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1. Problem 12.1 10 Points

Note: In part a) of 12.1, it is implied that the action is obtained by integrating over proper time. In part
b), consider Eqns. 12.33f in Jackson.

a): Since for this Lagrangian the action integral is over proper time, the Euler-Lagrange equations are

d

dτ

∂L

∂Uγ
=

∂L

∂xγ

or, d
dτ

∂L
∂Uγ = ∂γL. Detailed calculation:

L = −m

2
UαUα − q

c
UαAα

= −m

2
gαβUβUα − q

c
gαβUβAα

∂L

∂Uγ
= −m

2
gαβ

[
δβ

γUα + Uβδα
γ

]− q

c
gαβδβ

γAα

= −m

2
[
gαγUα + gγβUβ

]− q

c
gαγAα

= −m

2
[Uγ + Uγ ]− q

c
Aγ = −mUγ − q

c
Aγ

∂L

∂xγ
= −q

c
gαβUβ∂γAα = −q

c
Uα∂γAα

= −q

c
Uα∂γAα

Thus, the Euler-Lagrange equations are

d

dτ

[
mUγ +

q

c
Aγ

]
=

q

c
Uα∂γAα

m
d

dτ
Uγ = −q

c

d

dτ
Aγ +

q

c
Uα∂γAα

m
d

dτ
Uγ =

q

c

[
Uα∂γAα − d

dτ
Aγ

]

m
d

dτ
Uγ =

q

c

[
Uα∂γAα − dxα

dτ

∂

∂xα
Aγ

]

m
d

dτ
Uγ =

q

c
[Uα∂γAα − Uα∂αAγ ]

m
d

dτ
Uγ =

q

c
[∂γAα − ∂αAγ ]Uα

m
d

dτ
Uγ =

q

c
FγαUα
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m
d

dτ
Uγ =

q

c
F γαUα

The last two lines are equivalent forms of the covariant Lorentz force equation.

b): Following 12.33 of Jackson, it is Pα = − ∂L
∂Uα

. From the above result for ∂L
∂Uγ , which equals −Pγ , we see

Pα = mUα +
q

c
Aα

and thus, by inserting into

H = PαUα + L

=
m

2
UαUα

=
1

2m
(Pα − q

c
Aα)(Pα − q

c
Aα)

The last line is the Hamiltonian in correct coordinates (position coordinates in the argument of A and
conjugate momenta). The second line shows the value of H is the Lorentz invariant H = m

2 UαUα = mc2

2 .

In space-time coordinates, use

Pα − q

c
Aα =




p0 − q
cΦ(x, t)

p − q
cA(x, t)




to see

H =
1

2m

(
(p0)2 − p2 +

q2

c2

[
Φ2 −A2

]
+

2q

c

[
p ·A− p0 Φ

])

The relation between conjugate momenta and velocities is




p0

p


 =




γmc + q
cΦ(x, t)

γmu + q
cA(x, t)
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2. Problem 12.5 10 Points

a): For E < B we boost into a frame K ′ in which E′ vanishes using a Lorentz transformation with boost
velocity

u = c
E×B

B2
=

cE

B
ẑ

in the given geometry. In K ′ we have E′ = 0 and B′ = γ−1B = γ−1Bŷ with γ =
√

1− (u/c)2
−1

. Then, the
trajectory in K ′ is

x′(t′) = a cos(ωBt′)

y′(t′) = v||t′

z′(t′) = a sin(ωBt′)

where ωB = qB′

γamc and γa = 1√
1−

v2
||+ω2

B
a2

c2

. Transformation into K yields

x(t′) = x′(t′) = a cos(ωBt′)

y(t′) = y′(t′) = v||t′

z(t′) = γ(z′(t′) + ut′) = γ(a sin(ωBt′) + ut′)

t(t′) = γ(t′ +
u

c2
z′(t′)) = γ(t′ +

u

c2
a sin(ωBt′))

The first three lines give the trajectory in K as a function of the time t′ in K ′. This is the most convenient
form of a result. Note that the parameter in this result is t′, i.e. the time in K ′. The result can, in principle,
be written as a function of t, the time in K, by inverting the fourth equation The result t′(t) could be
inserted into the first three equations. Since the fourth equation is transcendental equation, we don’t do it.

Note. For γ ≈ 1, the trajectory is a cycloid. In highly relativistic cases, however, the trajectory “cycloids”
are stretched in the boost direction E×B, and the whole thing isn’t a cycloid any more.

b): For E > B we boost into a frame K ′ in which B′ vanishes using a Lorentz transformation with boost
velocity

u = c
E×B

E2
=

cB

E
ẑ

in the given geometry. In K ′ we have B′ = 0 and E′ = γ−1E = γ−1Ex̂ with γ =
√

1− (u/c)2
−1

.

