Homework Assignment #2 — Due Thursday, January 19

Textbook problems: Ch. 8: 8.6, 8.8

- 8.6 A resonant cavity of copper consists of a hollow, right circular cylinder of inner radius R and length L, with flat end faces.
 - a) Determine the resonant frequencies of the cavity for all types of waves. With $(1/\sqrt{\mu\epsilon}R)$ as a unit of frequency, plot the lowest four resonant frequencies of each type as a function of R/L for 0 < R/L < 2. Does the same mode have the lowest frequency for all R/L?
 - b) If R = 2 cm, L = 3 cm, and the cavity is made of pure copper, what is the numerical value of Q for the lowest resonant mode?
- 8.8 For the Schumann resonances of Section 8.9 calculate the Q values on the assumption that the earth has a conductivity σ_e and the ionosphere has a conductivity σ_i , with corresponding skin depths δ_e and δ_i .
 - a) Show that to lowest order in h/a the Q value is given by $Q = Nh/(\delta_e + \delta_i)$ and determine the numerical factor N for all l.
 - b) For the lowest Schumann resonance evaluate the Q value assuming $\sigma_e = 0.1$ $(\Omega m)^{-1}$, $\sigma_i = 10^{-5} (\Omega m)^{-1}$, $h = 10^2$ km.
 - c) Discuss the validity of the approximations used in part a) for the range of parameters used in part b).