
Physics 506 Winter 2006

Homework Assignment #10 — Solutions

Textbook problems: Ch. 12: 12.15, 12.16, 12.19, 12.20

12.15 Consider the Proca equations for a localized steady-state distribution of current that
has’ only a static magnetic moment. This model can be used to study the observ-
able effects of a finite photon mass on the earths magnetic field. Note that if the
magnetization is ~M(~x ) the current density can be written as ~J = c(~∇× ~M).

a) Show that if ~M = ~mf(~x ), where ~m is a fixed vector and f(~x ) is a localized scalar
function, the vector potential is

~A(~x ) = −~m× ~∇
∫

f(~x ′)
e−µ|~x−~x ′|

|~x− ~x ′|
d3x′

In the static limit, the Proca equation

[∂λ∂λ + µ2]Aµ =
4π

c
Jµ

takes the form
[∇2 − µ2]Aµ = −4π

c
Jµ

This admits a time independent Greens’ function solution

Aµ(x) =
1
c

∫
Jµ(x′)G(x, x′)d3x′

where

G(x, x′) =
e−µ|~x−~x ′|

|~x− ~x ′|

Taking ~J = c(~∇× ~M) with ~M = ~mf(~x ) gives

~J = c~∇× (~mf(~x )) = c~∇f × ~m = −c~m× ~∇f

Then
~A = −~m×

∫
~∇′f(~x ′)

e−µ|~x−~x ′|

|~x− ~x ′|
d3x′

Integration by parts (assuming the surface term vanishes since the source is lo-
calized) gives

~A = ~m×
∫

f(~x ′)~∇′

(
e−µ|~x−~x ′|

|~x− ~x ′|

)
d3x′

= −~m×
∫

f(~x ′)~∇

(
e−µ|~x−~x ′|

|~x− ~x ′|

)
d3x′

= −~m× ~∇
∫

f(~x ′)
e−µ|~x−~x ′|

|~x− ~x ′|
d3x′



where we made use of the fact that ~∇′G(x, x′) = −~∇G(x, x′).

b) If the magnetic dipole is a point dipole at the origin [f(~x ) = δ(~x )], show that
the magnetic field away from the origin is

~B(~x ) = [3r̂(r̂ · ~m)− ~m]
(

1 + µr +
µ2r2

3

)
e−µr

r3
− 2

3µ2 ~m
e−µr

r

For f(~x ) = δ(~x ) the resulting vector potential is

~A = −~m× ~∇
(

e−µr

r

)
= (1 + µr)

e−µr

r3
~m× ~r

The magnetic field is then

~B = ~∇× ~A = ~∇
(

(1 + µr)
e−µr

r3

)
× (~m× ~r ) + (1 + µr)

e−µr

r3
~∇× (~m× ~r )

= −(3 + 3µr + µ2r2)
e−µr

r3
r̂ × (~m× r̂)

+ (1 + µr)
e−µr

r3
(~m(~∇ · ~r)− (~m · ~∇)~r )

= −(3 + 3µr + µ2r2)
e−µr

r3
(~m− r̂(r̂ · ~m )) + (2 + 2µr)

e−µr

r3
~m

= (3r̂(r̂ · ~m)− ~m)
(

1 + µr +
µ2r2

3

)
e−µr

r3
− 2

3µ2 ~m
e−µr

r

c) The result of part b) shows that at fixed r = R (on the surface of the earth), the
earth’s magnetic field will appear as a dipole angular distribution, plus an added
constant magnetic field (an apparently external field) antiparallel to ~m. Satellite
and surface observations lead to the conclusion that this “external” field is less
than 4 × 10−3 times the dipole field at the magnetic equator. Estimate a lower
limit on µ−1 in earth radii and an upper limit on the photon mass in grams from
this datum.

At the magnetic equator we have r̂ · ~m = 0. Hence

~Bdipole = −~m(1 + µR +
µ2R2

3
)
e−µR

R3
, ~Bexternal = −~m( 2

3µ2R2)
e−µR

R3

Setting | ~Bdipole|/| ~Bexternal| < 4× 10−3 gives

2
3 (µR)2 < 4× 10−3(1 + µR + 1

3 (µR)2)

or µR < 0.08. The lower limit on µ−1 is then

µ−1 > 12.5R = 8.0× 109 cm



where we have used the radius of the earth R = 6.38× 108 cm. This corresponds
to an upper limit on the photon mass

m =
µh̄

c
=

1.05× 10−27 erg s
(8.0× 109 cm)(3× 1010cm/s)

