
Physics 506 Winter 2006

Homework Assignment #7 — Solutions

Textbook problems: Ch. 10: 10.14, 10.16, 11.4, 11.5

10.14 A rectangular opening with sides of length a and b ≥ a defined by x = ±(a/2),
y = ±(b/2) exists in a flat, perfectly conducting plane sheet filling the x-y plane. A
plane wave is normally incident with its polarization vector making an angle β with
the long edges of the opening.

a) Calculate the diffracted fields and power per unit solid angle with the vector
Smythe-Kirchhoff relation (10.109), assuming that the tangential electric field in
the opening is the incident unperturbed field.

The vector Smythe-Kirchhoff relation states

~E =
ieikr

2πr
~k ×

∫
S1

n̂′ × ~E(~x ′)e−i~k·~x ′
da′

where for a normally incident plane wave, the incident unperturbed field may be
taken as

~E(~x ′) = E0ε̂0e
ikz′ = E0(x̂ sinβ + ŷ cosβ)eikz′

For the rectangular screen, the surface S1 is the rectangle at z′ = 0 with |x| ≤ a/2
and |y| ≤ b/2 and surface normal n̂′ = ẑ. The resulting integral is then

~E =
iE0e

ikr

2πr
~k ×

∫
ẑ × (x̂ sinβ + ŷ cosβ)e−i~k·~x ′

da′

=
iE0e

ikr

2πr
~k ×

∫ a/2

−a/2

dx′
∫ b/2

−b/2

dy′ (ŷ sinβ − x̂ cosβ)e−i~k·~x ′

=
iE0e

ikr

2πr
~k × (ŷ sinβ − x̂ cosβ)

∫ a/2

−a/2

dx′ e−ikxx

∫ b/2

−b/2

dy′ e−ikyy

The integrals are simple to perform, and yield

~E =
2iE0e

ikr

πr
[−x̂kz sinβ− ŷkz cosβ+ ẑ(kx sinβ+ky cosβ)]

sin(kxa/2) sin(kyb/2)
kxky

Because of the rectangular geometry, this expression is simplest when expressed
in cartesian components. However, if we choose to write ~k in terms of spherical
components, we may substitute in

kx = k sin θ cosφ, ky = k sin θ sinφ, kz = k cos θ



to obtain

~E =
2iE0e

ikr

πkr
[−x̂ cos θ sinβ − ŷ cos θ cosβ + ẑ sin θ sin(φ+ β)]

×
sin

(
ka
2 sin θ cosφ

)
sin θ cosφ

sin
(

kb
2 sin θ sinφ

)
sin θ sinφ

Note the standard sin ζ/ζ diffraction patterns for the x and y directions.

The scattered power may be expressed as

dP

dΩ
=

r2

2Z0
| ~E|2 =

1
2Z0

4|E0|2

π2k2
[cos2 θ + sin2 θ sin2(φ+ β)]

×
sin2

(
ka
2 sin θ cosφ

)
(sin θ cosφ)2

sin2
(

kb
2 sin θ sinφ

)
(sin θ sinφ)2

In terms of the normally incident power on the aperture

Pi =
|E0|2

2Z0
ab

the above becomes

dP

dΩ
=
Pi

π2
[cos2 θ + sin2 θ sin2(φ+ β)]

×
sin2

(
ka
2 sin θ cosφ

)
ka
2 (sin θ cosφ)2

sin2
(

kb
2 sin θ sinφ

)
kb
2 (sin θ sinφ)2

(1)

Note that, for small openings, this reduces to

dP

dΩ
=
Pi

π2

ka

2
kb

2
[cos2 θ + sin2 θ sin2(φ+ β)]

b) Calculate the corresponding result of the sclar Kirchhoff approximation.

