
Physics 506 Winter 2006

Homework Assignment #2 — Solutions

Textbook problems: Ch. 8: 8.6, 8.8

8.6 A resonant cavity of copper consists of a hollow, right circular cylinder of inner radius
R and length L, with flat end faces.

a) Determine the resonant frequencies of the cavity for all types of waves. With
(1/
√
µεR) as a unit of frequency, plot the lowest four resonant frequencies of each

type as a function of R/L for 0 < R/L < 2. Does the same mode have the lowest
frequency for all R/L?

This cavity is essentially covered in Section 8.7 of the textbook. It is also similar
to the waveguide problem 8.4, but with endcaps to form a resonant cavity. The
normal modes are either TM or TE modes. The TM modes are given by

ψ(ρ, φ) = E0Jm(γmnρ)e±imφ, γmn =
xmn

R
(1)

where xmn are the zeros of the Bessel functions Jm. The resonant frequencies are
thus

(TM) ωmnp =
1

√
µεR

√
x2

mn +
(
pπR

L

)2

(p ≥ 0)

with

x01 = 2.405, x11 = 3.832, x21 = 5.136, x02 = 5.520

The lowest four resonant frequncies are plotted as follows
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Note that the p = 0 modes are independent of R/L. Clearly the same mode
does not always have the lowest frequency. The cross-over points are accidental
degeneracies, and are not related to any particular symmetry of the cylinder.



The TE modes are given by

ψ(ρ, φ) = H0Jm(γmnρ)e±imφ, γmn =
x′mn

R

where x′mn are the zeros of J ′m. The TE resonant frequencies are

(TE) ωmnp =
1

√
µεR

√
x′ 2mn +

(
pπR

L

)2

(p > 0)

with

x′11 = 1.841, x′21 = 3.054, x′01 = 3.832, x′31 = 4.201

In this case, the lowest four resonant frequencies are
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b) If R = 2 cm, L = 3 cm, and the cavity is made of pure copper, what is the
numerical value of Q for the lowest resonant mode?

For this geometry, it turns out the lowest mode is the TM010 mode. We thus
calculate the Q factor for TMmn0 modes. We start with the stored energy

U =
Lε

2

∫
A

|ψ|2da (2)

where ψ is given by (1). Note that this is double the p 6= 0 result. The power
loss expression for TMmn0 modes is

Ploss =
ε

σδµ

(
1 + ξmn

CL

2A

)∫
A

|ψ|2da (3)

where we have taken p = 0 into account. Here C = 2πR and A = πR2 are the
circumference and cross-sectional area of the cylinder. The geometrical factor
ξmn is the same as the waveguide result, which was obtained in Problem 8.4 as
ξmn = 1. More directly, we may start with the definition∮

C

∣∣∣∣dψdn
∣∣∣∣2 dl = ξmnγ

2
mn

C

A

∫
A

|ψ|2da



Using (1), this statement is equivalent to

C
(
γ2

mnJ
′
m(xmn)2

)
= ξmnγ

2
mn

C

A

(
2π
∫ R

0

Jm(xmnρ/R)2ρ dρ

)

= ξmnγ
2
mn

C

A

(
πR2Jm+1(xmn)2

)
where the second line is obtained by the Bessel function normalization condition.
This results in

ξmn =
(

J ′m(xmn)
Jm+1(xmn)

)2

However, using the Bessel recursion relation Jm+1(ξ) = (m/ξ)Jm(ξ)−J ′m(ξ) and
letting ξ = xmn be a zero of Jm, we obtain simply Jm+1(xmn) = −J ′m(xmn).
This proves that the geometrical factor is simply ξmn = 1. Finally, using (2) and
(3) with ξmn = 1 gives

Qmn0 = ωmn
U

Ploss
=

µ

µc

L

δ

(
1 +

CL

2A

)−1

=
µ

µc

L

δ

(
1 +

L

R

)−1

Since copper is non-ferromagnetic, we may take µc = µ0. Furthermore, we assume
the interior of the cavity has µ = µ0 and ε = ε0. Substituting in R = 2 cm,
L = 3 cm then yields

Qmn0 =
1.2× 10−2 m

δ

We calculate the lowest resonant frequency to be

ω010 =
x01c

R
=

2.405c
R

= 3.61× 1010 s−1

or ν010 = 5.94 GHz, where we have used R = 3 cm. At this frequency, the skin
depth for copper is

δ =
6.52× 10−2 m√

νmnp(Hz)
= 8.6× 10−7 m

This gives a cavity Q of
Q010 = 1.4× 104

8.8 For the Schumann resonances of Section 8.9 calculate the Q values on the assumption
that the earth has a conductivity σe and the ionosphere has a conductivity σi, with
corresponding skin depths δe and δi.

a) Show that to lowest order in h/a the Q value is given by Q = Nh/(δe + δi) and
determine the numerical factor N for all l.