= 4.4× 10−48 gm

12.16 a) Starting with the Proca Lagrangian density (12.91) and following the same pro-
cedure as for the electromagnetic fields, show that the symmetric stress-energy-
momentum tensor for the Proca fields is

Θαβ =
1
4π

[
gαγFγλFλβ +

1
4
gαβFλνFλν + µ2

(
AαAβ − 1

2
gαβAλAλ

)]

The Proca Lagrangian density is

L = − 1
16π

FµνFµν +
1
8π

µ2AµAµ

Since
Tµν =

∂L
∂∂µAλ

∂νAλ − ηµνL

we find
Tµν = − 1

4π
Fµλ∂νAλ +

1
16π

ηµνF 2 − 1
8π

µ2ηµνA2

where we have used a shorthand notation F 2 ≡ FµνFµν and A2 ≡ AµAµ. In
order to convert this canonical stress tensor to the symmetric stress tensor, we
write ∂νAλ = F ν

λ + ∂λAν . Then

Tµν = − 1
4π

[FµλF ν
λ − 1

4ηµνF 2 + 1
2µ2ηµνA2]− 1

4π
Fµλ∂λAν

= − 1
4π

[FµλF ν
λ − 1

4ηµνF 2 + 1
2µ2ηµνA2 − (∂λFµλ)Aν ]− 1

4π
∂λ(FµλAν)

Using the Proca equation of motion ∂λFλµ + µ2Aµ = 0 then gives

Tµν = Θµν + ∂λSλµν

where
Θµν = − 1

4π

[
FµλF ν

λ − 1
4ηµνF 2 − µ2(AµAν − 1

2ηµνA2)
]

(1)

is the symmetric stress tensor and Sλµν = (1/4π)FλµAν is antisymmetric on the
first two indices.

b) For these fields in interaction with the external source Jβ , as in (12.91), show that
the differential conservation laws take the same form as for the electromagnetic
fields, namely

∂αΘαβ =
JλFλβ

c



Taking a 4-divergence of the symmetric stress tensor (1) gives

∂µΘµν = − 1
4π

[
∂µFµλF ν

λ + Fµλ∂µF ν
λ − 1

2Fρλ∂νF ρλ

− µ2(∂µAµAν + Aµ∂µAν −Aλ∂νAλ)
]

= − 1
4π

[
∂µFµλF ν

λ + 1
2Fρλ(2∂ρF νλ − ∂νF ρλ) + µ2Aλ(∂νAλ − ∂λAν)

]
= − 1

4π

[
(∂µFµλ + µ2Aλ)F ν

λ + 1
2Fρλ(∂ρF νλ + ∂λF ρν + ∂νFλρ)

]
= −1

c
JλF ν

λ =
1
c
JλFλν

Note that in the second line we have used the fact that ∂µAµ = 0, which is
automatic for the Proca equation. To obtain the last line, we used the Bianchi
identity 3∂[ρF νλ] = 0 as well as the Proca equation of motion.

c) Show explicitly that the time-time and space-time components of Θαβ are

Θ00 =
1
8π

[E2 + B2 + µ2(A0A0 + ~A · ~A)]

Θi0 =
1
4π

[( ~E × ~B)i + µ2AiA0]

Given the explicit form of the Maxwell tensor, it is straightforward to show that

F 2 ≡ FµνFµν = −2(E2 −B2), A2 ≡ AµAµ = (A0)2 − ~A 2

Thus

Θµν = − 1
4π

[
FµλF ν

λ + 1
2ηµν(E2 −B2)− µ2(AµAν − 1

2ηµν((A0)2 − ~A 2))
]

The time-time component of this is

Θ00 = − 1
4π

[
F 0iF 0

i + 1
2 (E2 −B2)− µ2((A0)2 − 1

2 ((A0)2 − ~A 2))
]

= − 1
4π

[
− 1

2 (E2 + B2)− 1
2µ2((A0)2 + ~A 2)

]
=

1
8π

[
E2 + B2 + µ2((A0)2 + ~A 2)

]
Similarly, the time-space components are

Θ0i = − 1
4π

[
F 0

jF
ij − µ2A0Ai

]
= − 1

4π

[
Ej(−εijkBk)− µ2A0Ai

]
= − 1

4π

[
−εijkEjBk − µ2A0Ai

]
=

1
4π

[
( ~E × ~B)i + µ2A0Ai

]



12.19 Source-free electromagnetic fields exist in a localized region of space. Consider the
various conservation laws that are contained in the integral of ∂αMαβγ = 0 over all
space, where Mαβγ is defined by (12.117).

a) Show that when β and γ are both space indices conservation of the total field
angular momentum follows.

