
Phys. 506 Electricity and Magnetism Winter 2004
Prof. G. Raithel
Problem Set 8

Total 40 Points

1. Problem 11.13 10 Points

a): A line charge with linear density q0 is placed on the ẑ′-axis of its rest frame K ′. Then, in K ′

B′ = 0 and E′ =
2q0

ρ′
ρ̂′

In SI units, E′ = q0
2πε0ρ′ ρ̂

′. The fields in K are obtained from the inverse of Eqns. 11.149 of Jackson with
β = v

c = ẑv
c . The inverse of Eqs. 11.149 is obtained by flipping the signs of all linear occurrences of β and

swapping primed and unprimed field variables,

E = γ(E′ − β ×B′)− γ2

γ + 1
β(β ·E′)

B = γ(B′ + β ×E′)− γ2

γ + 1
β(β ·B′)

In the present case, the boost is in the z-direction. Since the directions transverse to the boost don’t
undergo length contraction, at event coordinates (ct′,x′) in K ′ and (ct,x) in K related through the Lorentz
transformation the unit vectors ρ̂′ and φ̂′ in K ′ and the unit vectors ρ̂ and φ̂ in K are identical. The same
applies to the transverse coordinates, i.e. ρ′ = ρ and φ′ = φ. Thus,

E = γE′ =
2γq0

ρ′
ρ̂′ =

2γq0

ρ
ρ̂

B =
2γq0

ρ′
v

c
(ẑ× ρ̂′) =

2γq0

ρ

v

c
(ẑ× ρ̂) =

2γvq0

cρ
φ̂

b): In K ′: The volume charge density σ′(x′) in K ′ is

σ′(ρ′) =
q0δ(ρ′)

πρ′

because the transverse integral

∫ ∞

ρ′=0

σ′(ρ′)2πρ′dρ′ =
1
2

∫ ∞

ρ′=−∞

ρ′q0δ(ρ′)
πρ′

2πdρ′ = q0 ,

as required. The current in K ′ is zero. Thus, the four-current in K ′

J ′α(ct′,x′) = (cσ′(ct′,x′),J′(ct′,x′)) =
(

q0cδ(ρ′)
πρ′

, 0
)



In K:. To transform the four-current and coordinates, we use the coordinate-free form of the Lorentz
transformation (inverse of Eq. 11.19 of Jackson),

x0 = γ(x′0 + β · x′)
x = x′ + γx′0β +

γ − 1
β2

β(β · x′)

Thus,

cσ(ct,x) = γ cσ′(ct′ [ct,x] ,x′ [ct,x]) = γ
q0cδ(ρ′ [ct,x])

πρ′ [ct,x]
=

q0cγδ(ρ)
πρ

J(ct,x) = γ βcσ′(ct′ [ct,x] ,x′ [ct,x]) = ẑ
q0γvδ(ρ)

πρ

and the current 4-vector in K is

Jα(ct,x) = Jα(ρ) =
(

q0cγδ(ρ)
πρ

, ẑ
q0γvδ(ρ)

πρ

)
=

q0γδ(ρ)
πρ

(c, ẑv)

Note the considerable simplification of the present problem arising from the fact that the transverse coordi-
nates in K and K ′ are the same. Also, note that the 4-current in K looks just like what one would obtain
from a Galilean transformation, except the additional factor γ in the charge and current density. This factor
is due to the non-Galilean effect of the length contraction of the wire. Due to charge conservation, the
length-contracted wire in K has a charge density that is larger than the proper charge density by γ (i.e. the
inverse of the length contraction factor).

c): Since the charge density in K is enhanced by the factor γ, take result from a) and multiply with γ,

E(ρ) =
2γq0

ρ
ρ̂

(In SI units, E(ρ) = γq0
2πε0ρ ρ̂.)

For the magnetic field, you may use symmetry and Ampere’s law in integral form with a circle of radius ρ

and integration direction φ̂,

∮
B · dl =

4π

c

∫
J · da

B(ρ)2πρ =
4π

c

∫ ∞

ρ=0

q0γvδ(ρ)
πρ

ẑ · [ẑ2πρdρ]

B(ρ)ρ =
4q0γv

c

∫ ∞

ρ=0

δ(ρ)dρ =
2q0γv

c

∫ ∞

ρ=−∞
δ(ρ)dρ =

2q0γv

c

B(ρ) =
2q0γv

cρ

B(ρ) = φ̂
2q0γv

cρ

(To convert to SI-units, replace 4π
c → µ0, yielding B(ρ) = φ̂ q0γv

2πρ .)