For the scalar Kirchhoff approximation, we have

ψ = −e
ikr

4πr

∫
S1

[n̂′ · ~∇′ψ + i~k · n̂′ψ]e−i~k·~x ′
da′

Here we take

ψ(~x ′) = ψ0e
ikz′ , n̂′ · ~∇′ψ = ẑ · ~∇′ψ =

∂

∂z′
ψ = ikψ0e

ikz′

Hence

ψ = −e
ikr

4πr

∫
(ikψ0 + ikzψ0)e−i~k·~x ′

da′

= − iψ0e
ikr

4πr
(k + kz)

∫ a/2

−a/2

dx′ e−ikxx

∫ b/2

−b/2

dy′ e−ikyy



The integrals are identical to the ones performed above. The result (using spher-
ical components of ~k ) is

ψ = − iψ0e
ikr

πkr
(1 + cos θ)

sin
(

ka
2 sin θ cosφ

)
sin θ cosφ

sin
(

kb
2 sin θ sinφ

)
sin θ sinφ

Using dP/dΩ = r2|ψ|2 and Pi = |ψ|2ab, the scalar expression for scattered power
becomes

dP

dΩ
=
Pi

π2

[
cos4

θ

2

]
sin2

(
ka
2 sin θ cosφ

)
ka
2 (sin θ cosφ)2

sin2
(

kb
2 sin θ sinφ

)
kb
2 (sin θ sinφ)2

Comparing this scalar expression to the vector expression (1), we see that the
only difference lies in the additional polarization factors enclosed in the square
brackets.

c) For b = a, β = 45◦, ka = 4π, compute the vector and scalar approximations to
the diffracted power per unit solid angle as a function of the angle θ for φ = 0.
Plot a graph showing a comparison between the two results.

For the above parameters, the vector and scalar expressions reduce to

dP

dΩ

∣∣∣∣
vector

=
Pi

π2
[ 12 (1 + cos2 θ)]

sin2(2π sin θ)
sin2 θ

dP

dΩ

∣∣∣∣
scalar

=
Pi

π2
[cos4(θ/2)]

sin2(2π sin θ)
sin2 θ

These two expressions (normalized to unit power) may be plotted on the same
graph
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In fact, they are virtually indistinguishable. To show that the vector and scalar
expressions are actually not identical, we may plot the difference dP/dΩ|vector −
dP/dΩ|scalar
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(note the different scale on the vectical axis). This difference is entirely dependent
on the polarization factors
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These factors are nearly identical in the forward direction (at the diffraction
peak). Although the difference gets large off axis, there is so little power there
that this difference is essentially unimportant.

10.16 a) Show from (10.125) that the integral of the shadow scattering differential cross
section, summed over outgoing polarizations, can be written in the short wave-
length limit as

σsh =
∫
d2x⊥

∫
d2x′⊥ ·

1
4π2

∫
ei(~x⊥−~x′⊥)·k⊥d2k⊥

and therefore is equal to the projected area of the scatterer, independent of its
detailed shape.

With
ε̂∗ · ~fsh ≈

ik

2π
(ε̂∗ · ε̂0)

∫
sh

e−i~k⊥·~x⊥d2x⊥ (2)

the differential cross section may be written as

dσsh

dΩ
= |ε̂∗ · ~fsh|2 =

k2

(2π)2
|ε̂∗ · ε̂0|2

∫
sh

ei~k⊥·~x⊥d2x⊥

∫
sh

e−i~k⊥·~x′⊥d2x′⊥

=
1

(2π)2

∫
sh

d2x⊥

∫
sh

d2x′⊥e
i~k⊥·(~x⊥−~x′⊥)|ε̂∗ · ε̂0|2k2



Note that in the short wavelength limit (ka� 1) this expression is highly peaked
in the forward direction. This means when we integrate over solid angle to obtain
σsh, the integral is dominated by an extremely narrow solid angle around the
forward direction. The general integrated expression is

σsh =
1

(2π)2

∫
sh

d2x⊥

∫
sh

d2x′⊥

∫
ei~k⊥·(~x⊥−~x′⊥)|ε̂∗ · ε̂0|2k2dΩ

=
1

(2π)2

∫
sh

d2x⊥

∫
sh

d2x′⊥

∫
ei~k⊥·(~x⊥−~x′⊥) |ε̂∗ · ε̂0|2

cos θ
d2k⊥

where we made use of the fact that the projected solid angle involves a cosine of
the angle to the surface normal (d2k⊥ = k2 cos θ dΩ). Since we are working in the
short wavelength limit, is is now consistent to replace |ε̂∗ · ε̂0| ≈ 1 when summed
over outgoing polarizations (since polarization is preserved) and to replace cos θ ≈
1 (since the d2x⊥ integrals are only important in the forward direction). The
result is then

