
Physics 506 Winter 2006

Homework Assignment #5 — Solutions

Textbook problems: Ch. 9: 9.19, 9.22 a) and b), 9.23
Ch. 10: 10.1

9.19 Consider the excitation of a waveguide in Problem 8.19 from the point of view of
multipole moments of the source.

a) For the linear probe antenna calculate the multipole moment components of ~p,
~m, Qαβ , QM

αβ that enter (9.69).

Note that the multipole moments depend on the choice of origin of the coordinates
used to describe the source. Perhaps the most natural situation is to place the
origin at the bottom of the probe. In this case, the source current density can be
expressed as

~J = ŷI0 sin[ω
c (h− y)]δ(x)δ(z)Θ(h− y)

The electric dipole moment can be computed directly from the current density

~p =
i

ω

∫
~J d3x =

iI0

ω
ŷ

∫ h

0

sin[ω
c (h− y)] dy

=
icI0

ω2

(
1− cos

ωh

c

)
ŷ =

2icI0

ω2
sin2

(
ωh

2c

)
ŷ

For the magnetic dipole moment, we first compute the magnetization

~M = 1
2~x× ~J = 1

2 (x, y, z)× ŷI0 sin[ω
c (h− y)]δ(x)δ(z)Θ(h− y)

= 1
2I0(−z, 0, x) sin[ω

c (h− y)]δ(x)δ(z)Θ(h− y)
= 0

since x = z = 0 is enforced by the delta functions. This indicates that the mag-
netic dipole moment ~m =

∫
~M d3x vanishes for the probe antenna. Furthermore,

since the magnetic quadrupole moment QM
αβ may be computed using the effective

magnetic charge density ρM = −~∇ · ~M, it also vanishes. So we are left with the
electric quadrupole moment

Qαβ =
∫

(3xαxβ − δαβr2)ρ d3x

where

ρ = − i

ω
~∇ · ~J =

iI0

c
cos[ω

c (h− y)]δ(x)δ(z)Θ(h− y)



Because of the delta functions, the only non-vanishing quadrupole moments are

Qxx = Qzz = − 1
2Qyy = −

∫
y2ρ d3x = − iI0

c

∫ h

0

y2 cos[ω
c (h− y)] dy

= −2iI0c

ω2

(
h− c

ω
sin

ωh

c

)
The resulting multipole moments are

~p =
2icI0

ω2
sin2

(
ωh

2c

)
ŷ

~m = 0

Qxx = Qzz = − 1
2Qyy = −2iI0c

ω2

(
h− c

ω
sin

ωh

c

)
QM

αβ = 0

(1)

b) Calculate the amplitudes for excitation of the TE1,0 mode and evaluate the power
flow. Compare the multipole expansion result with the answer given in Problem
8.19b). Discuss the reasons for agreement or disagreement. What about the
comparison for excitation of other modes?

We consider the normalized TEmn mode specified by the field

Hz = H0 cos
mπx

a
cos

nπy

b

where
H0 =

2iγmn

µ0ω
√

ab
, (a → 2a if m = 0 and b → 2b if n = 0)

and
γ2

mn =
(mπ

a

)2

+
(nπ

b

)2

Note that this choice of coordinates places x = y = 0 at the lower left of the
rectangular waveguide. Since the magnetic moments vanish, we only need the
explicit expressions for the electric field. Using

~Et = − iµ0ω

γ2
mn

ẑ × ~∇tHz

we obtain
Ex = − iµ0ω

γ2
mn

nπ

b
H0 cos

mπx

a
sin

nπy

b

Ey =
iµ0ω

γ2
mn

mπ

a
H0 sin

mπx

a
cos

nπy

b

Ez = 0

(2)



The excitation amplitude for the TEmn mode is given by an expansion in moments

A(±)
mn =

iωZmn

2

[
~p · ~E(∓)

mn (X, 0, 0)− ~m · ~B(∓)
mn (X, 0, 0)

+ 1
6Qαβ∂βE(∓)

mn α(X, 0, 0)− 1
6QM

αβ∂βB(∓)
mn α(X, 0, 0) + · · ·

]
Using Zmn = µ0ω/kmn for a TE mode, and specializing to the non-vanishing
components of (1), we have

