
Physics 506 Winter 2006

Homework Assignment #1 — Solutions

Textbook problems: Ch. 8: 8.2, 8.4, 8.5

8.2 A transmission line consisting of two concentric circular cylinders of metal with con-
ductivity σ and skin depth δ, as shown, is filled with a uniform lossless dielectric (µ, ε).
A TEM mode is propagated along this line. Section 8.1 applies.

a) Show that the time-averaged power flow along the line is

P =
√
µ

ε
πa2|H0|2 ln

(
b

a

)
where H0 is the peak value of the azimuthal magnetic field at the surface of the
inner conductor.

A TEM mode is essentially a two-dimensional electrostatic problem. Thus we
start by finding the electric field between the two cylinders. By elementary means,
it should be clear that

~Et =
A

ρ
ρ̂

where A is a constant that will be determined shortly. Using ~Bt =
√
µεk̂ × ~Et,

and assuming wave propagation in the +z direction, we find

~Ht =
√
ε

µ

A

ρ
φ̂

so that the magnitude of the magnetic field at the inner conductor is H(a) =√
ε/µ(A/a). Defining this as H0 gives

~Et =
√
µ

ε
H0

a

ρ
ρ̂, ~Ht = H0

a

ρ
φ̂ (1)

The (harmonic) Poynting vector is then

~S = 1
2
~E × ~H∗ =

1
2

√
µ

ε
|H0|2

a2

ρ2
ẑ

so the power flow is

P =
∫

A

ẑ · ~S da =
1
2

√
µ

ε
|H0|2

∫ b

a

a2

ρ2
2πρ dρ = π

√
µ

ε
|H0|2a2 ln

(
b

a

)
(2)



b) Show that the transmitted power is attenuated along the line as

P (z) = P0e
−2γz

where

γ =
1

2σδ

√
ε

µ

(
1
a + 1

b

)
ln
(

b
a

)
We compute the attenuation coefficient according to

γ = − 1
2P

dP

dz
(3)

The power P was calculated in part a). For the power loss per unit length of the
waveguide, we use

−dP
dz

=
1

2σδ

∮
C

|n̂× ~H|2 dl =
1

2σδ
|H0|2

∮
C

a2

ρ2
dl

Note that there are two boundaries, one at ρ = a (with circumference 2πa) and
the other at ρ = b (with circumference 2πb). This gives

−dP
dz

=
1

2σδ
|H0|2[2πa+ (a/b)22πb] =

π

σδ
|H0|2

a

b
(a+ b) (4)

Inserting this power loss expression and the power (2) into (3) yields

γ =
1

2σδ

√
ε

µ

a+ b

ab ln(b/a)
=

1
2σδ

√
ε

µ

(
1
a + 1

b

)
ln
(

b
a

)
c) The characteristic impedance Z0 of the line is defined as the ratio of the voltage

between the cylinders to the axial current flowing in one of them at any position
z. Show that for this line

Z0 =
1
2π

√
µ

ε
ln
(
b

a

)

Since Z0 = |∆V |/I, we need to compute the voltage difference between the cylin-
ders as well as the current. For the voltage difference, we have

∆V = −
∫ b

a

~E · d~l = −
√
µ

ε
H0

∫ b

a

a

ρ
dρ = −

√
µ

ε
H0a ln

(
b

a

)
where we have used (1) for the electric field. In addition, the current is given by
integrating the surface current density. For the inside conductor, we have

~K = n̂× ~H = ρ̂×
(
H0

a

ρ
φ̂

)
ρ=a

= H0ẑ



Hence
I =

∮
C

|K| dl = 2πaH0

Taking the ratio Z0 = |∆V |/I results in

Z0 =
1
2π

√
µ

ε
ln
(
b

a

)

d) Show that the series resistance and inductance per unit length of the line are

R =
1

2πσδ

(
1
a

+
1
b

)
L =

{
µ

2π
ln
(
b

a

)
+
µcδ

4π

(
1
a

+
1
b

)}
where µc is the permeability of the conductor. The correction to the inductance
comes from the penetration of the flux into the conductors by a distance of order δ.