2. Problem 11.14 10 Points

a): One Lorentz scalar is the contraction of the antisymmetric contravariant field tensor Fαβ , the matrix
form of which we denote Fu, with the covariant field tensor Fαβ , the matrix form of which we denote Fd:

FαβFαβ = −FαβFβα = −Trace(Fu ◦ Fd)

= −Trace







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 ◦




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0







= 2(B2 − E2) .

Similarly, it is found that the contraction of the covariant field tensor Fαβ with the contravariant dual field
tensor DFαβ , the matrix form of which we denote DFu, is

DFαβFαβ = −DFαβFβα = −Trace(DFu ◦ Fd)

= −Trace







0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 ◦




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0







= −4E ·B .

The contraction of the dual field tensor, which is also antisymmetric, with itself yields no new invariant,
because

DFαβDFαβ = −DFαβDFβα = −Trace(DFu ◦ DFd)

= −Trace







0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 ◦




0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0







= 2(E2 −B2) = −FαβFαβ .

Also, FαβDFαβ = −4E · B = DFαβFαβ . Horizontal permutations of indices don’t yield new invariants,
because it is FαβFβα = −FαβFαβ , etc. Pairwise, matched vertical flips also don’t yield new invariants,
because it is, for instance

Fα
βF β

α = gβγgβδFαγFαδ = δ δ
γ FαγFαδ = FαγFαγ = FαβFαβ ,

Expressions such as FαβF β
α are garbage. Higher-order products, such as FαβF δ

α Fβδ will give results that
are at least cubic in the fields. Thus, the only independent Lorentz scalars quadratic in the fields are E2−B2

and E ·B.



b): Since E2−B2 is invariant, there exist no fields that are purely electric in one frame and purely magnetic
in another (with the trivial exception E = B = 0).

Assume fields E and B in some frame. Due to the invariants found in a), the conditions that the electric
field can be eliminated by a Lorentz transformation into another frame are

E < B and E ·B = 0

The fields also need to be homogeneous. Explicit transformation equations are given by Eqs. 12.43f in
Jackson.

c): We form new scalar combinations with the field tensors of the auxiliary fields (see page 557 of Jackson).
Two independent combinations between auxiliary-field tensors are

GαβGαβ = −GαβGβα = −Trace(Gu ◦ Gd)

= −Trace







0 −Dx −Dy −Dz

Dx 0 −Hz Hy

Dy Hz 0 −Hx

Dz −Hy Hx 0


 ◦




0 Dx Dy Dz

−Dx 0 −Hz Hy

−Dy Hz 0 −Hx

−Dz −Hy Hx 0







= 2(H2 −D2) .

DGαβGαβ = −DGαβGβα = −Trace(DGu ◦ Gd)

= −Trace







0 −Hx −Hy −Hz

Hx 0 Dz −Dy

Hy −Dz 0 Dx

Hz Dy −Dx 0


 ◦




0 Dx Dy Dz

−Dx 0 −Hz Hy

−Dy Hz 0 −Hx

−Dz −Hy Hx 0







= −4D ·H .

All other scalar, quadratic combinations between auxiliary-field tensors depend on those.

A complete set of independent invariants involving a fundamental-field and an auxiliary-field tensor are:

FαβGαβ = −FαβGβα = −Trace(Fu ◦ Gd)

= −Trace







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 ◦




0 Dx Dy Dz

−Dx 0 −Hz Hy

−Dy Hz 0 −Hx

−Dz −Hy Hx 0







= 2(B ·H−E ·D) .



DFαβGαβ = −DFαβGβα = −Trace(DFu ◦ Gd)

= −Trace







0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 ◦




0 Dx Dy Dz

−Dx 0 −Hz Hy

−Dy Hz 0 −Hx

−Dz −Hy Hx 0







= −2 (B ·D + E ·H) .