A(±) =
iµ0ω

2

2kmn

[
pyEy + 1

6Qxx(∂xEx − 2∂yEy + ∂zEz) + · · ·
]

where the electric field components are evaluated at (X, 0, 0). In particular

Ey =
iµ0ω

γ2
mn

mπ

a
H0 sin

mπX

a

while ∂xEx and ∂yEy vanish because they are evaluated at y = 0. This results in
an excitation amplitude

A(±)
mn =

iµ0ω
2

2kmn

[
2icI0

ω2
sin2

(
ωh

2c

)
iµ0ω

γ2
mn

mπ

a
H0 sin

mπX

a

]
=

2µ0cI0

kmnγmn

√
ab

mπ

a
sin

mπX

a
sin2

(
ωh

2c

)
where we have substituted in the value of H0. This may be compared with the
exact TE result from Problem 8.19, rewritten as

A(±)
mn exact =

2µ0cI0

kmnγmn

√
ab

mπ

a
sin

mπX

a
sin2

(
ωh

2c

)
×

(
1− sin2(nπh/2b)

sin2(ωh/2c)

) (
1−

(nπc

bω

)2
)−1

This demonstrates that A(±)
m,0 calculated using the electric dipole moment is in

fact exact. In particular

A(±)
1,0 =

2µ0cI0

k10

√
2ab

sin
πX

a
sin2

(
ωh

2c

)
(where we fixed the normalization for the n = 0 case), resulting in the exact
power expression

P1,0 =
µ0c

2

ωk10ab
|I0|2 sin2

(
πX

a

)
sin4

(
ωh

2c

)



The reason the electric dipole contribution is exact for n = 0 modes is that these
modes are independent of y (zero modes in y). This is easily seen from (2), where
the substitution n = 0 gives

Ex = 0

Ey =
iµ0ω

γ2
m0

mπ

a
H0 sin

mπx

a

Ez = 0

This constant electric field in the ŷ direction couples only to the electric dipole
moment, and not to any higher moments which we have ignored. The n 6= 0
modes are sensitive to higher multipole moments, however, and this is why the
lowest multipole contributions to their excitation coefficients are no longer exact.

9.22 A spherical hole of radius a in a conducting medium can serve as an electromagnetic
resonant cavity.

a) Assuming infinite conductivity, determine the transcendental equations for the
characteristic frequencies ωlm of the cavity for TE and TM modes.

We may treat this spherical cavity as imposing boundary conditions at r = a
on spherical waves. Starting with waves in free space, we recall that the vector
spherical wave expansion may be written as

~H =
∑
lm

[
aE(l, m)jl(kr) ~Xlm −

i

k
aM (l,m)~∇× jl(kr) ~Xlm

]
~E = Z0

∑
lm

[
i

k
aE(l,m)~∇× jl(kr) ~Xlm + aM (l, m)jl(kr) ~Xlm

]

where we used the spherical Bessel functions jl(kr) which are regular at r = 0.
Noting that

r̂ · ~H = − i

k

∑
lm

aM (l,m)r̂ · ~∇× jl(kr) ~Xlm

= − i

k

∑
lm

aM (l,m)r̂ × ~∇ · jl(kr) ~Xlm

=
∑
lm

1
kr

aM (l,m)jl(kr)~L · ~Xlm

=
∑
lm

√
l(l + 1)
kr

aM (l,m)jl(kr)Ylm

and similarly

r̂ · ~E = −Z0

∑
lm

√
l(l + 1)
kr

aE(l,m)jl(kr)Ylm



we see that the modes parametrized by aM (l,m) are TE modes, while those
parametrized by aE(l, m) are TM modes.

In particular, the TE modes may be given by

~H = − i

k
~∇× jl(kr) ~Xlm, ~E = Z0jl(kr) ~Xlm (3)

We now impose the boundary conditions H⊥ = 0 and E‖ = 0, or more precisely

r̂ · ~H
∣∣∣
r=a

= 0, r̂ × ~E
∣∣∣
r=a

= 0

These are equivalent to the condition jl(ka) = 0, and leads to the quantization
klmn = xln/a where xln is the n-th zero of the spherical Bessel function jl. The
TElmn frequencies are thus

ωlmn =
xlnc

a
, jl(xln) = 0, l ≥ 1, |m| ≤ l

Each frequency specified by l and n is (2l + 1)-fold degenerate, with azimuthal
quantum number labeled by m.