We may obtain the series resistance from the power loss

1
2 |I|

2R = −dP
dz

where R denotes the resistance per unit length. Using −dP/dz from (4) as well
as the current computed above, we find

R =
2
|I|2

(
−dp
dz

)
=

1
2πσδ

a+ b

ab

For the inductance per unit length, we compute the energy per unit length stored
in the magnetic field. Inside the volume of the waveguide, we have

Uvol =
∫

A

µ

4
| ~H |2da =

µ

4
|H0|2

∫ b

a

a2

ρ2
2πρ dρ =

µ

2
|H0|2πa2 ln

(
b

a

)
In addition, since some of the magnetic field penetrates the conducting walls, we
us the approximation

H(ζ) = H‖e
−ζ/δeiζ/δ

where ζ is the distance into the conductor. Assuming the skin depth is much
less than the thickness of the conductor as well as the radius of curvature, we
approximate

Uwall = C

∫ ∞

0

µc

4
|H(ξ)|2 dξ =

µc

4
C|H‖|2

∫ ∞

0

e−2ξ/δdξ =
µc

8
Cδ|H‖|2



where C is the circumference of the wall. On the inside wall, we have C = 2πa
and H‖ = H0, while on the outside wall, we have C = 2πB and H‖ = H0(a/b).
Hence

Uwalls =
µc

8
δ|H0|2[2πa+ 2πb(a/b)2] =

µc

4
πδ|H0|2

a

b
(a+ b)

Using
1
4L|I|

2 = Uvol + Uwalls

we end up with

L =
µ

2π
ln
(
b

a

)
+
µcδ

4π
a+ b

ab

8.4 Transverse electric and magnetic waves are propagated along a hollow, right circular
cylinder with inner radius R and conductivity σ.

a) Find the cutoff frequencies of the various TE and TM modes. Determine nu-
merically the lowest cutoff frequency (the dominant mode) in terms of the tube
radius and the ratio of cutoff frequencies of the next four higher modes to that of
the dominant mode. For this part assume that the conductivity of the cylinder
is infinite.

The eigenvalue equation for either TE or TM modes is

[∇2
t + γ2]ψ(ρ, φ) = 0

where ψ(R,φ) = 0 for TM modes or dψ(ρ, φ)/dρ|ρ=R = 0 for TE modes. Writing
ψ(ρ, φ) = ψ(ρ)e±imφ, the cylindrical coordinates radial equation becomes(

1
ρ
∂ρρ∂ρ + γ2 − m2

ρ2

)
ψ(ρ) = 0

which is solved by Bessel functions. Avoiding the Neumann function which blows
up at ρ = 0, we have

ψ(ρ, φ) ∼ Jm(γρ)e±imφ

The boundary conditions then place conditions on γ. For TM modes (Dirichlet
conditions), we demand Jm(γR) = 0. Hence

(TM) γmn =
xmn

R
or ωmn =

xmn√
µεR

where xmn is the n-th zero of Jm. For TE modes (Neumann conditions), on the
other hand, we demand J ′m(γR) = 0. Hence

(TE) γmn =
x′mn

R
or ωmn =

x′mn√
µεR



where x′mn is the n-th zero of J ′m. Sorting through the zeros of Jm and J ′m, the
lowest five modes are given by

mode
√
µεRωmn ωmn/ωdominant

TE11 1.841 1
TM01 2.405 1.306
TE21 3.054 1.659
TE02 and TM11 3.832 2.081

Note that the TE02 and TM11 modes are degenerate. This is a special case where
the Bessel identity J ′0(ζ) = −J1(ζ) demonstrates that x′0,n+1 = x1n.

b) Calculate the attenuation constants of the waveguide as a function of frequency
for the lowest two distinct modes and plot them as a function of frequency.

