Homework Assignment \#10 - Solutions

Textbook problems: Ch. 12: 12.15, 12.16, 12.19, 12.20
12.15 Consider the Proca equations for a localized steady-state distribution of current that has' only a static magnetic moment. This model can be used to study the observable effects of a finite photon mass on the earths magnetic field. Note that if the magnetization is $\overrightarrow{\mathcal{M}}(\vec{x})$ the current density can be written as $\vec{J}=c(\vec{\nabla} \times \overrightarrow{\mathcal{M}})$.
a) Show that if $\overrightarrow{\mathcal{M}}=\vec{m} f(\vec{x})$, where \vec{m} is a fixed vector and $f(\vec{x})$ is a localized scalar function, the vector potential is

$$
\vec{A}(\vec{x})=-\vec{m} \times \vec{\nabla} \int f\left(\vec{x}^{\prime}\right) \frac{e^{-\mu\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}
$$

In the static limit, the Proca equation

$$
\left[\partial^{\lambda} \partial_{\lambda}+\mu^{2}\right] A_{\mu}=\frac{4 \pi}{c} J_{\mu}
$$

takes the form

$$
\left[\nabla^{2}-\mu^{2}\right] A_{\mu}=-\frac{4 \pi}{c} J_{\mu}
$$

This admits a time independent Greens' function solution

$$
A_{\mu}(x)=\frac{1}{c} \int J_{\mu}\left(x^{\prime}\right) G\left(x, x^{\prime}\right) d^{3} x^{\prime}
$$

where

$$
G\left(x, x^{\prime}\right)=\frac{e^{-\mu\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|}
$$

Taking $\vec{J}=c(\vec{\nabla} \times \overrightarrow{\mathcal{M}})$ with $\overrightarrow{\mathcal{M}}=\vec{m} f(\vec{x})$ gives

$$
\vec{J}=c \vec{\nabla} \times(\vec{m} f(\vec{x}))=c \vec{\nabla} f \times \vec{m}=-c \vec{m} \times \vec{\nabla} f
$$

Then

$$
\vec{A}=-\vec{m} \times \int \vec{\nabla}^{\prime} f\left(\vec{x}^{\prime}\right) \frac{e^{-\mu\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}
$$

Integration by parts (assuming the surface term vanishes since the source is localized) gives

$$
\begin{aligned}
\vec{A} & =\vec{m} \times \int f\left(\vec{x}^{\prime}\right) \vec{\nabla}^{\prime}\left(\frac{e^{-\mu\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|}\right) d^{3} x^{\prime} \\
& =-\vec{m} \times \int f\left(\vec{x}^{\prime}\right) \vec{\nabla}\left(\frac{e^{-\mu\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|}\right) d^{3} x^{\prime} \\
& =-\vec{m} \times \vec{\nabla} \int f\left(\vec{x}^{\prime}\right) \frac{e^{-\mu\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}
\end{aligned}
$$

where we made use of the fact that $\vec{\nabla}^{\prime} G\left(x, x^{\prime}\right)=-\vec{\nabla} G\left(x, x^{\prime}\right)$.
$b)$ If the magnetic dipole is a point dipole at the origin $[f(\vec{x})=\delta(\vec{x})]$, show that the magnetic field away from the origin is

$$
\vec{B}(\vec{x})=[3 \hat{r}(\hat{r} \cdot \vec{m})-\vec{m}]\left(1+\mu r+\frac{\mu^{2} r^{2}}{3}\right) \frac{e^{-\mu r}}{r^{3}}-\frac{2}{3} \mu^{2} \vec{m} \frac{e^{-\mu r}}{r}
$$

For $f(\vec{x})=\delta(\vec{x})$ the resulting vector potential is

$$
\vec{A}=-\vec{m} \times \vec{\nabla}\left(\frac{e^{-\mu r}}{r}\right)=(1+\mu r) \frac{e^{-\mu r}}{r^{3}} \vec{m} \times \vec{r}
$$