The TM modes are similar, although the boundary conditions are somewhat more
involved. The modes themselves are given by

~H = jl(kr) ~Xlm, ~E = Z0
i

k
~∇× jl(kr) ~Xlm (4)

This time, the H⊥ = 0 boundary condition is automatic, while the E‖ = 0
condition gives

~r × (~∇× jl(kr) ~Xlm)
∣∣∣
r=a

= 0

This vector quantity may be simplified using

~r× (~∇× ~V ) = ~∇(~r · ~V )− ~V − (~r · ~∇)~V = ~∇(~r · ~V )− (1+ r∂r)~V = ~∇(~r · ~V )− ∂rr~V

Using ~V = jl(kr) ~Xlm with ~r · ~Xlm = 0 gives

~r × (∇× jl(kr) ~Xlm) = −∂r(rjl(kr)) ~Xlm (5)

Hence the E‖ = 0 boundary condition leads to the TMlmn frequencies

ωlmn =
ylnc

a
,

d

dx
[xjl(x)]

∣∣∣∣
z=yln

= 0, l ≥ 1, |m| ≤ 1

The yln correspond to zeros of [xjl(x)]′ or equivalently jl(x) + xj′l(x).



b) Calculate numerical values for the wavelength λlm in units of the radius a for the
four lowest modes for TE and TM waves.

The numerical values for the wavelengths are obtained from the zeros xln and
yln. For TE modes, the first four zeros of jl(x) are

x11 = 4.4934, x21 = 5.7635, x31 = 6.9879, x12 = 7.7253

Since klmn = xln/a and λlmn = 2π/klmn, we end up with λlmn/a = 2π/xln or

λ1m1

a
= 1.398,

λ2m1

a
= 1.090,

λ3m1

a
= 0.899,

λ1m2

a
= 0.813

All these modes are (2l + 1)-fold degenerate. For TM modes, the first four zeros
of [xjl(x)]′ are

y11 = 2.7437, y21 = 3.8702, y31 = 4.9734, y41 = 6.0619

with corresponding wavelengths

λ1m1

a
= 2.290,

λ2m1

a
= 1.623,

λ3m1

a
= 1.263,

λ4m1

a
= 1.036

Note that the next mode, given by y12 = 6.1168 is nearly degenerate with y41.

9.23 The spherical resonant cavity of Problem 9.22 has nonpermeable walls of large, but
finite, conductivity. In the approximation that the skin depth δ is small compared to
the cavity radius a, show that the Q of the cavity, defined by equation (8.86), is given
by

Q =
a

δ
for all TE modes

Q =
a

δ

(
1− l(l + 1)

x2
lm

)
for TM modes

where xlm = (a/c)ωlm for TM modes.

In order to calculate the Q factor, we need to obtain both the stored energy and
the power loss at the walls. We start with the simpler case of TE modes, given
by (3). The energy density for harmonic fields is

u =
ε0
4
| ~E|2 +

µ0

4
| ~H|2

However, the energy is equally distributed between ~E and ~H. Thus for TE modes
we may immediately write down

u =
ε0
2
| ~E|2 =

µ0

2
jl(kr)2| ~Xlm|2



The stored energy is given by integrating this over the volume of the sphere

U =
µ0

2

∫
jl(kr)2| ~Xlm|2 r2drdΩ =

µ0

2

∫ a

0

jl(kr)2r2dr

We now use the normalization integral for spherical Bessel functions∫ a

0

jl(xlmρ/a)jl(xlnρ/a)ρ2dρ = 1
2a3[j′l(xln)]2δmn

to obtain

Ulmn =
µ0a

3

4
j′l(xln)2 (6)

The power loss is given in terms of the tangential magnetic field at the conducting
surface

P =
1

2σδ

∫
|r̂ × ~H|2da

Using ~h = −(i/k)~∇× jl(kr) ~Xlm as well as the vector identity (5) gives

Plmn =
1

2σδ

∫
r=a

(
1
kr

d

dr
rjl(kr)

)2

| ~Xlm|2r2dΩ

=
1

2σδk2
([rjl(kr)]′)2

∣∣∣∣
r=a

=
1

2σδk2
(jl(ka) + kaj′l(ka))2 =

a2

2σδ
j′l(xln)2

(7)

where in the last line we made use of the fact that ka = xln and that jl(xln) = 0.
Combining (6) and (7) then gives the Q factor for TE modes