The computation of the attenuation coefficients involves computing both power
P and power loss −dP/dz. We first consider TM modes. The power is given by

P =
1
2

√
ε

µ

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2 ∫
A

|ψ|2 da (5)

Using ψ = Jm(γρ)e±imφ gives∫
A

|ψ|2 da = 2π
∫ R

0

Jm(xmnρ/R)2ρ dρ = 2π[ 12R
2Jm+1(xmn)2] = πR2Jm+1(xmn)2

where the expression in the square brackets comes from Bessel function orthogo-
nality/normalization. Hence

P =
1
2

√
ε

µ

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2

πR2Jm+1(xmn)2 (6)

For a TM mode, the power loss is given by

−dP
dz

=
1

2σδ

(
ω

ωmn

)2 ∮
C

1
µ2ω2

mn

∣∣∣∣∂ψ∂n
∣∣∣∣2 dl

In this case
∂ψ

∂n
= − ∂ψ

∂ρ

∣∣∣∣
ρ=R

= −γmnJ
′
m(xmn)e±imφ

Using γ2
mn = µεω2

mn, we obtain

−dP
dz

=
1

2σδ
ε

µ
(2πR)J ′m(xmn)2

We now have some fun with Bessel functions. Using the recursion relation

Jm+1(ζ) =
m

ζ
Jm(ζ)− J ′m(ζ)



as setting ζ = xmn to be a zero of Jm, we obtain

Jm+1(xmn) = −J ′m(xmn)

This allows us to rewrite the power loss as

−dP
dz

=
1

2σδ
ε

µ
(2πR)Jm+1(xmn)2 (7)

Given (6) and (7), the TMmn attenuation coefficient is obtained by setting

βmn = − 1
2P

dP

dz
=

1
2σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 2πR
πR2

=
1
σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 1
R

Note that 1/R = C/(2A) were C = 2πR and A = πR2 are the circumference and
area of the cylindrical waveguide. Since δ = δmn

√
ωmn/ω, we get the standard

TM expression with the geometric factor ξmn = 1.

For the TE mode, the power loss calculation is somewhat lengthier, as it involves
both Hz and ~Ht. We begin with the power, which is given by a similar expression
as (5), however with a factor of

√
µ/ε instead. The Bessel normalization integral

is now ∫ R

0

Jm(x′mnρ/R)2ρ dρ = 1
2R

2(1−m2/x′ 2mn)Jm(x′mn)2

which gives

P =
1
2

√
µ

ε

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2

πR2

(
1− m2

x′ 2mn

)
Jm(x′mn)2 (8)

This time, the power loss expression is

−dP
dz

=
1

2σδ

(
ω

ωmn

)2 ∮
C

[
1
γ2

mn

(
1− ω2

mn

ω2

)
|n̂× ~∇tψ|2 +

ω2
mn

ω2
|ψ|2

]
dl

There are two terms to evaluate. The simple one is∮
C

|ψ|2dl = (2πR)Jm(x′mn)2

For the gradient term, we note that n̂ = −ρ̂ on the inside of the cylinder. And
~∇t = ρ̂∂ρ + (1/ρ)φ̂∂φ. Hence

∮
C

|n̂× ~∇tψ|2dl = (2πR)
∣∣∣∣1ρ ∂ψ∂φ

∣∣∣∣2 = (2πR)
m2

R2
Jm(x′mn)2



Combining these two terms yields

−dP
dz

=
1

2σδ

(
ω

ωmn

)2

(2πR)
[
m2

x′ 2mn

(
1− ω2

mn

ω2

)
+
ω2

mn

ω2

]
Using this for the power loss and (8) for the power itself gives an attenuation
coefficient

βmn = − 1
2P

dP

dz

=
1

2σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 2πR
πR2

[
m2

x′ 2mn

(
1− ω2

mn

ω2

)
+
ω2

mn

ω2

] [
1− m2

x′ 2mn

]−1

=
1
σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 1
R

[
m2

x′ 2mn −m2
+
ω2

mn

ω2

]
This demonstrates that the TE geometric factors are ξmn = m2/(x′ 2mn−m2) and
ηmn = 1.

