /pðXt�p � dt�pÞ ¼ et þ w1et�1 þ � � � þ wqet�q;

or equivalently,

Xt � /1Xt�1 � � � � � /pXt�p ¼
Xq
j¼0

wjet�j þ
Xp
k¼0

/kdt�k;

with w0 ¼ 1 and /0 ¼ 1. Without the loss of generality, we assume that both Xt

and et in the above expression have zero mean. Otherwise, noting that

aþ ¼
X1
j¼0

aj ¼
1þ w1 þ � � � þ wq

1� /1 � � � � � /p
;

we immediately have, by Proposition 3,

ðXt � lxÞ � /1ðXt�1 � lxÞ � � � � � /pðXt�p � lxÞ ¼
Xq
j¼0

wjðet�j � leÞ þ
Xp
k¼0

/kdt�k:
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The right-hand side of the above equation is indeed the sum of two
uncorrelated MA processes of orders q and p, respectively. Clearly the sum is a
zero-mean stationary process with ACVF that equals to zero for lags larger than
max(q, p). So, it follows directly from the Wold decomposition theorem (Theorem
5.7.1 or Proposition 3.2.1, Brockwell and Davis, 1987) that the sum is purely non-
deterministic and forms a moving-average process of order m with
m � max(q, p). Therefore, there exists a white noise nt such that the sum can
be expressed as of the form

Pm
k¼0 vknt�k. This leads to a Box and Jenkins ARMA

equation for the Xt process,

Xt � /1Xt�1 � � � � � /pXt�p ¼ nt þ v1nt�1 þ � � � þ vmnt�m; ð12Þ

where Xt and nt have zero means (also see Granger and Morris, 1976, for similar
results).

Estimating parameters in eqn (12) is then straightforward by applying for the
existing methods such as Yule–Walker estimation, Burg’s algorithm, the
innovations algorithm, or the quasi-likelihood estimation developed for the Box
and Jenkins ARMA models (e.g. Brockwell and Davis, 1987).

The Yule–Walker estimation approach provides the method of moments
estimators of the parameters /i, i ¼ 1, . . . , p in an AR(p) model. That is, the
/̂i; i ¼ 1; . . . ; p are the solution to the following system of equations:

q0 qxð1Þ qxð2Þ � � � qxðp � 1Þ
qxð1Þ q0 qxð1Þ � � � qxðp � 2Þ
..
. ..

. ..
.

� � � ..
.

qxðp � 1Þ qxðp � 2Þ qxðp � 3Þ � � � q0

0
BBB@

1
CCCA

/1

/2

..

.

/p

0
BBB@

1
CCCA ¼

qxð1Þ
qxð2Þ
..
.

qxðpÞ

0
BBB@

1
CCCA;

where q0 ¼ x�1 given in eqn (11). Since the Yule–Walker estimation uses only the
first two sample moments of a time-series data, the resulting estimators will be
robust to the misspecification of the marginal distribution. Moreover, this
approach is computationally simple and hence desirable in dealing with large time
series data such as high-frequency time series arising from financial applications,
where typically millions of tick-by-tick records are collected. It is known that the
method-of-moments estimators are usually not very efficient, and when estimation
efficiency is of interest, a likelihood-based estimation approach is usually
appealing. Moreover, when both autoregressive and moving average components
are present, the quasi-likelihood estimation becomes convenient to obtain
parameter estimates.

In the context of the J�rgensen and Song ARMA models, it is difficult to obtain
the explicit expression of the likelihood function, unless the marginal distribution
is normal. On the contrary, for the Box and Jenkins ARMA models, the quasi-
likelihood estimation has been widely used to obtain the estimates of the model
parameters. With the connection to the Box and Jenkins ARMA model by
eqn (12), it seems natural to adopt the quasi-likelihood approach for the
parameter estimation in the J�rgensen and Song ARMA models. Note that
the quasi-likelihood approach in the Box and Jenkins ARMA models uses the
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multivariate normal distribution to construct the so-called quasi-likelihood
function, which essentially requires both ACF and the first two moments of the
assumed marginal distribution. In other words, the mean–variance relation,
var(Xt) ¼ u2V(l), that largely characterizes an ED margin takes part in the
construction of the variance–covariance matrix of the data needed in the
specification of the quasi-likelihood estimation. Here u2 ¼ 1/k is the dispersion
parameter and V(Æ) is the variance function. It is known that V(l) ¼ l for Poisson
distribution and V(l) ¼ l2 for gamma distribution.

