Homework Assignment \#3 - Due Thursday, January 26

Textbook problems: Ch. 8: 8.18, 8.19
Ch. 9: 9.3, 9.6
8.18 a) From the use of Green's theorem in two dimensions show that the TM and TE modes in a waveguide defined by the boundary-value problems (8.34) and (8.36) are orthogonal in the sense that

$$
\int_{A} E_{z \lambda} E_{z \mu} d a=0 \quad \text { for } \lambda \neq \mu
$$

for TM modes, and a corresponding relation for H_{z} for TE modes.
b) Prove that the relations (8.131)-(8.134) form a consistent set of normalization conditions for the fields, including the circumstances when λ is a TM mode and μ is a TE mode.
8.19 The figure shows a cross-sectional view of an infinitely long rectangular waveguide with the center conductor of a coaxial line extending vertically a distance h into its interior at $z=0$. The current along the probe oscillates sinusoidally in time with frequency ω, and its variation in space can be approximated as $I(y)=I_{0} \sin [(\omega / c)(h-y)]$. The thickness of the probe can be neglected. The frequency is such that only the TE_{10} mode can propagate in the guide.
a) Calculate the amplitudes for excitation of both TE and TM modes for all (m, n) and show how the' amplitudes depend on m and n for $m, n \gg 1$ for a fixed frequency ω.
b) For the propagating mode show that the power radiated in the positive z direction is

$$
P=\frac{\mu c^{2} I_{0}^{2}}{\omega k a b} \sin ^{2}\left(\frac{\pi X}{a}\right) \sin ^{4}\left(\frac{\omega h}{2 c}\right)
$$

with an equal amount in the opposite direction. Here k is the wave number for the TE_{10} mode.
c) Discuss the modifications that occur if the guide, instead of running off to infinity in both directions, is terminated with a perfectly conducting surface at $z=L$. What values of L with maximize the power flow for a fixed current I_{0} ? What is the radiation resistance of the probe (defined as the ratio of power flow to one-half the square of the current at the base of the probe) at maximum?
9.3 Two halves of a spherical metallic shell of radius R and infinite conductivity are separated by a very small insulating gap. An alternating potential is applied between the two halves of the sphere so that the potentials are $\pm V \cos \omega t$. In the long-wavelength limit, find the radiation fields, the angular distribution of radiated power, and the total radiated power from the sphere.
9.6 a) Starting from the general expression (9.2) for \vec{A} and the corresponding expression for Φ, expand both $R=\left|\vec{x}-\vec{x}^{\prime}\right|$ and $t^{\prime}=t-R / c$ to first order in $\left|\vec{x}^{\prime}\right| / r$ to obtain the electric dipole potentials for arbitrary time variation

$$
\begin{aligned}
& \Phi(\vec{x}, t)=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{1}{r^{2}} \vec{n} \cdot \vec{p}_{\mathrm{ret}}+\frac{1}{c r} \vec{n} \cdot \frac{\partial \vec{p}_{\mathrm{ret}}}{\partial t}\right] \\
& \vec{A}(\vec{x}, t)=\frac{\mu_{0}}{4 \pi r} \frac{\partial \vec{p}_{\mathrm{ret}}}{\partial t}
\end{aligned}
$$

where $\vec{p}_{\text {ret }}=\vec{p}\left(t^{\prime}=t-r / c\right)$ is the dipole moment evaluated at the retarded time measured from the origin.
b) Calculate the dipole electric and magnetic fields directly from these potentials and show that

$$
\begin{aligned}
& \vec{B}(\vec{x}, t)=\frac{\mu_{0}}{4 \pi}\left[-\frac{1}{c r^{2}} \vec{n} \times \frac{\partial \vec{p}_{\mathrm{ret}}}{\partial t}-\frac{1}{c^{2} r} \vec{n} \times \frac{\partial^{2} \vec{p}_{\mathrm{ret}}}{\partial t^{2}}\right] \\
& \vec{E}(\vec{x}, t)=\frac{1}{4 \pi \epsilon_{0}}\left\{\left(1+\frac{r}{c} \frac{\partial}{\partial t}\right)\left[\frac{3 \vec{n}\left(\vec{n} \cdot \vec{p}_{\mathrm{ret}}\right)-\vec{p}_{\mathrm{ret}}}{r^{3}}\right]+\frac{1}{c^{2} r} \vec{n} \times\left(\vec{n} \times \frac{\partial^{2} \vec{p}_{\mathrm{ret}}}{\partial t^{2}}\right)\right\}
\end{aligned}
$$

c) Show explicitly how you can go back and forth between these results and the harmonic fields of (9.18) by the substitutions $-i \omega \leftrightarrow \partial / \partial t$ and $\vec{p} e^{i k r-i \omega t} \leftrightarrow$ $\vec{p}_{\text {ret }}\left(t^{\prime}\right)$.

