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1. Problem 12.1 10 Points

Note: In part a) of 12.1, it is implied that the action is obtained by integrating over proper time. In part
b), consider Eqns. 12.33f in Jackson.

a): Since for this Lagrangian the action integral is over proper time, the Euler-Lagrange equations are
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or, % 0‘%& = 0y L. Detailed calculation:
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Thus, the Euler-Lagrange equations are
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The last two lines are equivalent forms of the covariant Lorentz force equation.

b): Following 12.33 of Jackson, it is P* = —;TLQ. From the above result for 88%, which equals —P,, we see
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and thus, by inserting into
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The last line is the Hamiltonian in correct coordinates (position coordinates in the argument of A and

m02

conjugate momenta). The second line shows the value of H is the Lorentz invariant H = FUU, = ",

In space-time coordinates, use

pO - %(I)(X>t)
po_ o _
¢ p - %A(X7t)
to see
1 ¢ 2q
H=_——" 0V2 2 7(1)27A2 “a A — O(p
e (07 =024 % [0 A7) 4 2 poa 00

The relation between conjugate momenta and velocities is
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2. Problem 12.5 10 Points

a): For £ < B we boost into a frame K’ in which E’ vanishes using a Lorentz transformation with boost

velocity

ExB cF
C————— =

B? B

u=

in the given geometry. In K’ we have E/ = 0 and B’ = 77 !B = v~ ! By with v = /1 — (u/c)gil. Then, the

trajectory in K’ is

(') = acos(wpt)
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where wp = and v, =

(t)
(t)

2(t") = ') +ut") = y(asin(wpt’) + ut’)
() = At +52(t) = 9t + Zasin(wst)

The first three lines give the trajectory in K as a function of the time ¢’ in K’. This is the most convenient
form of a result. Note that the parameter in this result is ¢/, i.e. the time in K’. The result can, in principle,
be written as a function of ¢, the time in K, by inverting the fourth equation The result ¢'(¢) could be

inserted into the first three equations. Since the fourth equation is transcendental equation, we don’t do it.

Note. For v = 1, the trajectory is a cycloid. In highly relativistic cases, however, the trajectory “cycloids”

are stretched in the boost direction E x B, and the whole thing isn’t a cycloid any more.

b): For E > B we boost into a frame K’ in which B’ vanishes using a Lorentz transformation with boost

velocity

in the given geometry. In K’ we have B’ =0 and E' = v 'E = y ' Ex with v = /1 — (u/c)z_l.

The trajectory in K’ is found as follows. Call the velocity in the y'z’-plane of K’ v, and the z’-component

v)|. Then, the relativistic version of Newton’s II law in K' reads
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Choosing a suitable space-time origin in K’, the initial position and the initial longitudinal velocity are

zero, and the initial transverse velocity is v, (¢ = 0) = vg. Thus, without loss of generality and with
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Add the squares of these equations and note v, 2(#') = 1 — () You find
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With initial position at the origin, this integrates to
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or, in terms of the primed coordinates of frame K’ and with a fixed angle ¢ describing the initial direction

of motion in the y'z’-plane,
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This can be transformed into frame K. With constant ¢ := Somer We find
n € 2
x(t) = 5(\/1+(6t’) —1)
y(t') = cos q[)o%o sinh ™! (6t')
/ 1(gt ’ . Vo . .1 ’ ’
z(t) = (= (t)—l—ut)zv(smqﬁofsmh (6t)+ut)

Again, it’s best to just leave the time in K’ as trajectory parameter.



3. Problem 12.9 10 Points

a): In Gaussian units, the magnetic field of a dipole m = —mz is
m,. AL
B = —T—g(rQCosﬁ—i—HSlnH)

We consider the contour line f(r,6) = 0 for the function f(r,#) = r—rgsin?#. On that line, it is 7 = 7o sin® 6.