The attenuation constants are plotted as follows

/

TM

TE 1,1

0,1

ω/ ω dominant

ββ
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1

2

3

4

where

β =
1

σδmn

√
ε

µ

1
R

8.5 A waveguide is constructed so that the cross section of the guide forms a right triangle
with sides of length a, a,

√
2a, as shown. The medium inside has µr = εr = 1.

a) Assuming infinite conductivity for the walls, determine the possible modes of
propagation and their cutoff frequencies.

In general, to solve a problem like this, we need to consider the Dirichlet or Neu-
mann problem for a boundary without any ‘standard’ (ie rectangular or circular)
symmetry. In particular, this means there is no natural coordinate system to use
for the two-dimensional Helmholtz equation [∇2

t + γ2]ψ = 0 that both allows for
separation of variables and respects the symmetry of the boundary surface (which



would allow a simple specification of the boundary data). A general problem of
this form (with no simple boundary symmetry) is quite unpleasant to solve.

In this case, however, we can think of the triangle as ‘half’ of a square.

a

a
x

y

In particular, the key step to this problem is to note that the triangle may be ob-
tained from the square by imposing reflection symmetry along the x = y diagonal.
This symmetry is a Z2 reflection on the coordinates of the form

Z2 : x→ y, y → x

Eigenfunctions ψ(x, y) can then be classified as either Z2-even or Z2-odd

Z2 : ψ(x, y) → ±ψ(y, x)

The odd functions vanish along the diagonal, so they automatically satisfy Dirich-
let conditions ψ(x = y) = 0 on the diagonal. Similarly, the even functions have
vanishing normal derivative on the diagonal and hence automatically satisfy Neu-
mann conditions. We will use this fact to construct TM and TE modes for the
triangle.

We begin with the TM modes. Using rectangular coordinates, it is natural to
write solutions of the Helmholtz equation [∂2

x + ∂2
y + γ2]ψ = 0 as ψ ∼ ei(kxx+kyy)

where k2
x + k2

y = γ2. This means we may expand the eigenfuctions in terms of
sines and cosines. For TM modes satisfying the Dirichlet condition ψS = 0, we
start with eigenfunctions on the square

ψ ∼ sin
mπx

a
sin

nπy

a

which automatically satisfy the boundary conditions on the four walls of the
square. This gives

γmn =
π

a

√
m2 + n2

so the cutoff frequencies are

ωmn =
π

√
µ0ε0a

√
m2 + n2 =

πc

a

√
m2 + n2 (9)



In order to satisfy the Dirichlet condition on the diagonal, we take the Z2-odd
combination

(TM) ψmn = sin
mπx

a
sin

nπy

a
− sin

nπx

a
sin

mπy

a

It is simple to verify that ψ(x, 0) = ψ(a, y) = ψ(x, x) = 0, so that all boundary
conditions on the triangle are indeed satisfied. The cutoff frequencies are given
by (9). Note here that the Z2 projection removes the m = n modes and also
antisymmetrizes m with n. As a result, the integer labels m and n may be taken
to satisfy the condition m > n > 0.

The analysis for TE modes is similar. However, for Neumann conditions, we take
cosine combinations as well as a Z2-even eigenfunction. This gives

(TE) ψmn = cos
mπx

a
cos

nπy

a
+ cos

nπx

a
cos

mπy

a

with identical cutoff frequencies as in (9). This time, however, the labels m and
n may be taken to satisfy m ≥ n ≥ 0 (except m = n = 0 is not allowed).

b) For the lowest modes of each type calculate the attenuation constant, assuming
that the walls have large, but finite, conductivity. Compare the result with that
for a square guide of side a made from the same material.