Now let C ¼ C(/1, . . . ,/p, v1, . . . , vm) denote the autocorrelation matrix given
by a J�rgensen and Song ARMA model. Then, the autocovariance matrix will be
R ¼ u2V(l)C, and moreover the log quasi-likelihood function is

‘qðC; l;u2Þ / �1
2 ln jRj � 1

2ðX� lÞTR�1ðX� lÞ; ð13Þ

where X ¼ (X1, . . . ,Xn)
T is the vector of the observed time series and l ¼ l1 with

1 being an n-dimensional vector of all ones. For a stationary time series, the mean
parameter l is constant over time, so we use the sample mean �X to estimate l,
which is a consistent estimator with stable numerical performance in either short
(n ¼ 100) or long (n ¼ 350) time series, shown in our simulation studies. This
leads to a modified version of the quasi-likelihood function:

~‘qðC;u2Þ / � 1
2 ln j~Rj � 1

2 ðX� �X1ÞT~R�1ðX� �X1Þ; ð14Þ

where ~R ¼ u2V ð�X ÞC, and the estimates are obtained by maximizing the ~‘q. Note
that the quasi-likelihood allows us to estimate the dispersion parameter u2

together with the other parameters in C, which is especially useful to deal with
overdispersed data.

One important feature of the quasi-likelihood inference is that the required
maximization can be conveniently carried out by using the existing numerical
routines for the Box and Jenkins ARMA model with the normal margin.
Consider the Pearson residuals Zt ¼ ðXt � �X Þ=

ffiffiffiffiffiffiffiffiffiffiffi
V ð�X Þ

p
; t ¼ 1; . . . ; n, and let K ¼

u2C(/1, . . . ,/p, v1, . . . , vm). Then, the quasi-likelihood function (14) can be
rewritten as:

~‘qðC;u2Þ / � 1
2 ln jKj � 1

2Z
TK�1Z; ð15Þ

where Z ¼ (Z1, . . . ,Zn)
T is the vector of Pearson residuals given under the

assumed marginal distribution (effectively under the mean–variance relation).
This function (15) is in fact coincident with the quasi-likelihood function derived
from the following Box and Jenkins ARMA model,

Zt � /1Zt�1 � � � � � /pZt�p ¼ ft þ v1ft�1 þ � � � þ vmft�m; ð16Þ

with white noise ft � Nð0;u2
fÞ. S-Plus function arima.mle() can be readily applied

to obtain the estimates of /1, . . . ,/p, v1, . . . , vm and u2
f .

For the purpose of forecasting for Xt-process, we need not know the estimates
of the �old� parameters wj, j ¼ 1, . . . , q and r2e , where only future values of
Xt-process and their associated confidence limits are the target. Such a forecasting
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can be carried out by simply utilizing eqn (16). In some cases where the thinning
coefficients fajg need to be determined in order to understand the marginal
properties of a process, estimation for the parameters wj, j ¼ 1, . . . , q is necessary.
This may be done by using the following relation between the two ACVFs of the
new and old MA processes,

cW ðhÞ ¼ cU ðhÞ þ cV ðhÞ; h ¼ 0; . . . ; qþ 1;

where the process of the sum

Wt ¼ Ut þ Vt; with Ut ¼
Xq
j¼0

wjet�j and Vt ¼
Xp
k¼0

/kdt�k:

Their ACVFs are given, respectively, by

cW ðhÞ ¼ r2n
Pm�jhj

j¼0 vjvjþjhj; jhj � m
0; jhj > m;

�

cU ðhÞ ¼ r2e
Pq�jhj

j¼0 wjwjþjhj; jhj � q
0; jhj > q;

�

and

cV ðhÞ ¼ r2d
Pp�jhj

j¼0 /j/jþjhj; jhj � p
0; jhj > p:

�

In principle, estimates of wj, j ¼ 1, . . . , q, r2n, r
2
e and r2d can be obtained via the

above system of equations with given û2
f and /̂j; j ¼ 1; . . . ; p and v̂j; j ¼ 1; . . . ;m.

A general algorithm for an explicit solution seems to be difficult to establish.
However, the solution for given cases, especially of low orders, is relatively easy to
obtain.

