
Physics 506 Winter 2006

Homework Assignment #11 — Solutions

Textbook problems: Ch. 13: 13.1, 13.2, 13.3, 13.9

13.1 If the light particle (electron) in the Coulomb scattering of Section 13.1 is treated clas-
sically, scattering through an angle θ is correlated uniquely to an incident trajectory
of impact parameter b according to

b =
ze2

pv
cot

θ

2

where p = γmv and the differential scattering cross section is dσ
dΩ = b

sin θ

∣∣ db
dθ

∣∣.
a) Express the invariant momentum transfer squared in terms of impact parameter

and show that the energy transfer T (b) is

T (b) =
2z2e4

mv2

1

b2 + b
(c) 2
min

where b
(c)
min = ze2/pv and T (0) = Tmax = 2γ2β2mc2.

The invariant momentum transfer squared is defined as Q2 = −(p − p′)2 where
pµ and pµ ′ are the initial and final 4-momenta of the electron. Expanding this
out, and using p2 = p′2 = m2c2 gives

Q2 = 2(pµp′µ −m2c2) = 2(EE′/c2 −m2c2 − ~p · ~p ′) (1)

Now consider the center of mass frame, where the heavy particle is essentially sta-
tionary and the electron undergoes scattering by an angle θ. Since this is an elas-
tic scattering, we use conservation of energy to write E = E′ =

√
m2c4 + |~p |2c2.

In addition the scattering angle is related to 3-momentum transfer according to
~p · ~p ′ = |~p |2 cos θ. Inserting this into (1) for the Q2 invariant gives

Q2 = 2|~p |2(1− cos θ) = 4|~p |2 sin2 θ

2
= 4p2 sin2 θ

2

where in the final expression we simply use p to denote the magnitude of the
3-momentum ~p. Rewriting sin2 θ/2 in terms of cot2 θ/2 according to

sin2 θ
2 =

1
1 + cot2 θ

2

and inserting the relation between b and θ given above results in

Q2 =
(

2ze2

v

)2 1

b2 + b
(c) 2
min

(2)



with b
(c)
min = ze2/pv.

We now examine the kinetic energy transfer in the lab frame. In this frame, the
electron is initially at rest. Hence E = mc2 and ~p = 0. Inserting this into (1)
gives

Q2 = 2m(E′ −mc2) = 2mT

where T ≡ E′ −mc2 is the kinetic energy transfer. Finally, using this relation
Q2 = 2mT in (2) gives

T =
2z2e4

mv2

1

b2 + b
(c) 2
min

(3)

b) Calculate the small transverse impulse ∆p given to the (nearly stationary) light
particle by the transverse electric field (11.152) of the heavy particle q = ze as it
passes by at large impact parameter b in a (nearly) straight line path at speed v.
Find the energy transfer T ≈ (∆p)2/2m in terms of b. Compare with the exact
classical result of part a). Comment.

The transverse electric field of (11.152) is given by

E⊥ =
qγb

(b2 + γ2v2t2)3/2

We now calculate the impulse according to

∆p⊥ =
∫

F⊥ dt = e

∫
E⊥ dt = ze2γb

∫
dt

(b2 + γ2v2t2)3/2

where we used q = ze for the charge of the heavy particle. This integral can be
performed by trig substitution t = (b/γv) tan θ with the result

∆p =
ze2

bv

∫ π/2

−π/2

sin θ dθ =
2ze2

bv

As a result, the energy transfer is approximately

T ≈ (∆p)2

2m
=

2z2e4

mv2

1
b2

(4)

This is similar to the exact classical result (3), with the exception that the b
(c) 2
min

term is missing. That this term is missing is actually not surprising, because we
have assumed the particle passes by at large impact parameter. This is essentially
the limit b � b

(c)
min, and it corresponds to having almost no deflection from the

straight line path. When the impact parameter gets too small, the electron suffers
a large deflection, and the straight line approximation breaks down. Thus instead
of going to infinity as this approximate result does, the exact result (3) remains
finite as b → 0.



13.2 Time-varying electromagnetic fields ~E(~x, t) and ~B(~x, t) of finite duration act on a
charged particle of charge e and mass m bound harmonically to the origin with natural
frequency ω0 and small damping constant Γ. The fields may be caused by a passing
charged particle or some other external source. The charge’s motion in response to
the fields is nonrelativistic and small in amplitude compared to the scale of spatial
variation of the fields (dipole approximation). Show that the energy transferred to
the oscillator in the limit of very small damping is

∆E =
πe2

m
| ~E(ω0)|2

where ~E(ω) is the symmetric Fourier transform of ~E(0, t):

~E(0, t) =
1√
2π

∫ ∞

−∞
~E(ω)e−iωtdω, ~E(ω) =

1√
2π

∫ ∞

−∞
~E(0, t)eiωtdt

The classical dynamics of the charged particle is given by ~F = m~a

m~̈x = −mω2
0~x−mΓ~̇x + e ~E(~x, t) +

e

c
~̇x× ~B(~x, t)

In general, the Lorentz force terms are non-linear in displacement ~x(t). However
for small amplitudes we may replace ~E(~x, t) ≈ ~E(0, t) and ~B(~x, t) ≈ ~B(0, t) on
the right hand side. This gives the equation