3. Problem 11.18 10 Points

a): In the rest frame of the decaying particle with initial (rest) mass M , the total relativistic momentum
P = 0 and the relativistic energy E = M (we set c = 1). Both are conserved in the decay process.
Thus, after the decay and in the rest frame, the particles have energy-momentum 4-vectors (E1,p1) and
(E2,p2) = (M −E1,−p1). Equating the corresponding Lorentz invariants and using E2

i = m2
i + p2

i , i = 1, 2,
and using p2

1 = p2
2, we find

E2
2 − p2

2 = (M − E1)2 − p2
1

E2
2 = M2 − 2ME1 + E2

1

m2
2 + p2

2 = M2 − 2ME1 + m2
1 + p2

1

m2
2 = M2 − 2ME1 + m2

1

E1 =
M2 + m2

1 −m2
2

2M
Also,

E2
1 − p2

1 = (M − E2)2 − p2
2

m2
1 + p2

1 = M2 − 2ME2 + m2
2 + p2

2

E2 =
M2 + m2

2 −m2
1

2M

Note that conservation of relativistic energy and relativistic momentum in the decay process is sufficient to
obtain this result (i.e. the first lines in the above proofs can be skipped).

b): To prove this, in the following we define j to be the opposite of i (j = 2 when i = 1, for instance) and
use the result of a),

(M −m1 −m2)
(

1− mi

M
− M −m1 −m2

2M

)
= (M −m1 −m2)

(
2M − 2mi −M + m1 + m2

2M

)

=
(M −m1 −m2)(M −mi + mj)

2M

=
(M −mi −mj)(M −mi + mj)

2M

=
(M2 + m2

i −m2
j )− 2Mmi

2M
by a) = Ei −mi

= Ti q.e.d.

c): Say 1 is the µ-meson and 2 the neutrino. Use a) to find E1 = 109.8MeV . Then,

T1 = E1 −M1 = 4.1MeV

Then, due to energy conservation

T2 = E − E1 −M2 = E − E1 = 29.8MeV



4. Problem 11.19 10 Points

a): For a particle moving along the z-axis, equations 11.152 of Jackson are equivalent to

E(ct, x, y, z) = −ẑ
qγ(vt− z)

√
r2
⊥ + γ2(vt− z)2

3 + r⊥
qγ

√
r2
⊥ + γ2(vt− z)2

3

B(ct, x, y, z) = ẑ× r⊥
qγ

√
r2
⊥ + γ2(vt− z)2

3

where r⊥ = (x, y, 0). To see the equivalence, perform a suitable translation and a rotation about the z-axis
to get back to Eqns. 11.152.

To obtain the limit γ →∞, we first consider the electric field. Considering the denominator, wee see that the
field generally only is appreciable if |vt−z| is of order r⊥/γ or less. Thus, in the limit γ →∞ non-zero fields
only exist if |vt − z| ¿ r⊥. Thus, in the limit γ →∞ the z-component of the electric field is negligible.
Next, we observe that

γ
√

r2
⊥ + γ2(vt− z)2

3 =

{
γ

r3
⊥
→∞ , vt− z = 0

1
γ2(vt−z)3 → 0 , vt− z 6= 0

in the limit γ →∞ .

Further, at fixed time the integral over z is

∫ ∞

z=−∞

γ
√

r2
⊥ + γ2(vt− z)2

3 dz =
∫ ∞

−∞

γ
√

r2
⊥ + γ2z2

3 dy = γ
1
r2
⊥

[
z√

r2
⊥ + γ2z2

]∞

−∞
=

2
r2
⊥

This result can, of course, also obtained by considering a fixed position and integrating over ct. Thus, in the
limit γ →∞ it is

γ√
r2
⊥ + γ2(vt− z)2

3 =
2
r2
⊥

δ(ct− z)

and therefore

E(ct, x, y, z) = r⊥
2q

r2
⊥

δ(ct− z)

B(ct, x, y, z) = ẑ× r⊥
2q

r2
⊥

δ(ct− z) q.e.d.

b): ∇ ·E = 4πρ: For the above E, it is

∇ ·E = ∇ ·
[
r⊥

2q

r2
⊥

δ(ct− z)
]

= 2qδ(ct− z)
[

∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)]
= 0



unless r⊥ = 0 and z = ct. Thus, ∇ ·E is of the form

∇ ·E = 4πfδ2(r⊥)δ(ct− z)

with a constant f that we can determine by integrating this equation over an infinitesimal spherical volume
centered around the particle location (0, 0, ct):