5. AR(1) PROCESS

We now focus on the AR(1) process with non-normal margins and use this special
case to demonstrate the estimation theory through a simulation study.

When /(z) ¼ 1 � /z with / 2 (0, 1), aj ¼ /j, j ¼ 0, 1, . . . , and therefore the
corresponding J�rgensen and Song MA(1) takes the form

Xt ¼ et þ
X1
j¼1

At;jðet�j;/
jÞ

where the marginal distribution of thinning operator At,j(et�j; /
j) is

ED�(h, (1 � /)/jk) and et � ED�(h, (1 � /)k).
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It follows immediately that Xt ¼ Yt þ dt where the projection process is of the
Box and Jenkins AR(1) form

Yt ¼ /Yt�1 þ et;

and dt is a white noise with zero mean and variance equal to r2e/=ð1� /2Þ. It is
noted that the white noise variation is monotonically increasing in /; it drops
down to zero when / approaches zero and diverges to 1 when / tends to 1.

With the anticorruption coefficient x ¼ 1/(1 þ /), it is easy to see that the
ACVF of the AR(1) is

cxð0Þ ¼
r2e

1� /
; cxðhÞ ¼

/hr2e
1� /2

; h � 1

and the ACF of the process is

qxð1Þ ¼
/

1þ /
; qxðhÞ ¼ /h�1qxð1Þ ¼

/h

1þ /
; h � 2:

It follows from the Yule–Walker equation that the consistent estimators of /
and r2e are given by

/̂ ¼ q̂xð1Þ
1� q̂xð1Þ

and r̂2e ¼ ð1� /̂Þĉxð0Þ; ð17Þ

respectively, where both sample ACVF ĉxðhÞ and sample ACF q̂xðhÞ are strongly
consistent for each given lag h because of the ergodicity and stationarity of the
process.

There is a constraint in the application of the Yule–Walker equationmethod (17)
to obtain /̂. That is, the sample autocorrelation q̂xð1Þ at lag 1 has to be bounded by
1/2 in order to ensure /̂ < 1. When a time series is highly autocorrelated, q̂xð1Þmay
exceed such an upper bound, possibly because of the problem that the sample
variance underestimated the variance parameter cx(0). According to our simulation
studies in this section, this underestimation problem appeared frequently in cases of
short time series (n ¼ 100), but disappearedwhen time serieswas long (n ¼ 350). To
overcome this problem, we propose an alternative estimator that takes the ratio of
the first two sample autocorrelations q̂xðhÞ; h ¼ 1; 2, which hence dodges the use of
the sample variance in the estimation, namely,

/̂ ¼ q̂xð2Þ
q̂xð1Þ

¼ ĉxð2Þ
ĉxð1Þ

: ð18Þ

Estimates of / using the two methods (17) and (18), referred to as YW1 and
YW2, respectively, are reported and compared in Tables I and II in simulation
studies, for short time series with both Poisson and gamma margins.

In the meanwhile, from Section 4, we may write the Xt-process to be a Box and
Jenkins ARMA(1,1) process

Xt � /Xt�1 ¼ nt þ vnt�1
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where nt is a white noise with variance r2n. Let Zt ¼ ðXt � �X Þ=
ffiffiffiffiffiffiffiffiffiffiffi
V ð�X Þ

p
. Then the

estimates of parameters /, v and u2 can be obtained by maximizing the quasi-
likelihood function arising from the following Box and Jenkins ARMA(1, 1)
model:

Zt � /Zt�1 ¼ ft þ vft�1; ð19Þ

where ft � Nð0;u2
fÞ. Because of the fact that a linear transformation on Zt does

not change ACF, it is easy to see that

û2 ¼ ð1þ v̂2Þð1þ /̂Þ
1þ /̂� /̂2 þ /̂3

û2
f ;

and moreover, r̂2n ¼ û2
fV ð�X Þ.