The long-wavelength Schumann resonances have electric and magnetic fields ap-
proximately given by

Er ≈ −
i

ε0ωla
l(l + 1)H0Pl(cos θ), Hφ ≈ H0P

1
l (cos θ) (4)

where
ωl ≈

√
l(l + 1)

c

a

To calculate the Q value, we begin with the stored energy.

U =
∫

V

[ε0
4
| ~E|2 +

µ0

4
| ~H|2

]
d3x

≈ ha2

∫
dΩ
[ε0

4
|Er|2 +

µ0

4
|Hφ|2

]
=
µ0ha

2

4
|H0|2

∫
dΩ
[
c2

ω2
l a

2
l2(l + 1)2Pl(cos θ)2 + P 1

l (cos θ)2
]

=
µ0ha

2

4
|H0|22π

∫ 1

−1

d cos θ[l(l + 1)Pl(cos θ)2 + P 1
l (cos θ)2]

Using the (associated) Legendre polynomial normalization∫ 1

−1

Pl(x)Pl′(x) dx =
2

2l + 1
δll′ ,

∫ 1

−1

Pm
l (x)Pm

l′ (x) dx =
2

2l + 1
(l +m)!
(l −m)!

δll′

gives

U = 2µ0hπa
2|H0|2

l(l + 1)
2l + 1

(5)

For the power lost, there are two contributions, one due to the conductivity at
the surface of the Earth, and the other due to the conductivity at the ionosphere
boundary. For a uniform tangential magnetic field at either boundary, we ap-
proximate

Plost =
1

2σδ

∫
S

|n̂× ~H|2da ≈ 1
2σδ

|H0|2R2

∫
dΩP 1

l (cos θ)2

=
πR2|H0|2

σδ

∫ 1

−1

d cos θP 1
l (cos θ)2

=
2πR2|H0|2

σδ

l(l + 1)
2l + 1

where R is the radius of the sphere. Since h� a, we use R = a for the Earth as
well as R = a+ h ≈ a for the ionosphere. Furthermore, we note that

1
σδ

= 1
2µcωδ



We may use µc ≈ µ0. Hence the sum of the power lost at the surface of the Earth
and the ionosphere is given by

Plost ≈ µ0ω(δe + δi)πa2|H0|2
l(l + 1)
2l + 1

Combining this with (5) gives

Q = ω
U

Plost
≈ 2h
δe + δi

This demonstrates that the numerical factor N is simply N = 2 for all l.

b) For the lowest Schumann resonance evaluate the Q value assuming σe = 0.1
(Ωm)−1, σi = 10−5 (Ωm)−1, h = 102 km.

For the lowest Schumann resonance, we use ν1 = 10.6 Hz or ω1 = 66.6 s−1. The
skin depths are

δe =
√

2
µ0σeω1

≈ 500 m

δi =
√

2
µ0σiω1

≈ 5× 104 m

This gives a Q of

Q ≈ 2× 105 m
5× 102 m + 5× 104 m

≈ 4

c) Discuss the validity of the approximations used in part a) for the range of pa-
rameters used in part b).

There are several issues to worry about, mainly related to the poor conductivity
of the ionosphere. Firstly, the power loss expression

dPloss

da
=

1
2σδ

| ~Keff |2

depended on extrapolating the tangential magnetic field ~H‖ (which gives rise to
the effective surface current density ~Keff = n̂ × ~H‖) into the conductor. The
expressions that was used were made in the ‘excellent conductor’ approximation,
σ � ωε0. Using the above parameters, we compute

σ

ωε0
≈ 1.7× 104

so this is actually a very good approximation, despite the poor conductivity of
the ionosphere. In reality, of course, a constant conductivity σi (independent of
height) is not particularly realistic. But that is outside the scope of this problem.



The more important issue, however, is that the calculation of part a) involved
using a perfect conductor approximation for the resonant mode. The ‘perfect
conductor’ fields (4) are then substituted in to the energy and power loss expres-
sions. So long as the the skin-depth is small compared to the size of the cavity,
this is a reasonable approximation. However, here, we see that the ‘skin-depth’
of the ionosphere is about 50 km, while the height of the ionosphere is 100 km.
Thus the penetration of the fields into the ionosphere is hardly small compared to
the (vertical) size of the cavity. Since δi/h ≈ 1/2, we can expect such corrections
to be on the order of 50%. Note, however, that the correction to the Schumann
modes is not as severe as it could have been, as these modes are essentially in-
dependent of height. The penetration of the fields into the ionosphere give rise
to an increased ‘effective height’, but otherwise do not drastically modify the
resonances.

This increased effective height, however, indicates that the fields penetrate quite
a bit into the ionosphere. In particular, this means there is a substantial amount
of field energy that was unaccounted for in the calculation of the stored energy
U of part a). From this point of view, an ‘improved’ expression for Q may be of
the form

Q ≈ 2heff

δc + δi

where heff = h+δi/2. Nevertheless, whatever expression we use forQ is essentially
a reasonable result up to a factor of order unity.