The trajectory in K ′ is found as follows. Call the velocity in the y′z′-plane of K ′ v⊥ and the x′-component
v||. Then, the relativistic version of Newton’s II law in K ′ reads
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m
d

dt
γa(t′)v⊥(t′) = 0

m
d

dt
γa(t′)v||(t′) = qE′

Choosing a suitable space-time origin in K ′, the initial position and the initial longitudinal velocity are
zero, and the initial transverse velocity is v⊥(t′ = 0) = v0. Thus, without loss of generality and with

γ0 :=
√

1− v2
0

c2

−1

it is

mγa(t′)v⊥(t′) = mγ0v0

mγa(t′)v||(t′) = qE′t′

Add the squares of these equations and note γ−2
a (t′) = 1− v2(t′)

c2 . You find

v2(t′) =
c2(γ2

0v2
0 + q2E′2t′2/m2)

γ2
0c2 + q2E′2t′2/m2

γ2
a(t′) = γ2

0 +
q2E′2t′2

m2c2

v⊥(t′) =
γ0v0

γa(t′)
=

γ0v0√
γ2
0 + q2E′2t′2

m2c2

v||(t′) =
qE′t′

m
√

γ2
0 + q2E′2t′2

m2c2

With initial position at the origin, this integrates to

x⊥(t′) =
γ0v0mc

qE′ sinh−1

(
qE′t′

γ0mc

)

x||(t′) =
γ0mc2

qE′




√
1 +

(
qE′t′

γ0mc

)2

− 1




or, in terms of the primed coordinates of frame K ′ and with a fixed angle φ0 describing the initial direction
of motion in the y′z′-plane,

x′(t′) =
γ0mc2

qE′




√
1 +

(
qE′t′

γ0mc

)2

− 1




y′(t′) = cos φ0
γ0v0mc

qE′ sinh−1

(
qE′t′

γ0mc

)

z′(t′) = sin φ0
γ0v0mc

qE′ sinh−1

(
qE′t′

γ0mc

)
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This can be transformed into frame K. With constant δ := qE′

γ0mc , we find

x(t′) =
c

δ

(√
1 + (δt′)2 − 1

)

y(t′) = cos φ0
v0

δ
sinh−1 (δt′)

z(t′) = γ(z′(t′) + ut′) = γ
(
sin φ0

v0

δ
sinh−1 (δt′) + ut′

)

Again, it’s best to just leave the time in K ′ as trajectory parameter.
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3. Problem 12.9 10 Points

a): In Gaussian units, the magnetic field of a dipole m = −mẑ is

B = −m

r3
(r̂ 2 cos θ + θ̂ sin θ)

We consider the contour line f(r, θ) = 0 for the function f(r, θ) = r−r0 sin2 θ. On that line, it is r = r0 sin2 θ.
Also, on the contour line the gradient

∇f = r̂− θ̂
2r0

r
sin θ cos θ = r̂− θ̂

2r0

r0 sin2 θ
sin θ cos θ = r̂− θ̂

2 cos θ

sin θ

We then see that on the contour line

B · ∇f = 0

Thus, the contour line f = 0 is a magnetic-field line, and

r(θ) = r0 sin2 θ

describes the radial coordinate of that line as a function of θ. Insertion of r(θ) into the equation for B yields,
along a given magnetic-field line,

B(θ) = − m

r3
0 sin6 θ

(r̂ 2 cos θ + θ̂ sin θ)

and, for the magnitude

B(θ) =
m

r3
0 sin6 θ

√
4− 3 sin2 θ

b): From ∇B = − 3m
r4

(
r̂
√

4− 3 sin2 θ + θ̂ sin θ cos θ√
4−3 sin2 θ

)
it follows that in the equatorial plane θ = π/2

B×∇B = B×∇⊥B = −φ̂
3m2

r7
= −φ̂

3B2

r

and the gradient drift velocity

vG = ωB
a2

2B2
B×∇⊥B = −φ̂ωB

3a2

2r

There, ωB = qB
γmc is the cyclotron frequency and a the cyclotron radius. For an average radial coordinate of

the particle R À a it then is
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vG = φ̂Rφ̇ = −φ̂ωB
3a2

2R

and therefore φ̇ = −ωB
3a2

2R2 . This integrates to

φ(t) = φ0 − 3a2

2R2
ωB(t− t0) q.e.d.

c): Since v2
|| = v2

0 − v2
⊥0

B
B0

and v|| = Rθ̇ it is

R2θ̇2 = v2
0 − v2

⊥0

B(θ)
B0

Taking the time derivative,

2R2θ̇θ̈ = −v2
⊥0

B0

dB(θ)
dθ

θ̇

Redefining θ = π/2 + α and noting that the problem statement implies α ¿ 1, we see