Simulation studies based on the AR(1) model with Poisson and gamma margins
were conducted to illustrate the numerical computation and to compare two
estimation methods, YW1/YW2 and quasi-likelihood. The focus of the
comparison was only on estimation of the autocorrelation parameter /. In
connection with ED�(h, k), the Poisson case had the dispersion parameter u2 ¼
1/k ¼ 1 and the mean parameter l ¼ eh. For a given value of parameter /
2 f0.3, 0.5, 0.7, 0.9g, we generated an AR(1) time series of n counts,
n 2 f100, 350g at different mean parameters l 2 f5, 10, 20g, according to the
J�rgensen and Song model (8) on the basis of 100 terms:

Xt ¼ et þ
X100
j¼1

At;jðet�j;/
jÞ; ð20Þ

because /j, j >100 were virtually zero. For each simulated series, we computed
two Yule–Walker estimates based on eqns (17) and (18), and quasi-likelihood
estimate based on eqn (19), respectively. With every chosen setting of parameter
combination, these procedures were replicated 100 times, and the sample
averages and standard deviations of the resulting 100 estimates were tabulated
in Tables I and III.

What we learned from Table I was that the performances of both the Yule–
Walker and quasi-likelihood methods were not very stable for short time series
(n ¼ 100) of counts. We observed that as far as bias is concerned, the YW1 mostly
seemed to perform better than the other two, YW2 and QL, with small-or
medium-sized /, whereas the YW2 mostly appeared to outperform the other two,
YW1 and QL, with large-sized /. As far as the standard deviation is concerned,
the quasi-likelihood method apparently produced better estimation precision than
the other two, YW1 and YW2, with large-sized /; but with small-or medium-sized
/ the YW1 was actually the best.

When the length of time series increased to n ¼ 350, as shown in Table III
where the YW2 was not considered, both YW1 and quasi-likelihood methods
worked very well with little bias. It was clear that the quasi-likelihood was more
efficient than the YW method, with smaller standard deviations especially with
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large /. Our conclusion was that for long integer-valued series like n ¼ 350 the
quasi-likelihood method was recommended, while for short integer-valued series
like n ¼ 100, the YW1 was recommended for small-or medium-sized / and the
YW2 for large-sized /.

A similar simulation study was conducted to compare the Yule-Walker and
quasi-likelihood methods for the case of gamma margins. The gamma ED�(h, k)
gave the mean l ¼ 1/h, which was fixed as 1 in the simulation, and the dispersion
parameter u2 ¼ 1/k where k 2 f2, 5, 10g. Similarly, we took /
2 f0.3, 0.5, 0.7, 0.9g and generated AR(1) series using the finite truncation
representation (20). Again, 100 replications were run, and related summary
statistics were listed in Tables II and IV.

Similar conclusions can be drawn from this second simulation study. Based on
Table II, we learned that when / was <0.5, the YW1 performed better than the
other two for short time series, as it gave the smallest bias and standard deviation.
However, when / was �0.7, the YW2 and the quasi-likelihood were essentially
comparable, and they performed significantly better than the YW1. It is
important to point out that the application of the YW1 method should be very
cautious as it may give an estimate of / exceeding the upper bound 1, as indicated
by the boldfaced numbers in Table II.

TABLE III

The Sample Averages and Standard Deviations in Parentheses of the Quasi-likelihood (QL)

Estimator and the Yule–Walker (YW1) Estimator over 100 Replications for Poisson AR(1)

Series of Length n ¼ 350

True /

Mean parameter l

5 10 20

QL YW1 QL YW1 QL YW1

0.30 0.25 (0.23) 0.26 (0.22) 0.28 (0.24) 0.31 (0.24) 0.29 (0.21) 0.28 (0.27)
0.50 0.50 (0.13) 0.50 (0.13) 0.47 (0.14) 0.48 (0.15) 0.46 (0.14) 0.47 (0.14)
0.70 0.66 (0.10) 0.66 (0.12) 0.67 (0.10) 0.68 (0.13) 0.67 (0.09) 0.68 (0.11)
0.90 0.88 (0.05) 0.86 (0.11) 0.88 (0.04) 0.89 (0.10) 0.88 (0.05) 0.89 (0.11)

TABLE IV

The Sample Averages and Standard Deviations of the Quasi-likelihood (QL) Estimates and

the Yule–Walker (YW1) Estimates with 100 Replications for Gamma AR(1) Series Of

Length n ¼ 350

True /

Index parameter k

2 5 10

QL YW1 QL YW1 QL YW1

0.30 0.24 (0.23) 0.25 (0.24) 0.27 (0.22) 0.28 (0.26) 0.27 (0.21) 0.28 (0.22)
0.50 0.46 (0.16) 0.50 (0.15) 0.48 (0.11) 0.49 (0.13) 0.47 (0.13) 0.48 (0.13)
0.70 0.67 (0.09) 0.68 (0.11) 0.67 (0.06) 0.68 (0.07) 0.69 (0.06) 0.70 (0.07)
0.90 0.88 (0.04) 0.89 (0.06) 0.88 (0.04) 0.88 (0.05) 0.89 (0.04) 0.89 (0.04)
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However, when the length of time series increased to n ¼ 350, such an
problematic estimation given by the YW1 disappeared. Table IV summarizes the
results of the simulation study based on long gamma time series.