The magnetic field is then

$$
\begin{aligned}
\vec{B}=\vec{\nabla} \times \vec{A}= & \vec{\nabla}\left((1+\mu r) \frac{e^{-\mu r}}{r^{3}}\right) \times(\vec{m} \times \vec{r})+(1+\mu r) \frac{e^{-\mu r}}{r^{3}} \vec{\nabla} \times(\vec{m} \times \vec{r}) \\
= & -\left(3+3 \mu r+\mu^{2} r^{2}\right) \frac{e^{-\mu r}}{r^{3}} \hat{r} \times(\vec{m} \times \hat{r}) \\
& \quad+(1+\mu r) \frac{e^{-\mu r}}{r^{3}}(\vec{m}(\vec{\nabla} \cdot \vec{r})-(\vec{m} \cdot \vec{\nabla}) \vec{r}) \\
= & -\left(3+3 \mu r+\mu^{2} r^{2}\right) \frac{e^{-\mu r}}{r^{3}}(\vec{m}-\hat{r}(\hat{r} \cdot \vec{m}))+(2+2 \mu r) \frac{e^{-\mu r}}{r^{3}} \vec{m} \\
= & (3 \hat{r}(\hat{r} \cdot \vec{m})-\vec{m})\left(1+\mu r+\frac{\mu^{2} r^{2}}{3}\right) \frac{e^{-\mu r}}{r^{3}}-\frac{2}{3} \mu^{2} \vec{m} \frac{e^{-\mu r}}{r}
\end{aligned}
$$

$c)$ The result of part b) shows that at fixed $r=R$ (on the surface of the earth), the earth's magnetic field will appear as a dipole angular distribution, plus an added constant magnetic field (an apparently external field) antiparallel to \vec{m}. Satellite and surface observations lead to the conclusion that this "external" field is less than 4×10^{-3} times the dipole field at the magnetic equator. Estimate a lower limit on μ^{-1} in earth radii and an upper limit on the photon mass in grams from this datum.

At the magnetic equator we have $\hat{r} \cdot \vec{m}=0$. Hence

$$
\vec{B}_{\text {dipole }}=-\vec{m}\left(1+\mu R+\frac{\mu^{2} R^{2}}{3}\right) \frac{e^{-\mu R}}{R^{3}}, \quad \vec{B}_{\text {external }}=-\vec{m}\left(\frac{2}{3} \mu^{2} R^{2}\right) \frac{e^{-\mu R}}{R^{3}}
$$

Setting $\left|\vec{B}_{\text {dipole }}\right| /\left|\vec{B}_{\text {external }}\right|<4 \times 10^{-3}$ gives

$$
\frac{2}{3}(\mu R)^{2}<4 \times 10^{-3}\left(1+\mu R+\frac{1}{3}(\mu R)^{2}\right)
$$

or $\mu R<0.08$. The lower limit on μ^{-1} is then

$$
\mu^{-1}>12.5 R=8.0 \times 10^{9} \mathrm{~cm}
$$

where we have used the radius of the earth $R=6.38 \times 10^{8} \mathrm{~cm}$. This corresponds to an upper limit on the photon mass

$$
m=\frac{\mu \hbar}{c}=\frac{1.05 \times 10^{-27} \mathrm{erg} \mathrm{~s}}{\left(8.0 \times 10^{9} \mathrm{~cm}\right)\left(3 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)}=4.4 \times 10^{-48} \mathrm{gm}
$$

12.16 a) Starting with the Proca Lagrangian density (12.91) and following the same procedure as for the electromagnetic fields, show that the symmetric stress-energymomentum tensor for the Proca fields is

$$
\Theta^{\alpha \beta}=\frac{1}{4 \pi}\left[g^{\alpha \gamma} F_{\gamma \lambda} F^{\lambda \beta}+\frac{1}{4} g^{\alpha \beta} F_{\lambda \nu} F^{\lambda \nu}+\mu^{2}\left(A^{\alpha} A^{\beta}-\frac{1}{2} g^{\alpha \beta} A_{\lambda} A^{\lambda}\right)\right]
$$