The attenuation coefficients are determined by power and power loss. We begin
with TM modes. For the power, we need to compute∫

A

|ψ|2 da =
∫

A

[
sin kmx sin kny − sin knx sin kmy

]2
da (10)

It is perhaps easiest to compute this by integrating over the square and then
dividing by two for the triangle. This is because the integration separates into x
and y integrals, and we may use orthogonality∫ a

0

sin kix sin kjx dx =
a

2
δi,j

(
where kj =

jπ

a

)
This gives ∫

A

|ψ|2 da =
1
2
× 2

(a
2

)2

=
a2

4

The factor of 1/2 is for the triangle, while the factor of 2 is because two non-
vanishing terms arise when squaring the integrand in (10). (Recall that m 6= n
for TM modes.) This gives an expression for the power

P =
1
2

√
ε

µ

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2 ∫
A

|ψ|2 da

=
1
2

√
ε

µ

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2
A

2



where A = a2/2 is the area of the triang.e Calculating the power loss involves
integrating a normal derivative ∮

C

∣∣∣∣∂ψ∂n
∣∣∣∣2 dl

We break this into three parts: along y = 0, along x = a and along the diagonal
x = y. Along the y = 0 wall, we have n̂ = ŷ and

∂ψ

∂y

∣∣∣∣
y=0

=
π

a

[
n sin kmx−m sin knx

]
As a result ∫ a

0

∣∣∣∣∂ψ∂y
∣∣∣∣2 dx =

(π
a

)2 a

2
(m2 + n2) =

π2

2a
(m2 + n2) (11)

A similar calculation, or use of symmetry, will result in an identical expression
for the integral along the x = a wall. For the diagonal, we use n̂ = 1√

2
(x̂− ŷ) to

compute

∂ψ

∂n
=

1√
2

[
∂ψ

∂x
− ∂ψ

∂y

]
y=x

=
√

2
π

a

[
m cos kmx sin knx− n cos knx sin kmx

]
=
√

2
2
π

a

[
(m− n) sin(m+ n)x− (m+ n) sin(m− n)x

]
This gives∫ √

a

0

∣∣∣∣∂ψ∂n
∣∣∣∣2 dl =

√
2
∫ a

0

∣∣∣∣∂ψ∂n
∣∣∣∣2 dx =

√
2
1
2

(π
a

)2 a

2
[
(m− n)2 + (m+ n)2

]
=
√

2
π2

2a
(m2 + n2)

Combining this diagonal with (11) for the sides, we obtain∮
C

∣∣∣∣∂ψ∂n
∣∣∣∣2 dl = C

π2

2a
(m2 + n2) =

C

2
γ2

mn

where C = a + a +
√

2a is the circumference of the triangle. This gives a TM
mode power loss of

−dP
dz

=
1

2σδ

(
ω

ω2
mn

)2 1
µ2ω2

mn

∮
C

∣∣∣∣∂ψ∂n
∣∣∣∣2 dl

=
1

2σδ

(
ω

ω2
mn

)2 1
µ2ω2

mn

C

2
γ2

mn =
1

2σδ

(
ω

ω2
mn

)2
ε

µ

C

2



The attenuation coefficient is thus

βmn = − 1
2P

dP

dz
=

1
σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2
C

2A

so that the geometrical factor ξmn = 1 is trivial. Note that, the energy loss
calculation along the diagonal of the triangle gives the same result as along the
square edges. As a result, the geometrical factor ξmn = 1 does not care whether
the waveguide is square or right triangular. As a result, the triangular TM result
is identical to the square TM result, at least up to the ratios C/A = 2(2+

√
2)/a ≈

6.83/a for the triangle and C/A = 4/a for the square.

The power loss for the TE mode is somewhat harder to deal with because of the
possibility of special cases. Consider

ψ = cos kmx cos kny + cos knx cos kmy (12)

where m ≥ n ≥ 0. If n = 0, we end up with

ψ = cos kmx+ cos kmy (m > 0)

In this case∫
A

|ψ|2da =
1
2

∫ a

0

dx

∫ a

0

dy
[
cos kmx+ cos kmy

]2 =
1
2
× 2( 1

2a
2) =

a2

2
= A

while the perimeter integrals are∫ a

0

dx
∣∣ψ(y = 0)