Note that
Mαβγ = Θαβxγ −Θαγxβ

Hence

M0ij = Θ0ixj −Θ0jxi = c(gixj − gjxi) = cεijk(~g × ~x )k = −cεijk(~x× ~g )k

where ~g is the linear momentum density of the electromagnetic field. Since ~x×~g
is the angular momentum density, integrating M0ij over 3-space gives the field
angular momentum

M ij ≡
∫

M0ijd3x = −cεijk

∫
(~x× ~g )k d3x = −cεijkLk

The conservation law ∂µMµij = 0 then corresponds to the conservation of angular
momentum in the electromagnetic field.

b) Show that when β = 0 the conservation law is

d ~X

dt
=

c2 ~Pem

Eem

where ~X is the coordinate of the center of mass of the electromagnetic fields,
defined by

~X

∫
u d3x =

∫
~xu d3x

where u is the electromagnetic energy density and Eem and ~Pem are the total
energy and momentum of the fields.

In this case, we have

M0i ≡
∫

M00id3x =
∫

(Θ00xi −Θ0ix0) d3x

=
∫

(uxi − cgix0) d3x =
∫

(uxi − c2tgi) d3x

Making use of the definition
∫

uxid3x = EXi where E =
∫

u d3x is the total field
energy, we have simply

M0i = EXi − c2tP i



where ~P =
∫

~g d3x is the (linear) field momentum. Since M0i is a conserved
charge, its time derivative must vanish. This gives

0 =
d

dt
(E ~X)− c2 d

dt
(t ~P ) = E

d ~X

dt
− c2 ~P

(where we used the fact that energy and momentum are conserved, namely
dE/dt = 0 and d~P/dt = 0). The result d ~X/dt = c2 ~P/E then follows.

12.20 A uniform superconductor with London penetration depth λL fills the half-space x > 0.
The vector potential is tangential and for x < 0 is given by

Ay = (aeikx + be−ikx)e−iωt

Find the vector potential inside the superconductor. Determine expressions for the
electric and magnetic fields at the surface. Evaluate the surface impedance Zs (in
Gaussian units, 4π/c times the ratio of tangential electric field to tangential magnetic
field). Show that in the appropriate limit your result for Zs reduces to that given in
Section 12.9.

The behavior of the vector potential inside the superconductor may be described
by the massive Proca equation[

∇2 − 1
c2

∂2

∂t2
− µ2

]
~A = 0

Working with a harmonic time behavior e−iωt, the Proca equation may be rewrit-
ten as

[∇2 + (ω2/c2 − µ2)] ~A = 0

This has a generic solution of the form

~A(~x, t) = ~A0e
i~k·~x−iωt

where
|~k| =

√
ω2/c2 − µ2 = i

√
µ2 − ω2/c2

The second form of the square root is appropriate for sufficiently low frequencies.
Since the vector potential outside the superconductor (x < 0) only points in the
ŷ direction, and since the wave is normally incident (ie only a function of x), it
is natural to expect the solution inside the superconductor to be of the form

Ay = (αe−
√

µ2−ω2/c2x + βe
√

µ2−ω2/c2x)e−iωt

for appropriate constants α and β. To avoid an exponentially growing behavior,
we take β = 0. Then it is straightforward to see that matching at x = 0 gives

Ay(x, t) =
{

(aeikx + be−ikx)e−iωt x < 0
(a + b)e−

√
µ2−ω2/c2xe−iωt x > 0



In the absence of a scalar potential, the electric and magnetic fields are

~E(x = 0+) = −1
c

∂

∂t
~A

∣∣∣∣
x=0+

=
iω

c
(a + b)ŷe−iωt

and
~B(x = 0+) = ~∇× ~A

∣∣∣
x=0+

= −
√

µ2 − ω2/c2(a + b)ẑe−iωt

The surface impedance is given by

Zs =
4π

c

Ey

Bz
= − 4πiω

c2
√

µ2 − ω2/c2

Setting µ = 1/λL and ω = 2πc/λ finally yields

Zs = −8π2i

c

λL

λ
(1− (2πλL/λ)2)−1/2

This reduces in the long wavelength limit (λ � λL) to the expected result

Zs = −8π2i

c

λL

λ