∫
∇ ·E dx dy d(ct− z) =

∫
4πfδ2(r⊥)δ(ct− z) dx dy d(ct− z)

∮
E · da = 4πf

Since the field is localized to the plane ct = z, the area integral only yields contributions from a thin
azimuthal band in the ct = z plane. We can therefore write the area integral in the form

∫ ε

ct−z=−ε

∫ 2π

φ=0

r⊥
2q

r2
⊥

δ(ct− z) · r⊥ d(ct− z) dφ = 4πf

q = f

There, ε is an infinitesimal length. Thus, from the given field alone we have derived that

∇ ·E = 4πqδ2(r⊥)δ(ct− z)

By Gauss’s law, it must also be ∇ · E = 4πρ. Thus, the charge density for the given field is ρ(x) =
qδ2(r⊥)δ(ct − z). The zero-th component of the four-current producing the field given in part a) must
therefore be

J0 = cqδ2(r⊥)δ(ct− z) .

This is in agreement with the 0-component of the current specified in the problem.

∇ ·B = 0: The validity can be verified explicitly for locations x 6= (0, 0, ct). It is then concluded that
∇ ·B = 4πgδ2(r⊥)δ(ct− z). The constant g is determined via a small volume integral,

∫
∇ ·B dx dy d(ct− z) =

∫
4πgδ2(r⊥)δ(ct− z) dx dy d(ct− z)

∮
B · da = 4πg

Since the B-field is also localized to the plane ct = z, the area integral is, with an infinitesimal ε,

∮
B · da =

∫ ε

ct−z=−ε

∫ 2π

φ=0

(r⊥φ̂)
2q

r2
⊥

δ(ct− z) · r⊥ d(ct− z) dφ = 0



Thus, it is g = 0, and it is, as required, ∇ ·B = 0 everywhere. We conclude that the B-field given in a) is
consistent with Gauss’s law for B.

∇×B− ∂
∂ctE = 4π

c J: By direct calculation using the given fields, it is found that

∇×B = x̂
x

r2
⊥

δ′(ct− z) + ŷ
y

r2
⊥

δ′(ct− z) + ẑδ(ct− z) · 0

where δ′(ct− z) = d
dxδ(x)|x=ct−z.

Also, it is found that

∂

∂ct
E = x̂

x

r2
⊥

δ′(ct− z) + ŷ
y

r2
⊥

δ′(ct− z)

so that ∇×B− ∂
∂ctE = 0, unless r⊥ = 0 and z = ct. Thus, ∇×B− ∂

∂ctE must be of the form

∇×B− ∂

∂ct
E = hδ2(r⊥)δ(ct− z)

with a vector constant h to be determined. We note that due to the cylindrical symmetry of the fields on
the left side of the equation, the right side must have cylindrical symmetry as well. We conclude that h can
only point in the z-direction, and thus

∇×B− ∂

∂ct
E = ẑhδ2(r⊥)δ(ct− z) (1)

with a scalar constant h to be determined. To find h, we consider the area integral of Eq. 1 over a small disk
centered around the location (0, 0, ct) with area vector in the +ẑ-direction. Using Stokes’s theorem, the left
side yields, with the given electric and magnetic fields,

∫
(∇×B− ∂

∂c t
E) · da =

∮
B · dl−

∫
∂

∂c t
E · (ẑda) = 4πqδ(ct− z)

(The Stokes loop is in the +φ̂-direction). The area integral of the right side of Eq. 1 yields,

∫
ẑhδ2(r⊥)δ(ct− z) · ẑda = hδ(ct− z)

Comparing the last two equations, we see h = 4πq, and therefore

∇×B− ∂

∂ct
E = ẑ4πqδ2(r⊥)δ(ct− z)

Note that this result is obtained solely from the given fields. By Maxwell-Ampere’s law, it must in addition
be ∇×B− ∂

∂ctE = 4π
c J. By comparison we see that the current density must be



J = ẑqcδ2(r⊥)δ(ct− z) .

This is in agreement with the spatial components of the current specified in the problem.

∇×E + ∂
∂ctB = 0: For locations x 6= (0, 0, ct), validity of Faraday’s law can be shown by direct calculation.