~̈x + Γ~̇x + ω2
0~x =

e

m
~E(t) +

e

mc
~̇x× ~B(t)

Note that this equation is still rather awkward to solve because of the magnetic
field coupling. Fortunately, this ~̇x × ~B term can also be dropped at the same
linearized level of approximation. This is because it can be treated as a pertur-
bation: if ~x is first order in the external fields, the ~̇x × ~B will be second order.
As a result, we have the familiar damped driven harmonic oscillator

~̈x + Γ~̇x + ω2
0~x =

e

m
~E(t)

with frequency domain solution

~x(ω) =
e/m

ω2
0 − ω2 − iωΓ

~E(ω) (5)

The energy transfer is then obtained by integrating the power

∆E =
∫ ∞

−∞
~F (t) · ~̇x(t) dt = e

∫ ∞

−∞
~E(t) · ~̇x(t) dt



This may be converted into the frequency domain using Parseval’s relation (or
the convolution theorem)

∆E = e

∫ ∞

−∞
~̇x(ω) · ~E∗(ω) dω

Substituting in (5) and expressing d/dt in frequency space then gives

∆E =
e2

m

∫ ∞

−∞

−iω

ω2
0 − ω2 − iωΓ

| ~E(ω)|2dω

=
e2

m
2<

∫ ∞

0

−iω

ω2
0 − ω2 − iωΓ

| ~E(ω)|2dω

=
2e2

m

∫ ∞

0

ω2Γ
(ω2 − ω2

0)2 + ω2Γ2
| ~E(ω)|2dω

This general expression simplifies in the limit Γ → 0 where the fraction in the
integrand becomes a delta function

lim
Γ→0

ω2Γ
(ω2 − ω2

0)2 + ω2Γ2
=

π

2
[δ(ω − ω0) + δ(ω + ω0)]

This gives

lim
Γ→0

∆E =
πe2

m
| ~E(ω0)|2 (6)

13.3 The external fields of Problem 13.2 are caused by a charge ze passing the origin in a
straight-line path at speed v and impact parameter b. The fields are given by (11.152).

a) Evaluate the Fourier transforms for the perpendicular and parallel components
of the electric field at the origin and show that

E⊥(ω) =
ze

bv

(
2
π

)1/2

ξK1(ξ), E‖(ω) = −i
ze

γbv

(
2
π

)1/2

ξK0(ξ)

where ξ = ωb/γv, and Kν(ξ) is the modified Bessel function of the second kind
and order ν.

The external fields for a charge ze are given by

E‖ =
−zeγvt

(b2 + γ2v2t2)3/2
, E⊥ =

zeγb

(b2 + γ2v2t2)3/2
(7)

Before evaluating the Fourier transforms, we recall that the modified Bessel func-
tions K0 and K1 may be defined by

K0(x) =
∫ ∞

0

cos(xt)
(t2 + 1)1/2

dt, K1(x) =
∫ ∞

0

t sin(xt)
(t2 + 1)1/2

dt



Based on symmetry/antisymmetry, these may be extended to the entire real line

K0(x) =
1
2

∫ ∞

−∞

eixt

(t2 + 1)1/2
dt, K1(x) =

1
2i

∫ ∞

−∞

teixt

(t2 + 1)1/2
dt

Comparing these expressions to (7), we see some similarities. However, the de-
nominators in (7) are raised to the 3/2 power. This suggests that we integrate
by parts to obtain the transform expressions∫ ∞

−∞

teixt

(t2 + 1)3/2
dt = 2ixK0(x),

∫ ∞

−∞

eixt

(t2 + 1)3/2
dt = 2xK1(x)

We are now ready to evaluate the Fourier transforms. For E⊥, we have

E⊥(ω) =
1√
2π

∫ ∞

−∞

zeγb

(b2 + γ2v2t2)3/2
eiωtdt

=
zeγ

b2
√

2π

∫ ∞

−∞

eiωt

(1 + (γvt/b)2)3/2
dt

=
ze

bv
√

2π

∫ ∞

∞

eiξt′

(1 + t′2)3/2
dt′ =

ze

bv

√
2
π

ξK1(ξ)

(8)

where we made the change of variables t′ = γvt/b and introduced the parameter
ξ = ωb/γv. The transform for E‖ is similar

E‖(ω) = − 1√
2π

∫ ∞

−∞

zeγvt

(b2 + γ2v2t2)3/2
eiωtdt

= − zeγv

b3
√

2π

∫ ∞

−∞

teiωt

(1 + (γvt/b)2)3/2
dt

= − ze

γbv
√

2π

∫ ∞

−∞

t′eiξt′

(1 + t′2)3/2
dt′ = −i

ze

γbv

√
2
π

ξK0(ξ)

(9)

b) Using the result of Problem 13.2, write down the energy transfer ∆E to a har-
monically bound charged particle. From the limiting forms of the modified Bessel
functions for small and large argument, show that your result agrees with the ap-
propriate limit of T (b) in Problem 13.1 on the one hand and the arguments at
the end of Section 13.1 on the adiabatic behavior for b � γv/ω0 on the other.