From Table IV, both methods performed very well, and the quasi-likelihood
method appeared to be slightly more efficient than the YW1 method. Again, in
this case, bias became marginal, which implied that both methods provided
consistent estimates of / when the time series was long.

6. ANALYSIS OF MYOCLONIC SEIZURES

We now apply the proposed model to analyze the daily myoclonic seizure counts.
The data have previously been analysed by Le et al. (1992) using a two-state
Markov mixture model and MacDonald and Zucchini (1997) using a hidden
Markov model. (Also see Albert, 1991 for a similar analysis of epileptic seizure
counts using a two-state Markov mixture model.) Hopkins et al. (1985) pointed
out that the behaviour of an individual’s susceptibility to seizures may be
addressed reasonably by a Markov process. Franke and Seligmann (1993) used a
Poisson AR(1) analogue based on the binomial thinning to model time series of
seizure counts. However, their method was developed based only on the first-
order Markov process, and the extension of their method to high-order processes
seemed to be intricate. In contrast, our method is flexible and applicable to
different ARMA models, with little restriction on the orders of the chosen models.
This flexibility gives rise to a great deal of ease in fitting a non-normal time-series
data to various models and consequently in selecting suitable models for data
analysis. We used the S-Plus function arima.mle() to obtain the parameter
estimates in this data analysis.

Assume that the time series of 204 daily seizure counts of an individual follows
a J�rgensen and Song AR(p) model. Refer to Figure 1 of Le et al. (1992) for the
time-series plot of the raw data. Based on sample ACF and partial ACF of the
data, four candidate AR models with orders p ¼ 1, 2, 3 and 4 were chosen to fit
the data, and the quasi-likelihood approach enabled us to compute Akaike’s
information criterion (AIC) for the corresponding Box and Jenkins ARMA(p, p).
The four AIC values were 617.2786, 613.6754, 608.4537 and 607.9489,
respectively, starting from p ¼ 1. In the light of these AIC values, the
J�rgensen and Song AR(4) model having the smallest AIC value was selected
for the further analysis.

The condition of causality was confirmed since the four roots of the resulting
AR polynomial /(z) ¼ 1 � 0.098z � 0.507z2 � 0.547z3 þ 0.258z4 all stayed
outside the unitary circle, as shown in Figure 1(a). This implied that the
coefficients aj, j � 0 existed, which were obtained by the recursions (7). Moreover,
the anticorruption coefficient was estimated as x̂ ¼ 0:354 based on eqn (11),
where we used 500 âj terms to calculate

P
a2j . Note that these 500 aj’s were

sufficient to attain the desirable precision.
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To compare our approach with the two-state Poisson-hidden Markov model
used by MacDonald and Zucchini (1997, Sect. 4.3) to fit the data, we plotted the
autocorrelation functions of the three fitted models in Figure 1(b) over the first 20
lags, together with the sample autocorrelation function indicated by circles.
Overall, the two ACFs of the J�rgensen and Song AR(4) (the solid line) and
MacDonald and Zucchini’s hidden Markov model (the dotted line) are fairly
comparable, and the small difference at the first five lags between them is partly
caused by the inclusion of the moving average structure induced from the residual
dt (or the measurement error) term for the parameter estimation in the J�rgensen
and Song AR(4) model.