To verify consistency at the particle location, consider the area integral of the field-side of Faraday’s law
over a small disk centered around the location (0, 0, ct) with area vector in the +ẑ-direction. Using Stokes’s
theorem, from the given electric and magnetic fields it is, finally and thankfully, found that

∮
E · dl +

∫
∂

∂c t
B · (ẑda) = 0

Combining the above results, the four-current Jα that is consistent with the given fields and with Maxwell’s
equations is

Jα(ρc,J) = (J0,J) = qcδ2(r⊥)δ(ct− z)(1, v̂) , q.e.d.

c): To derive the fields from the potentials, use

B = ∇×A and E = − ∂

∂c t
A−∇ ·A0

or, equivalently,

Fαβ = ∂αAβ − ∂βAα = (
∂

∂c t
,−∇) · (A0,A) and Fαβ =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0




For Aα = −2qδ(ct− z) ln(λr⊥)(1, 0, 0, 1) = −2qδ(ct− z) ln(λ
√

x2 + y2)(1, 0, 0, 1) we find

Ex = ∂1A0 − ∂0A1 = 2qδ(ct− z)
∂

∂x
ln(λ

√
x2 + y2) = 2qδ(ct− z)

x

r2
⊥

Ey = ∂2A0 − ∂0A2 = 2qδ(ct− z)
∂

∂y
ln(λ

√
x2 + y2) = 2qδ(ct− z)

y

r2
⊥

Ez = ∂3A0 − ∂0A3 = 2q ln(λ
√

x2 + y2)
[

∂

∂z
+

∂

∂c t

]
δ(ct− z) = 0

Bx = ∂3A2 − ∂2A3 = −2qδ(ct− z)
∂

∂y
ln(λ

√
x2 + y2) = −2qδ(ct− z)

y

r2
⊥

By = ∂1A3 − ∂3A1 = 2qδ(ct− z)
∂

∂x
ln(λ

√
x2 + y2) = 2qδ(ct− z)

x

r2
⊥

Bz = ∂2A1 − ∂1A2 = 0



which agrees with the fields specified in part a).

For Aα = −2qΘ(ct − z)(0,∇⊥ ln(λr⊥)) = −2qΘ(ct − z)(0, x
r2
⊥

, y
r2
⊥

, 0) = −2qΘ(ct − z)(0, x
x2+y2 , y

x2+y2 , 0) we
find

Ex = ∂1A0 − ∂0A1 = 2q
x

r2
⊥

∂

∂c t
Θ(ct− z) = 2qδ(ct− z)

x

r2
⊥

Ey = ∂2A0 − ∂0A2 = 2q
y

r2
⊥

∂

∂c t
Θ(ct− z) = 2qδ(ct− z)

y

r2
⊥

Ez = ∂3A0 − ∂0A3 = 0

Bx = ∂3A2 − ∂2A3 = 2q
y

r2
⊥

∂

∂z
Θ(ct− z) = −2qδ(ct− z)

y

r2
⊥

By = ∂1A3 − ∂3A1 = −2q
x

r2
⊥

∂

∂z
Θ(ct− z) = 2qδ(ct− z)

x

r2
⊥

Bz = ∂2A1 − ∂1A2 = 2qΘ(ct− z)
[

∂

∂y

(
x

x2 + y2

)
− ∂

∂x

(
y

x2 + y2

)]
= 0

which also agrees with the fields specified in part a).

The two gauges must necessarily be related via a gauge transformation. To show this, we find the scalar
function Λ that effects the gauge transformation

A′α(x) = Aα(x)− ∂αΛ(x) ⇔
(

A′0(ct,x)
A′(ct,x)

)
=

(
A′0(ct,x)− ∂

∂c tΛ(ct,x)
A(ct,x) +∇Λ(ct,x)

)

In the given case, it must thus be

(
∂

∂c tΛ(ct,x)
∇Λ(ct,x)

)
=

(
A0 −A′0

A′ −A

)
= −2q




δ(ct− z) ln(λr⊥)
Θ(ct− z) x

r2
⊥

Θ(ct− z) y
r2
⊥−δ(ct− z) ln(λr⊥)




From the first (time) line we may guess that Λ = −2qΘ(ct−z) ln(λr⊥), and then verify that this also satisfies
the three spatial equations. Thus, the gauge transformation is effected by the function

Λ = −2qΘ(ct− z) ln(λr⊥) .