The Proca Lagrangian density is

$$
\mathcal{L}=-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}+\frac{1}{8 \pi} \mu^{2} A_{\mu} A^{\mu}
$$

Since

$$
T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \mathcal{A}_{\lambda}} \partial^{\nu} A_{\lambda}-\eta^{\mu \nu} \mathcal{L}
$$

we find

$$
T^{\mu \nu}=-\frac{1}{4 \pi} F^{\mu \lambda} \partial^{\nu} A_{\lambda}+\frac{1}{16 \pi} \eta^{\mu \nu} F^{2}-\frac{1}{8 \pi} \mu^{2} \eta^{\mu \nu} A^{2}
$$

where we have used a shorthand notation $F^{2} \equiv F_{\mu \nu} F^{\mu \nu}$ and $A^{2} \equiv A_{\mu} A^{\mu}$. In order to convert this canonical stress tensor to the symmetric stress tensor, we write $\partial^{\nu} A_{\lambda}=F^{\nu}{ }_{\lambda}+\partial_{\lambda} A^{\nu}$. Then

$$
\begin{aligned}
T^{\mu \nu} & =-\frac{1}{4 \pi}\left[F^{\mu \lambda} F_{\lambda}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F^{2}+\frac{1}{2} \mu^{2} \eta^{\mu \nu} A^{2}\right]-\frac{1}{4 \pi} F^{\mu \lambda} \partial_{\lambda} A^{\nu} \\
& =-\frac{1}{4 \pi}\left[F^{\mu \lambda} F_{\lambda}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F^{2}+\frac{1}{2} \mu^{2} \eta^{\mu \nu} A^{2}-\left(\partial_{\lambda} F^{\mu \lambda}\right) A^{\nu}\right]-\frac{1}{4 \pi} \partial_{\lambda}\left(F^{\mu \lambda} A^{\nu}\right)
\end{aligned}
$$

Using the Proca equation of motion $\partial_{\lambda} F^{\lambda \mu}+\mu^{2} A^{\mu}=0$ then gives

$$
T^{\mu \nu}=\Theta^{\mu \nu}+\partial_{\lambda} S^{\lambda \mu \nu}
$$

where

$$
\begin{equation*}
\Theta^{\mu \nu}=-\frac{1}{4 \pi}\left[F^{\mu \lambda} F_{\lambda}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F^{2}-\mu^{2}\left(A^{\mu} A^{\nu}-\frac{1}{2} \eta^{\mu \nu} A^{2}\right)\right] \tag{1}
\end{equation*}
$$

is the symmetric stress tensor and $S^{\lambda \mu \nu}=(1 / 4 \pi) F^{\lambda \mu} A^{\nu}$ is antisymmetric on the first two indices.
b) For these fields in interaction with the external source J^{β}, as in (12.91), show that the differential conservation laws take the same form as for the electromagnetic fields, namely

$$
\partial_{\alpha} \Theta^{\alpha \beta}=\frac{J_{\lambda} F^{\lambda \beta}}{c}
$$