σsh =
1

(2π)2

∫
sh

d2x⊥

∫
sh

d2x′⊥

∫
ei~k⊥·(~x⊥−~x′⊥)d2k⊥ (3)

We may now integrate d2k⊥ to obtain a two-dimensional delta function∫
ei~k⊥·(~x⊥−~x′⊥)d2k⊥ = (2π)2δ2(~x⊥ − ~x′⊥)

Substituting this into (3) gives

σsh =
∫

sh

d2x⊥ = A⊥
sh

where A⊥
sh denotes the projected area of the shadow region.

b) Apply the optical theorem to the “shadow” amplitude (10.125) to obtain the total
cross section under the assumption that in the forward direction the contribution
from the illuminated side of the scatterer is negligible in comparison.

The obtical theorem states

σt =
4π
k
=(ε̂∗0 · ~f(~k = ~k0))

Assuming the forward scattering is dominated by the shadow contribution, this
reduces to

σt ≈
4π
k
=(ε̂∗0 · fsh(~k⊥ = 0))

However, from (2), we obtain

ε̂∗0 · fsh(~k⊥ = 0) ≈ ik

2π
(ε̂∗0 · ε̂)

∫
sh

d2x⊥ =
ik

2π
A⊥

sh



where we assume the polarization ε̂0 is properly normalized (as it needs to be).
Inserting this in the above then gives simply

σt ≈ 2A⊥
sh

which reproduces the phenomenon that the wave nature of light results in a total
cross section twice that of the geometrical cross section.

11.4 A possible clock is shown in the figure. It consists of a flashtube F and a photocell P
shielded so that each views only the mirror M , locate a distance d away, and mounted
rigidly with respect to the flashtube-photocell assembly. The electronic innards of
the box are such that when the photocell responds to a light flash from the mirror,
the flashtube is triggered with a negligible delay and emits a short flash toward the
mirror. The clock thus “ticks” once every (2d/c) seconds when at rest.

a) Suppose that the clock moves with a uniform velocity v, perpendicular to the line
from PF to M , relative to an observer. Using the second postulate of relativity,
show by explicit geometrical or algebraic construction that the observer sees the
relativistic time dilatation as the clock moves by.

The perpendicular motion is fairly easy to handle. If the box moves to the right
at a uniform velocity v, we have the situation

vT

d

v

Denoting the round-trip time T , the box moves a horizontal distance of vT during
one complete period. Using a bit of geometry, the distance D traveled by a beam
of light from the box to the mirror and back is simply

D = 2
√
d2 + (vT/2)2 =

√
(2d)2 + (vT )2

For a constant speed of light, this gives

T = D/c ⇒ cT =
√

(2d)2 + (vT )2

Solving this for T gives the familiar time dilatation expression

T = γT0



where
γ =

1√
1− v2/c2

and T0 =
2d
c

b) Suppose that the clock moves with a velocity v parallel to the line from PF to
M . Verify that here, too, the clock is observed to tick more slowly, by the same
time dilatation factor.

Here, consider a spacetime diagram

r

box mirror

t r

yd’

T

y

t

Here the box (and mirror) is moving in its parallel direction. We ought to know
that this gives rise to a length contraction d→ d/γ. However, for now, we simply
suppose that the box–mirror contraption appears to have length d′. The light
beam reflects at position yr at time tr, and is recaptured by the box at time T .
We first work out tr algebraically. From the figure, the mirror’s position is given
by yr = d′ + vtr, while the light ray travels according to yr = ctr. Solving this
set of equations gives

yr =
d′

1− v/c
, tr =

d′/c

1− v/c
On the return, the light ray is captured by the box at time T and position y = vT .
Noting that the return path of the light ray is given by

y = yr − c(t− tr) = 2yr − ct =
2d′

1− v/c
− ct

we equate this to vT to obtain

T =
2d′/c

1− v2/c2
= γ2 2d′

c

Here, we realize that if lengths are contracted, d′ = d/γ, then

T = γ2 2d′

c
= γ

2d
c

= γT0



gives the same time dilatation factor as part a). Alternatively, by demanding
that the time dilatation factor is universal, we may obtain the length contraction
relation d′ = d/γ as a result of this computation.