α̈ = − v2
⊥0

2R2B0

dB(π/2 + α)
dα

Since the expansion of B(π/2 + α) = m
r3
0 cos6 α

√
4− 3 cos2 α for small α yields

B(α) ≈ m

r3
0

+
9mα2

2r3
0

it is dB(π/2+α)
dα = 9mα

r3
0

. Since also r0 = R for small α, we conclude

α̈ = − v2
⊥0

2R2B0

9mα

R3
= −Ω2α

with Ω = 3v⊥0

√
m

2R5B0
. Also, B0 = m/R3 and v⊥0 = ωBa with the cyclotron frequency ωB and initial

cyclotron radius a. Thus,

Ω = 3ωBa

√
1

2R2
=

3ωBa

R
√

2
, q.e.d.

d): Ekin = 10MeV electron:
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γ =
Ekin + mc2

mc2
=

10.511MeV

0.511MeV
= 19.6

v⊥ ≈ v ≈ c

B0 =
m

R3
= 3mGauss

ωB =
4.8× 10−10statcoulomb · 3× 10−3Gauss

19.6 · 9.1× 10−28grams · 3× 1010cm/s
= 2π × 408s−1

a = v⊥/ωB = 117km

Tφ =
4πR2

3ωBa2
= 107s

Tθ =
2π
√

2R

3v⊥
= 0.3s

Ekin = 10keV electron:

γ = 1.0196

v⊥ ≈ v = 0.195c

B0 = 3mGauss

ωB = 2π × 8230s−1

a = 1.13km

Tφ = 15.9h

Tθ = 1.52s
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4. Problem 12.14 10 Points

L = − 1
8π

∂αAβ∂αAβ − 1
c
JαAα

= − 1
8π

gαγgβδ∂
γAδ∂αAβ − 1

c
JαAα

∂L

∂εAη
= − 1

8π
gαγgβδ

[
δγ

εδ
δ
η∂αAβ + ∂γAδδα

εδ
β
η

]

= − 1
8π

[
gαεgβη∂αAβ + gεγgηδ∂

γAδ
]

= − 1
8π

[∂εAη + ∂εAη] = − 1
4π

∂εAη

∂L

∂Aη
= −1

c
Jαδα

η = −1
c
Jη

Thus, the Euler-Lagrange equations are

∂ε ∂L

∂εAη
=

∂L

∂Aη

− 1
4π

∂ε∂εAη = −1
c
Jη

∂ε∂εAη =
4π

c
Jη

These are equivalent to the inhomogeneous Maxwell equations in the Lorentz gauge, ∂αAα = 0.

We take the difference of the two Lagrangian densities in question,

L− L′ = − 1
16π

FαβFαβ +
1
8π

∂αAβ∂αAβ

= − 1
16π

[
∂αAβ∂αAβ + ∂βAα∂βAα − ∂βAα∂αAβ − ∂αAβ∂βAα

]
+

1
8π

∂αAβ∂αAβ

=
1
8π

∂βAα∂αAβ

where we mean, as usual, L−L′ = 1
8π (∂βAα)(∂αAβ). Under the condition of the Lorentz gauge, ∂αAα = 0,

we may write

L− L′ =
1
8π

(∂βAα)(∂αAβ)

=
1
8π

∂β(Aα∂αAβ)− 1
8π

Aα∂β∂αAβ

=
1
8π

∂β(Aα∂αAβ)− 1
8π

Aα∂α(∂βAβ)

=
1
8π

∂β(Aα∂αAβ)− 1
8π

Aα∂α(0)

=
1
8π

∂β(Aα∂αAβ) = ∂βΛβ
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which is the four-divergence of the 4-vector Λβ = 1
8π (Aα∂αAβ), q.e.d.

Then, using the four-dimensional generalization of the divergence theorem the difference in the corresponding
actions is

A−A′ =
∫

4−volmue

(L− L′)d4x =
∫

∂βΛβd4x

=
∫

4−volmue

(
∂

∂x0
Λ0 +∇ · Λ)dx0d3x

=
∫

4−surface

(Λ0n0 + Λ · n)d3a

There, n is a 4-dimensional unit vector on the 4-surface containing the fields. Note that n is a unit vector
with the usual cartesian norm of 1, i.e. (n0)2 + n · n = 1. The 4-vector Λβ is defined only through the
potentials and their derivatives. Further, the variation principle is such that the potential and the field values
(the field values are essentially the derivatives of the potentials) are not varied on the 4-surface. Thus, Λβ

is not varied on the surface, and

A−A′ = constant

δA = δA′

The added four-divergence changes the action merely by a constant, and the variations of the actions are
the same. In particular, both actions become minimal for the same potentials Aα. The equations of motion
for Aα must therefore also be the same in both cases, so as to produce identical solutions.

The equivalence of the equations of motion was seen explicitly in part a).
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5. Problem 14.4 10 points

graithel
11



graithel
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6. Problem 14.12 10 points

graithel
13

graithel