∣∣2 =
∫ a

0

dx
[
1 + cos kmx

]2 = a(1 + 1
2 ) =

3a
2

√
2
∫ a

0

dx
∣∣ψ(y = x)

∣∣2 =
√

2
∫ a

0

dx
[
2 cos kmx

]2 = 4
√

2( 1
2a) = 2

√
2a

which gives ∮
C

∣∣ψ∣∣2dl = (3 + 2
√

2)a

and ∫ a

0

dx
∣∣n̂× ~∇tψ

∣∣2 =
∫ a

0

dx
∣∣ŷ × ~∇tψ

∣∣2 =
∫ a

0

dx
∣∣−ẑ∂xψ

∣∣2
y=0

=
∫ a

0

dx
π2

a2
m2
∣∣sin kmx

∣∣2 =
π2

2a
m2

√
2
∫ a

0

dx
∣∣n̂× ~∇tψ

∣∣2
y=x

=
√

2
∫ a

0

dx
∣∣ 1√

2
ẑ(∂y + ∂x)ψ

∣∣2
y=x

=
√

2
2

∫ a

0

dx
π2

a2
m2
∣∣2 sin kmx

∣∣2 =
√

2
π2

a
m2



which gives ∮
C

∣∣n̂× ~∇tψ
∣∣2dl = (1 +

√
2)
π2

a
m2 = (1 +

√
2)aγ2

m0

Using

P =
1
2

√
µ

ε

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2 ∫
A

|ψ|2da

and

−dP
dz

=
1

2σδ

(
ω

ωmn

)2 ∮
C

[
1
γ2

mn

(
1− ω2

mn

ω2

)
|n̂× ~∇tψ|2 +

ω2
mn

ω2
|ψ|2

]
dl

with the above integrals gives an attenuation coefficient

βm0 = − 1
2P

dP

dz

=
1

2σδ

√
ε

µ

(
1− ω2

m0

ω2

)−1/2 [
(1 +

√
2)
(

1− ω2
m0

ω2

)
+
ω2

m0

ω2
(3 + 2

√
2)
]
a

A

=
1
σδ

√
ε

µ

(
1− ω2

m0

ω2

)−1/2
[

1 +
√

2
2 +

√
2

+
ω2

m0

ω2

]
C

2A

where C = (2 +
√

2)a and A = a2/2. Here the geometrical factors are

ξm0 =
1 +

√
2

2 +
√

2
, ηm0 = 1 (m > n = 0)

For the rectangular waveguide, one has instead

ξm0 =
a

a+ b
→ 1

2
, ηm0 =

2b
a+ b

→ 1 when b→ a

This is different because the power loss calculation is no longer universal, giving
different coefficients along the diagonal as along the square edges. The remaining
TE cases to consider are modes (12) where m = n > 0 and m > n > 0. Here we
simply state the results. For m = n > 0 we have

ψ = cos kmx cos kmy

(we have removed an unimportant factor of two) so that∫
A

|ψ|2da =
a2

8
=
A

4∮
C

|ψ|2dl =

(
1 +

3
√

2
8

)
a

∮
C

|n̂× ~∇tψ|2dl =

(
1 +

√
2

4

)
π2

a
m2 =

(
1
2

+
√

2
8

)
aγ2

mm



This gives

ξmm =
4 +

√
2

4 + 2
√

2
, ηmm = 1 (m = n > 0)

On the other hand, for the general case m > n > 0 we find∫
A

|ψ|2da =
a2

4
=
A

2∮
C

|ψ|2dl = (2 +
√

2)a = C∮
C

|n̂× ~∇tψ|2dl = (2 +
√

2)
π2

2a
(m2 + n2) =

C

2
γ2

mn

which yields
ξmn = 1, ηmn = 1 (m > n > 0)

In all cases, ηmn = 1, which is the same for the triangle or the square waveg-
uide. For ξmn, the factor is essentially a geometric combination of contributions
along the perimeter of either 1 or 1/2 depending on the particular mode and its
degeneracies.