In addition, the quasi-likelihood estimate of the scale parameter u2 from the
J�rgensen amd Song AR(4) model was 1.15, indicating no overdispersion. This
implied that the Poisson margin assumption seemed to be suitable for the data.We
also obtained r̂2d ¼ 0:597, so the estimated standard deviation between the

observed process and the projection process was
ffiffiffiffiffi
r̂2d

q
¼ 0:773, which seemed to

be moderate. When the residual term dt was ignored and the data were directly
fitted to the Box and Jenkins AR(4) model, the resulting ACF of this model was
plotted as the broken line in Figure 1(b). This ACF seemed only able to capture
the sample ACF at the first five lags, and it then quickly departed away from the
sample ACF at the rest of lags. This suggests that recognizing data nature (which
is the count data in this example) and utilizing such information in the analysis
can help us to better capture the overall pattern of the ACF.

Although the AIC is useful to select a desirable model from a pool of
candidate models, some other aspects of model assumptions should be checked
in a data analysis. Because of the connection between the J�rgensen and Song
models and the Box and Jenkins models, some available model diagnostics with
the Box and Jenkins ARMA models may be applied for the J�rgensen and Song

•
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Figure 1. (a) The positions of the four roots from the projection AR(4) models relative to the unitary
circle. The roots are indicated by dots. (b) The circles indicate the sample ACF of the myoclonic seizure
data, the solid line stands for the ACF of the J�rgensen and Song AR(4) model, the dotted line
represents the ACF of the two-state hidden Markov model, and the broken line denotes the ACF of the

Box and Jenkins AR(4) model.

859ARMA MODELS WITH EXPONENTIAL DISPERSION MARGINS

� Blackwell Publishing Ltd 2005



models. In this data analysis example, we used the S-Plus function arima.diag()
to confirm the stationarity and the order p of the AR(4) model through the
Ljung–Box test.

7. DISCUSSION

Both Yule–Walker estimation and the quasi-likelihood estimation proposed in
this paper are carried out by only using the first two moments of the J�rgensen
and Song ARMA(p, q) processes. As pointed out above, the quasi-likelihood
approach requires a full specification of the autocovariance matrix that pertains
to the mean–variance relation, which makes the connection of the quasi-
likelihood approach to the assumed marginal distribution. In contrast, a full
likelihood approach relies on the joint distributions and hence on entirely the
assumed marginal distribution, not just its first two moments. Since the J�rgensen
and Song models are defined by linear processes in a unified framework, the
closed-form expressions of the joint density functions are generally unavailable,
unless the margin is the normal distribution. Thus, the full likelihood method
seems to be feasible only for the model with the normal margin. More studies are
necessary for improving the estimation efficiency.

In general, the quasi-likelihood estimation is the method recommended for
inference in the J�rgensen and Song models, because it has some useful properties
as far as data analysis is concerned. First, this method works for general ARMA
models, as opposed to that Yule–Walker method works mainly for AR models;
second, the quasi-likelihood method allows us to jointly estimate the dispersion
parameter and autocorrelation parameters; third, this method enables us to carry
out the model selection and some model diagnostics. In addition, the numerical
calculations associated with this method are straightforward and can be done
using the existing software packages.

We found from the simulation studies that the marginal mean lx can be
reasonably estimated by the sample mean �X , regardless of the length of time
series, but this was not the case for the marginal variance parameter cx(0)
especially when time series is short. Instead of using the sample variance to
estimate cx(0), a better way is first to estimate the dispersion parameter via the
quasi-likelihood approach, and then to estimate the cx(0) via the mean–variance
relation for a given ED model.

Checking model assumptions is an important part of statistical analysis. There
are several aspects of the J�rgensen and Song models that can be checked by
certain model diagnostics. In the analysis of the time series of seizure counts, the
quasi-likelihood method produced an estimate of the overdispersion parameter
that was used to select a margin between Poisson and negative binomial
distributions, respectively corresponding to the absence and the presence of
overdispersion. For a positive continuous time series, we may start with the
Tweedie class of distributions (J�rgensen, 1997, Ch. 4) with the mean–variance
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relation varðXtÞ ¼ u2lrx; r 2 R n ð0; 1Þ, and then plot the AIC values against the
shape parameter r in a given interval range. Technically, the Tweedie model (or
the value of shape parameter r) with the smallest AIC would be selected as the
margin in a further analysis of the data.

To address the selection of the orders for the autoregression and moving
average structure, we may follow the current time series literature. This is because
the quasi-likelihood method essentially utilizes the Box–Jenkins� ARMA model in
the parameter estimation. For instance, the S-Plus function arima.diag() provides
a few model diagnostics that may be used for this purpose, as shown in the data
analysis example of this paper.
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