Taking a 4-divergence of the symmetric stress tensor (1) gives

$$
\begin{aligned}
\partial_{\mu} \Theta^{\mu \nu}= & -\frac{1}{4 \pi}\left[\partial_{\mu} F^{\mu \lambda} F_{\lambda}^{\nu}+F^{\mu \lambda} \partial_{\mu} F_{\lambda}^{\nu}-\frac{1}{2} F_{\rho \lambda} \partial^{\nu} F^{\rho \lambda}\right. \\
& \left.\quad-\mu^{2}\left(\partial_{\mu} A^{\mu} A^{\nu}+A^{\mu} \partial_{\mu} A^{\nu}-A^{\lambda} \partial^{\nu} A_{\lambda}\right)\right] \\
= & -\frac{1}{4 \pi}\left[\partial_{\mu} F^{\mu \lambda} F_{\lambda}^{\nu}+\frac{1}{2} F_{\rho \lambda}\left(2 \partial^{\rho} F^{\nu \lambda}-\partial^{\nu} F^{\rho \lambda}\right)+\mu^{2} A^{\lambda}\left(\partial^{\nu} A_{\lambda}-\partial_{\lambda} A^{\nu}\right)\right] \\
= & -\frac{1}{4 \pi}\left[\left(\partial_{\mu} F^{\mu \lambda}+\mu^{2} A^{\lambda}\right) F_{\lambda}^{\nu}+\frac{1}{2} F_{\rho \lambda}\left(\partial^{\rho} F^{\nu \lambda}+\partial^{\lambda} F^{\rho \nu}+\partial^{\nu} F^{\lambda \rho}\right)\right] \\
= & -\frac{1}{c} J^{\lambda} F_{\lambda}^{\nu}=\frac{1}{c} J_{\lambda} F^{\lambda \nu}
\end{aligned}
$$

Note that in the second line we have used the fact that $\partial_{\mu} A^{\mu}=0$, which is automatic for the Proca equation. To obtain the last line, we used the Bianchi identity $3 \partial^{[\rho} F^{\nu \lambda]}=0$ as well as the Proca equation of motion.
c) Show explicitly that the time-time and space-time components of $\Theta^{\alpha \beta}$ are

$$
\begin{aligned}
\Theta^{00} & =\frac{1}{8 \pi}\left[E^{2}+B^{2}+\mu^{2}\left(A^{0} A^{0}+\vec{A} \cdot \vec{A}\right)\right] \\
\Theta^{i 0} & =\frac{1}{4 \pi}\left[(\vec{E} \times \vec{B})_{i}+\mu^{2} A^{i} A^{0}\right]
\end{aligned}
$$

Given the explicit form of the Maxwell tensor, it is straightforward to show that

$$
F^{2} \equiv F_{\mu \nu} F^{\mu \nu}=-2\left(E^{2}-B^{2}\right), \quad A^{2} \equiv A_{\mu} A^{\mu}=\left(A^{0}\right)^{2}-\vec{A}^{2}
$$

Thus

$$
\Theta \mu \nu=-\frac{1}{4 \pi}\left[F^{\mu \lambda} F_{\lambda}^{\nu}+\frac{1}{2} \eta^{\mu \nu}\left(E^{2}-B^{2}\right)-\mu^{2}\left(A^{\mu} A^{\nu}-\frac{1}{2} \eta^{\mu \nu}\left(\left(A^{0}\right)^{2}-\vec{A}^{2}\right)\right)\right]
$$

The time-time component of this is

$$
\begin{aligned}
\Theta^{00} & =-\frac{1}{4 \pi}\left[F^{0 i} F_{i}^{0}+\frac{1}{2}\left(E^{2}-B^{2}\right)-\mu^{2}\left(\left(A^{0}\right)^{2}-\frac{1}{2}\left(\left(A^{0}\right)^{2}-\vec{A}^{2}\right)\right)\right] \\
& =-\frac{1}{4 \pi}\left[-\frac{1}{2}\left(E^{2}+B^{2}\right)-\frac{1}{2} \mu^{2}\left(\left(A^{0}\right)^{2}+\vec{A}^{2}\right)\right] \\
& =\frac{1}{8 \pi}\left[E^{2}+B^{2}+\mu^{2}\left(\left(A^{0}\right)^{2}+\vec{A}^{2}\right)\right]
\end{aligned}
$$