11.5 A coordinate system K ′ moves with a velocity ~v relative to another system K. In K ′

a particle has a velocity ~u ′ and an acceleration ~a ′. Find the Lorentz transformation
law for accelerations, and show that in the system K the components of acceleration
parallel and perpendicular to ~v are

~a‖ =
(1− v2/c2)3/2

(1 + ~v · ~u ′/c2)3
~a‖

′

~a⊥ =
(1− v2/c2)

(1 + ~v · ~u ′/c2)3

(
~a⊥

′ +
~v

c2
× (~a ′ × ~u ′)

)

Instead of working direction with perpendicular and parallel components, we may
start with a particular boost in the x-t direction, and then generalize our results.
We thus take a boost of the form

x0 = γ(x0′ + βx′), x = γ(x′ + βx0′), y = y′, z = z′ (4)

Note that γ = 1/
√

1− β2 and β = v/c are constants specifying the Lorentz boost.
In frame K, the path of a particle is specified by the vector function ~x(x0), while
in frame K ′ this is instead ~x′(x0′). Three-velocities and 3-accelerations are then
defined in a frame dependent manner

frame K: ~u = c
∂~x

∂x0
, ~a = c

∂~u

∂x0

frame K ′: ~u ′ = c
∂~x ′

∂x0′ , ~a ′ = c
∂~u

∂x0′

To transform between the two frames, we need not just the transformation of the
3-vectors, but also the transformation relating times x0 and x0′. Noting from (4)
that a particle following a path ~x ′(x0′) yields a time relation

x0 = γ(x0′ + βx′(x0′))

we may write
dx0

dx0′ = γ(1 + βu′x/c)

The inverse relation is simply

dx0′

dx0
=

1
γ(1 + βu′x/c)



This useful expression is basically all we need. We start with velocities

ux = c
dx

dx0
= c

dx0′

dx0

dx

dx0′ =
c

γ(1 + βu′x/c)
d

dx0′ γ(x
′ + βx0′) =

u′x + cβ

1 + βu′x/c
(5)

and

uy = c
dy

dx0
= c

dx0′

dx0

dy

dx0′ =
c

γ(1 + βu′x/c)
(u′y/c) =

u′y
γ(1 + βu′x/c)

(6)

Writing βu′x = ~β · ~u′, it is easy to see that these velocity transformations may be
written as

~u‖ =
~u′‖ + c~β

1 + ~β · ~u ′/c
, ~u⊥ =

~u′⊥

γ(1 + ~β · ~u ′/c)

We now go on to accelerations. From (5), we have

ax = c
dux

dx0
=

c

γ(1 + βu′x/c)
d

dx0′
u′x + cβ

1 + βu′x/c

=
c

γ(1 + βu′x/c)
(1 + βu′x/c)(a

′
x/c)− (u′x + cβ)(βa′x/c

2)
(1 + βu′x/c)2

=
(1− β2)a′x

γ(1 + βu′x/c)3
=

a′x
γ3(1 + βu′x/c)3

And from (6) we have

ay = c
duy

dx0
=

c

γ(1 + βu′x/c)
d

dx0′
u′y

γ(1 + βu′x/c)

=
c

γ2(1 + βu′x/c)
(1 + βu′x/c)(a

′
y/c)− u′y(βa′x/c

2)
(1 + βu′x/c)2

=
a′y + β(u′xa

′
y − u′ya′x)/c

γ2(1 + βu′x/c)3

(7)

It is straightforward to convert the expression for ax into one for ~a‖. The result
is

~a‖ =
~a′‖

γ3(1 + ~β · ~u ′/c)3

For the perpendicular direction, we have to be a bit more clever. Noting that x
components in (7) are related to ~β · ( ), while y components are directly related
to the ⊥ direction, we have

~a⊥ =
~a′⊥ + ~a ′(~β · ~u ′)− ~u′(~β · ~a ′)/c

γ2(1 + ~β · ~u ′/c)3

Use of the BAC–CAB rule finally gives

~a⊥ =
~a′⊥ + ~β × (~a ′ × ~u ′)/c

γ2(1 + ~β · ~u ′/c)3