Qlmn = ω
Ulmn

Plmn
=

µ0σωδa

2
=

a

δ

where we made use of the definition of the skin depth δ =
√

2/µ0σω. The
calculation for TM modes is similar. However, the appropriate spherical Bessel
function normalization integral needs to be modified for integrating to zeros of
[xjl(x)]′. Here we simply state that the appropriate normalization integral may
be written as∫ a

0

jl(αmρ/a)jl(αnρ/a)ρ2dρ = 1
2a3

(
1 +

p(p− 1)− l(l + 1)
α2

n

)
[jl(αn)]2δmn

where αn is the n-th positive zero of

[xpjl(x)]′ = 0



Setting p = 1 for TM modes, and using the notation yln to denote the n-th zero
of [xjl(x)]′ = 0, the expression for the stored energy becomes

Ulmn =
µ0

2

∫ a

0

jl(kr)2r2dr =
µ0a

3

4

(
1− l(l + 1)

y2
ln

)
jl(yln)2

The power loss is

Plmn =
1

2σδ

∫
|r̂ × ~H|2da =

1
2σδ

∫
r=a

jl(kr)2|r̂ × ~X2
lm|r2dΩ =

a2

2σδ
jl(ymn)2

As a result, the Q factor for a TMlmn mode is

Qlmn = ω
Ulmn

Plmn
=

µ0σωδa

2

(
1− l(l + 1)

y2
ln

)
=

a

δ

(
1− l(l + 1)

y2
ln

)

10.1 a) Show that for arbitrary initial polarization, the scattering cross section of a per-
fectly conducting sphere of radius a, summed over outgoing polarizations, is given
in the long-wavelength limit by

dσ

dΩ
(~ε0, n̂0, n̂) = k4a6

[
5
4
− |~ε0 · n̂|2 −

1
4
|n̂ · (n̂0 × ~ε0)|2 − n̂0 · n̂

]
where n̂0 and n̂ are the directions of the incident and scattered radiations, respec-
tively, while ~ε0 is the (perhaps complex) unit polarization vector of the incident
radiation (~ε0∗ · ~ε0 = 1; n̂0 · ~ε0 = 0).

If all polarizations are specified, the conducting sphere scattering cross section is
given by

dσ

dΩ
(n̂,~ε; n̂0,~ε0) = k4a6|~ε ∗ · ~ε0 − 1

2 (n̂× ~ε ∗) · (n̂0 × ~ε0)|2 (8)

What we would like to do is to sum this over both orthogonal outgoing polariza-
tions. One way to do this is to introduce a linear polarization basis transverse
to the outgoing direction n̂. To do so, we first assume the scattering is not in
the forward direction. Then the incoming direction n̂0 may be used to define
orthogonal polarizations

~ε 1 =
n̂× n̂0

sin θ
, ~ε 2 = n̂× ~ε 1 =

n̂(n̂ · n̂0)− n̂0

sin θ

where θ is the angle between n̂ and n̂0. In particular, we may write sin2 θ =
1− (n̂ · n̂0)2. In this case, the cross section summed over outgoing polarizations



becomes

dσ

dΩ
(n̂; n̂0,~ε0) =

k4a6

1− (n̂ · n̂0)2
[
|(n̂× n̂0) · ~ε0 − 1

2 (n̂× (n̂× n̂0)) · (n̂0 × ~ε0)|2

+ |(n̂(n̂ · n̂0)− n̂0) · ~ε0 − 1
2 (n̂× (n̂(n̂ · n̂0)− n̂0)) · (n̂0 × ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|(n̂× n̂0) · ~ε0 − 1

2 (n̂(n̂ · n̂0)− n̂0) · (n̂0 × ~ε0)|2

+ |(n̂ · n̂0)(n̂ · ~ε0)− 1
2 (n̂0 × n̂) · (n̂0 × ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|n̂ · (n̂0 × ~ε0)− 1

2 (n̂ · n̂0)n̂ · (n̂0 × ~ε0)|2

+ |(n̂ · n̂0)(n̂ · ~ε0)− 1
2 (n̂ · ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|n̂ · (n̂0 × ~ε0)|2(1− 1