Similarly, the time-space components are

$$
\begin{aligned}
\Theta^{0 i} & =-\frac{1}{4 \pi}\left[F^{0}{ }_{j} F^{i j}-\mu^{2} A^{0} A^{i}\right]=-\frac{1}{4 \pi}\left[E^{j}\left(-\epsilon_{i j k} B^{k}\right)-\mu^{2} A^{0} A^{i}\right] \\
& =-\frac{1}{4 \pi}\left[-\epsilon_{i j k} E^{j} B^{k}-\mu^{2} A^{0} A^{i}\right]=\frac{1}{4 \pi}\left[(\vec{E} \times \vec{B})^{i}+\mu^{2} A^{0} A^{i}\right]
\end{aligned}
$$

12.19 Source-free electromagnetic fields exist in a localized region of space. Consider the various conservation laws that are contained in the integral of $\partial_{\alpha} M^{\alpha \beta \gamma}=0$ over all space, where $M^{\alpha \beta \gamma}$ is defined by (12.117).
a) Show that when β and γ are both space indices conservation of the total field angular momentum follows.

Note that

$$
M^{\alpha \beta \gamma}=\Theta^{\alpha \beta} x^{\gamma}-\Theta^{\alpha \gamma} x^{\beta}
$$

Hence

$$
M^{0 i j}=\Theta^{0 i} x^{j}-\Theta^{0 j} x^{i}=c\left(g^{i} x^{j}-g^{j} x^{i}\right)=c \epsilon^{i j k}(\vec{g} \times \vec{x})^{k}=-c \epsilon^{i j k}(\vec{x} \times \vec{g})^{k}
$$

where \vec{g} is the linear momentum density of the electromagnetic field. Since $\vec{x} \times \vec{g}$ is the angular momentum density, integrating $M^{0 i j}$ over 3 -space gives the field angular momentum

$$
M^{i j} \equiv \int M^{0 i j} d^{3} x=-c \epsilon^{i j k} \int(\vec{x} \times \vec{g})^{k} d^{3} x=-c \epsilon^{i j k} L^{k}
$$

The conservation law $\partial_{\mu} M^{\mu i j}=0$ then corresponds to the conservation of angular momentum in the electromagnetic field.
b) Show that when $\beta=0$ the conservation law is

$$
\frac{d \vec{X}}{d t}=\frac{c^{2} \vec{P}_{\mathrm{em}}}{E_{\mathrm{em}}}
$$

where \vec{X} is the coordinate of the center of mass of the electromagnetic fields, defined by

$$
\vec{X} \int u d^{3} x=\int \vec{x} u d^{3} x
$$

where u is the electromagnetic energy density and $E_{\text {em }}$ and \vec{P}_{em} are the total energy and momentum of the fields.

In this case, we have

$$
\begin{aligned}
M^{0 i} \equiv \int M^{00 i} d^{3} x & =\int\left(\Theta^{00} x^{i}-\Theta^{0 i} x^{0}\right) d^{3} x \\
& =\int\left(u x^{i}-c g^{i} x^{0}\right) d^{3} x=\int\left(u x^{i}-c^{2} t g^{i}\right) d^{3} x
\end{aligned}
$$

Making use of the definition $\int u x^{i} d^{3} x=E X^{i}$ where $E=\int u d^{3} x$ is the total field energy, we have simply

$$
M^{0 i}=E X^{i}-c^{2} t P^{i}
$$

where $\vec{P}=\int \vec{g} d^{3} x$ is the (linear) field momentum. Since $M^{0 i}$ is a conserved charge, its time derivative must vanish. This gives

$$
0=\frac{d}{d t}(E \vec{X})-c^{2} \frac{d}{d t}(t \vec{P})=E \frac{d \vec{X}}{d t}-c^{2} \vec{P}
$$

(where we used the fact that energy and momentum are conserved, namely $d E / d t=0$ and $d \vec{P} / d t=0)$. The result $d \vec{X} / d t=c^{2} \vec{P} / E$ then follows.
12.20 A uniform superconductor with London penetration depth λ_{L} fills the half-space $x>0$. The vector potential is tangential and for $x<0$ is given by

$$
A_{y}=\left(a e^{i k x}+b e^{-i k x}\right) e^{-i \omega t}
$$

Find the vector potential inside the superconductor. Determine expressions for the electric and magnetic fields at the surface. Evaluate the surface impedance Z_{s} (in Gaussian units, $4 \pi / c$ times the ratio of tangential electric field to tangential magnetic field). Show that in the appropriate limit your result for Z_{s} reduces to that given in Section 12.9.