The energy transfer ∆E is approximately given by (6)

∆E =
πe2

m
| ~E(ω0)|2

Substituting in E⊥ and E‖ from (8) and (9) gives

∆E =
2z2e4

mv2

ξ2
0 [K1(ξ0)2 + γ−2K0(ξ0)2]

b2



where ξ0 = ω0b/γv.

Note that the adiabatic regime is governed by the scale of b compared to b
(c)
max ≡

γv/ω0. In particular, since ξ0 = b/b
(c)
max the two regimes of interest (small and

large impact parameter) correspond directly to small and large argument of the
modified Bessel functions. In the small impact parameter regime b � b

(c)
max we

expand

K0(ξ) = − ln
(

ξeγ

2

)
+ · · · , K1(ξ) =

1
ξ

+ · · ·

Thus

∆E ≈ 2z2e4

mv2

1 + (γ−1ξ ln(ξeγ/2))2

b2
≈ 2z2e4

mv2

1
b2

(ξ → 0)

This agrees with the large (but not so large as to be in the adiabatic regime)
impact parameter limit expression (4) of the previously computed energy transfer.
(Note that Problem 13.1 concerned a free electron, namely ω0 → 0 or b

(c)
max →∞.)

Of course this expression breaks down for zero impact parameter for the same
reason that (4) breaks down. Finally, for large impact parameters b � b

(c)
max, we

use the asymptotic expansion

Kν(ξ) ∼
√

π

2ξ
e−ξ

In this case, we obtain

∆E ∼ πz2e4

mv2

(1 + γ−2)e−2b/b(c)
max

b b
(c)
max

This vanishes exponentially as e−2b/b(c)
max , which agrees with the notion that there

is no significant energy transfer in the adiabatic limit (corresponding to b > b
(c)
max).

13.9 Assuming that Plexiglas or Lucite has an index of refraction of 1.50 in the visible
region, compute the angle of emission of visible Cherenkov radiation for electrons and
protons as a function of their kinetic energies in MeV. Determine how many quanta
with wavelengths between 4000 and 6000 Å are emitted per centimeter of path in
Lucite by a 1MeV electron, a 500MeV proton, and a 5 GeV proton.

The Cherenkov angle is given by cos θc = 1/nβ. To obtain the velocity β from
the kinetic energy, we note that T = E −mc2 = (γ − 1)mc2. Solving this for β
yields

β =

√
(T/mc2)(2 + T/mc2)

1 + T/mc2
(10)

As a result

cos θc =
1 + T/mc2

n
√

(T/mc2)(2 + T/mc2)



There is of course a lower threshold for kinetic energy, T > Tmin, where

Tmin/mc2 =
n√

n2 − 1
− 1

For n = 1.5, this lower threshold is Tmin/mc≈0.342, and a plot of the Cherenkov
angle versus kinetic energy looks like
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Note that the maximum opening angle is θmax = cos−1(1/1.50) = 48◦. For
electrons (rest mass me = 0.511 MeV) and protons (rest mass mp = 938MeV),
we may plot the opening angle as a function of kinetic energy in MeV units. On
the same scale, the result is
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We clearly see that electrons are essentially relativistic throughout the entire MeV
and beyond energy range.

To compute the number of quanta N emitted, we note that a single photon carries
a quantum unit of energy h̄ω. As a result, the Cherenkov energy expression

d2E

dωdx
=

z2e2

c2
ω

(
1− (nβ)−2

)
directly yields

d2N
dωdx

=
z2α

c

(
1− (nβ)−2

)
where we used the fine structure constant α = e2/h̄c. This indicates that the
number of quanta per unit frequency range is independent of frequency. Since



the problem is interested in a range of wavelengths, we may use the relation
ω = 2πc/nλ (taking into account the speed of light in a medium vp = c/n) to
write

d2N
dλdx

=
2πz2α

nλ2

(
1− (nβ)−2

)
Assuming the index of refraction is independent of λ (at least in the range of
wavelengths of interest), a simple integration gives

dN
dx

=
2πz2α

n

(
1− (nβ)−2

) (
1

λmin
− 1

λmax

)
For α = 1/137.036, z = 1 (single electron or proton), n = 1.50, λmin = 4000 Å =
4× 10−5 cm and λmax = 6000 Å = 6× 10−5 cm, the above expression becomes

dN
dx

≈ 255(1− 0.444/β2) cm−1

where β may be obtained from (10). The number of photons emitted for the
three requested cases are then

particle β θc # photons/cm
1 MeV electron 0.941 45◦ 130
500 MeV proton 0.758 28◦ 58
5 GeV proton 0.987 47.5◦ 140

Finally, note that there is a slight ambiguity in specifying the wavelengths be-
tween 4000 and 6000 Å. Here we have taken the wavelengths as measured inside
the Lucite. However, if the wavelengths are specified in vacuum, we would have
an extra index of refraction factor according to λ = λ0/n where λ0 is the wave-
length in vacuum. This ambiguity could have easily been avoided by specifying a
frequency range, although the spectrum of visible light is conventionally specified
by wavelengths.