Also, on the contour line the gradient
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We then see that on the contour line

B-Vf=0
Thus, the contour line f = 0 is a magnetic-field line, and

7(6) = 7o sin” 0

describes the radial coordinate of that line as a function of 6. Insertion of r(#) into the equation for B yields,

along a given magnetic-field line,
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and, for the magnitude
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b): From VB = —37 (f‘ 4 —3sin®0 + ésin@cos@) it follows that in the equatorial plane 6§ = 7/2

\/4—3sin? 0

- 3m? ~3B?
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and the gradient drift velocity
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the particle R >> a it then is

There, wp = is the cyclotron frequency and a the cyclotron radius. For an average radial coordinate of
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. . 3
Vo = 6Ré = —dwp T -

and therefore gb = —wB%. This integrates to

2
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¢): Since vﬁ =03 — UioB% and v)| = RO it is

. B
R%0? = v} — %, —(9)
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Taking the time derivative,

v?,dB(0) -
2R%09 = — =079
By db
Redefining § = 7/2 + a and noting that the problem statement implies o < 1, we see

v, dB(n/2+ «)
2R230 do
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Since the expansion of B(7m/2 + o) = 25—+/4 — 3 cos? a for small « yields

3 6
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(a) re 2r3

it is w = 9:1—30‘. Since also g = R for small «, we conclude
0
v, 9ma 02
= — —p— 6%
2R?By R3
with Q = 3vg,4 /ﬁ. Also, By = m/R? and v ¢ = wpa with the cyclotron frequency wp and initial
cyclotron radius a. Thus,
1 3wpa
Q=3wpa\| — = ——= ,q.ed.
B 2R2 RV2 q

d): Eyin = 10MeV electron:




Erin + mc? _ 10.511MeV

7 me? 0.511MeV
v, | UvV=C
By = % = 3mGauss
" 4.8 x 10~ 1%statcoulomb - 3 x 1073Gauss 97 x 4085~
= = 4T
B 19.6 - 9.1 x 10~28grams - 3 x 100¢m/s
a = wvi/wp=11Tkm
47 R?
T, = —— =107
¢ 3wpa? y
27V 2R
T, = V2R _ o,
3UJ_
Eyi, = 10keV electron:
v = 1.0196
v, =~ v=0.195¢
By = 3mGauss
wp = 27 x 8230s7*
a = 113km
Ty = 15.9h
T, = 1.52s



4. Problem 12.14 10 Points
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Thus, the Euler-Lagrange equations are
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These are equivalent to the inhomogeneous Maxwell equations in the Lorentz gauge, 0, A% = 0.

We take the difference of the two Lagrangian densities in question,
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where we mean, as usual, L — L' = &= (93A44)(9*A?). Under the condition of the Lorentz gauge, 0, A* = 0,

we may write

L-1 = %(%Aa)(a"flﬁ)
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which is the four-divergence of the 4-vector A? = L (A4,0%AP), q.e.d.

1
8T
Then, using the four-dimensional generalization of the divergence theorem the difference in the corresponding

actions is

A-—A = / (L — L)d'z = /aﬁAﬁd%
4—volmue

0
= — A"+ V- A)da’dx
»/47volmue(ax0 )

= / (A°7° + A -n)d®a
4—surface

There, n is a 4-dimensional unit vector on the 4-surface containing the fields. Note that n is a unit vector
with the usual cartesian norm of 1, i.e. (n°)2 +n-n = 1. The 4-vector A” is defined only through the
potentials and their derivatives. Further, the variation principle is such that the potential and the field values
(the field values are essentially the derivatives of the potentials) are not varied on the 4-surface. Thus, A

is not varied on the surface, and

A— A" = constant

dA = oA

The added four-divergence changes the action merely by a constant, and the variations of the actions are
the same. In particular, both actions become minimal for the same potentials A%*. The equations of motion

for A% must therefore also be the same in both cases, so as to produce identical solutions.

The equivalence of the equations of motion was seen explicitly in part a).
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6. Problem 14.12 10 points
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