The behavior of the vector potential inside the superconductor may be described by the massive Proca equation

$$
\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\mu^{2}\right] \vec{A}=0
$$

Working with a harmonic time behavior $e^{-i \omega t}$, the Proca equation may be rewritten as

$$
\left[\nabla^{2}+\left(\omega^{2} / c^{2}-\mu^{2}\right)\right] \vec{A}=0
$$

This has a generic solution of the form

$$
\vec{A}(\vec{x}, t)=\vec{A}_{0} e^{i \vec{k} \cdot \vec{x}-i \omega t}
$$

where

$$
|\vec{k}|=\sqrt{\omega^{2} / c^{2}-\mu^{2}}=i \sqrt{\mu^{2}-\omega^{2} / c^{2}}
$$

The second form of the square root is appropriate for sufficiently low frequencies. Since the vector potential outside the superconductor $(x<0)$ only points in the \hat{y} direction, and since the wave is normally incident (ie only a function of x), it is natural to expect the solution inside the superconductor to be of the form

$$
A_{y}=\left(\alpha e^{-\sqrt{\mu^{2}-\omega^{2} / c^{2}} x}+\beta e^{\sqrt{\mu^{2}-\omega^{2} / c^{2}} x}\right) e^{-i \omega t}
$$

for appropriate constants α and β. To avoid an exponentially growing behavior, we take $\beta=0$. Then it is straightforward to see that matching at $x=0$ gives

$$
A_{y}(x, t)= \begin{cases}\left(a e^{i k x}+b e^{-i k x}\right) e^{-i \omega t} & x<0 \\ (a+b) e^{-\sqrt{\mu^{2}-\omega^{2} / c^{2}} x} e^{-i \omega t} & x>0\end{cases}
$$

In the absence of a scalar potential, the electric and magnetic fields are

$$
\vec{E}\left(x=0^{+}\right)=-\left.\frac{1}{c} \frac{\partial}{\partial t} \vec{A}\right|_{x=0^{+}}=\frac{i \omega}{c}(a+b) \hat{y} e^{-i \omega t}
$$

and

$$
\vec{B}\left(x=0^{+}\right)=\vec{\nabla} \times\left.\vec{A}\right|_{x=0^{+}}=-\sqrt{\mu^{2}-\omega^{2} / c^{2}}(a+b) \hat{z} e^{-i \omega t}
$$

The surface impedance is given by

$$
Z_{s}=\frac{4 \pi}{c} \frac{E_{y}}{B_{z}}=-\frac{4 \pi i \omega}{c^{2} \sqrt{\mu^{2}-\omega^{2} / c^{2}}}
$$

Setting $\mu=1 / \lambda_{\mathrm{L}}$ and $\omega=2 \pi c / \lambda$ finally yields

$$
Z_{s}=-\frac{8 \pi^{2} i}{c} \frac{\lambda_{\mathrm{L}}}{\lambda}\left(1-\left(2 \pi \lambda_{\mathrm{L}} / \lambda\right)^{2}\right)^{-1 / 2}
$$

This reduces in the long wavelength limit $\left(\lambda \gg \lambda_{\mathrm{L}}\right)$ to the expected result

$$
Z_{s}=-\frac{8 \pi^{2} i}{c} \frac{\lambda_{\mathrm{L}}}{\lambda}
$$