2 (n̂ · n̂0))2

+ |n̂ · ~ε0|2( 1
2 − (n̂ · n̂0))2

]
Note that we have used transversality of the initial polarization, n̂0 · ~ε0 = 0. To
proceed, we expand the squares and rewrite the above as

dσ

dΩ
(n̂; n̂0,~ε0) =

k4a6

1− (n̂ · n̂0)2
[
( 5
4 − (n̂ · n̂0))(|n̂ · (n̂0 × ~ε0)|2 + |n̂ · ~ε0|2)

− (1− (n̂ · n̂0)2)( 1
4 |n̂ · (n̂0 × ~ε0)|2 + |n̂ · ~ε0|2

]
(9)

The second line cancels the denominator. However the first line needs a bit of
work. We now use the fact that ε0 is a unit polarization vector orthogonal to n̂0.
As a result, the three vectors

n̂0, ~ε0, n̂0 × ~ε0 (10)

form a normalized right-handed coordinate basis spanning the three-dimensional
space. (There is a slight subtlety if ~ε0 is complex, although the end result is okay,
provided we are careful with magnitude squares.) The components of n̂ expanded
in this basis are

n̂ · n̂0, n̂ · ~ε0, n̂ · (n̂0 × ~ε0)

and since n̂ is a unit vector, the sum of the squares of these components must be
one. In other words

(n̂ · n̂0)2 + |n̂ · ~ε0|2 + |n̂ · (n̂0 × ~ε0)|2 = 1

where we have been careful about complex quantities. Using this result, we see
that the denominator in (9) can be completely eliminated, resulting in

dσ

dΩ
(n̂; n̂0,~ε0) = k4a6[ 54 − (n̂ · n̂0)− 1

4 |n̂ · (n̂0 × ~ε0)|2 − |n̂ · ~ε0|2] (11)



b) If the incident radiation is linearly polarized, show that the cross section is

dσ

dΩ
(~ε0, n̂0, n̂) = k4a6

[
5
8
(1 + cos2 θ)− cos θ − 3

8
sin2 θ cos 2φ

]
where n̂ · n̂0 = cos θ and the azimuthal angle φ is measured from the direction of
the linear polarization.

As stated, the scattering angle θ is given by n̂ · n̂0 = cos θ. The azimuthal angle
φ is the one between n̂ and ~ε0, measured in the plan perpendicular to n̂0. What
this means is that, using the basis vectors (10) with ~ε0 real, the components of n̂
can be written as

n̂ = n̂0 cos θ + ~ε0 sin θ cos φ + (n̂0 × ~ε0) sin θ sinφ

or alternatively

n̂ · n̂0 = cos θ, n̂ · ~ε0 = sin θ cos φ, n̂ · (n̂0 × ~ε0) = sin θ sinφ

Substituting this into (11) gives

dσ

dΩ
(θ, φ) = k4a6[ 54 − cos θ − 1

4 sin2 θ sin2 φ− sin2 θ cos2 φ]

= k4a6[ 54 − cos θ − 1
8 sin2 θ(1− cos 2φ)− 1

2 sin2 θ(1 + cos 2φ)]

= k4a6[ 58 (1 + cos2 θ)− cos θ − 3
8 sin2 θ cos 2φ]

c) What is the ratio of scattered intensities at θ = π/2, φ = 0 and θ = π/2, φ = π/2?
Explain physically in terms of the induced multipoles and their radiation patterns.

At θ = π/2, we have

dσ

d
Ω(π/2, φ) = k4a6[ 58 −

3
8 cos 2φ]

Hence
dσ

dΩ
(π/2, 0) = 1

4k4a6,
dσ

dΩ
(π/2, π/2) = k4a6

Scattering at 90◦ is fairly easy to understand physically. For φ = 0, the scattered
wave is lined up with the incident polarization ε0. Since the polarization is given
by the electric field vector, this indicates that the induced electric dipole of the
sphere is lined up with the direction of the scattered wave. Since the radiation
must be transverse, no dipole radiation can be emitted on axis, and in this case
the scattering must be purely magnetic dipole in nature. On the other hand, for
φ = π/2, the scattered wave is lined up with the incident magnetic field, and
hence the scattering must be purely electric dipole in nature. This demonstrates
that the maximum strength of magnetic dipole scattering is a quarter that of
electric dipole scattering. This is in fact evident by the factor of 1/2 in the
magnetic dipole term in the cross section expression (8).


