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1. Problem 11.13 10 Points

a): A line charge with linear density qq is placed on the z’-axis of its rest frame K’. Then, in K’

2
B' =0 and E = %ﬁ’

In SI units, E' = -2 5'. The fields in K are obtained from the inverse of Eqns. 11.149 of Jackson with

2megp’
v

B =% =z7. The inverse of Eqgs. 11.149 is obtained by flipping the signs of all linear occurrences of 3 and

c

swapping primed and unprimed field variables,

! ! ,}/2 !/
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B =B+ xE)- (3 B)
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In the present case, the boost is in the z-direction. Since the directions transverse to the boost don’t
undergo length contraction, at event coordinates (ct’,x’) in K’ and (ct,x) in K related through the Lorentz
transformation the unit vectors p’ and qAb' in K’ and the unit vectors p and ¢E in K are identical. The same

applies to the transverse coordinates, i.e. p’ = p and ¢ = ¢. Thus,

2 2
E — ’yE/: ’Y?Oﬁ/: 'YQOﬁ
p p
2o v . . 29qo v ., . 27vqo -
B = ——(axp)=—F==-(2xp) = @
poc p cC cp

b): In K’: The volume charge density ¢’(x’) in K’ is

oy qU(S(pl)
a'(p') = "

because the transverse integral

oo 1 o0 /q 6 /
/ o' (p')2mp'dp" = 3 / ”O—E’”%dp’ =q ,
=0 pm—oe TP

as required. The current in K’ is zero. Thus, the four-current in K’

/
It ) = (e (e 3,3t ) = (22 )
™



In K:. To transform the four-current and coordinates, we use the coordinate-free form of the Lorentz

transformation (inverse of Eq. 11.19 of Jackson),

IL’O _ ,_Y(Z/O + é . XI)
-1
x = x +72"°8+ WﬁQ B(B-x)
Thus,
_ 1yt / o QOCCS(pI [ct,x]) o QOC'Y(S(/J)

co(ct,x) = ~yco'(ct [et,x],x [ct,x]) =~ e e
Jetx) = ~Beo’ (e [ct,x] % [et, x]) = 2207002)

P e

and the current 4-vector in K is

(et x) = Jo(p) = <QOC“Y5(P)72QOVU5(P)) _ 9079(p) (e, )

TP TP P
Note the considerable simplification of the present problem arising from the fact that the transverse coordi-
nates in K and K’ are the same. Also, note that the 4-current in K looks just like what one would obtain
from a Galilean transformation, except the additional factor v in the charge and current density. This factor
is due to the non-Galilean effect of the length contraction of the wire. Due to charge conservation, the
length-contracted wire in K has a charge density that is larger than the proper charge density by 7 (i.e. the

inverse of the length contraction factor).

¢): Since the charge density in K is enhanced by the factor ~, take result from a) and multiply with ~,
2740 .
E(p) = 222

(In ST units, E(p) = 2nggp,é.)

For the magnetic field, you may use symmetry and Ampere’s law in integral form with a circle of radius p

and integration direction ¢,

4
fB-dl = 27 da
C
A [ qoyvd(p) . ..
B(p)2mp = ?/ o ()7r/)()z~[z27rpdp]
p:
gy [ _ 2q0vv [ _ 2qov
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p= p==—00
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B(p) = 007
7 2qo7yv
B(p) = ¢CO7

(To convert to SI-units, replace 4{ — 1o, yielding B(p) = ¢402v )




2. Problem 11.14

10 Points

a): One Lorentz scalar is the contraction of the antisymmetric contravariant field tensor F*? the matrix

form of which we denote Fu, with the covariant field tensor F,3, the matrix form of which we denote Fd:

F*F,5 = —F*Fg, = —Trace(Fuo Fd)
0 -E, -E, -E, o FE E, E.
B . 0 -B. B, -E, 0 -B. B,
= “Tacel\ p B o -B, |°| -E, B. 0 -B,
E. -B, B, 0 -E, -B, B, 0
= 2(B*-E?

Similarly, it is found that the contraction of the covariant field tensor F,g with the contravariant dual field

tensor DF%, the matrix form of which we denote DFu, is

DF*FF,;4

The contraction of the dual field tensor,

because

DF*’DF,4

Also, Fo‘ﬁDFaﬁ = —4E -

because it is F**Fg, =

—~DF°PFg, = —Trace(DFu o Fd)

0 -B, -B, —-B, o E. E, E.
T B, 0 E. -B |_|-B. 0 -B. B,
el B, -E. 0 E, -BE, B. 0 -B,
B. E, —-E. 0 -E. -B, B, 0

—4E-B

which is also antisymmetric, with itself yields no new invariant,

—~DF*PDFs, = —Trace(DFu o DFd)
0 -B, —-B, —B, 0 B, , B
T B, 0 E. -E, -B, 0 E, -E,
el B, -E. 0 E, -B, —-E. 0 E,
B. E, —E, 0 -B, E, -E, 0

2(E? - B?) = —F*PF,;

B = DF“ﬁFag. Horizontal permutations of indices don’t yield new invariants,

—FO‘ﬁF(w7 etc. Pairwise, matched vertical flips also don’t yield new invariants,

because it is, for instance

FYEP = g5, F* ' Fos = 6 " F* " Fo5 = F*Foy = F*’Fop

Expressions such as F®?F P are garbage. Higher-order products, such as F“ﬁFa‘sFﬁg will give results that

are at least cubic in the fields. Thus, the only independent Lorentz scalars quadratic in the fields are E? — B2

and E - B.




b): Since E? — B? is invariant, there exist no fields that are purely electric in one frame and purely magnetic

in another (with the trivial exception £ = B = 0).

Assume fields E and B in some frame. Due to the invariants found in a), the conditions that the electric

field can be eliminated by a Lorentz transformation into another frame are

F<B and E-B=0

The fields also need to be homogeneous. Explicit transformation equations are given by KEgs. 12.43f in

Jackson.

c): We form new scalar combinations with the field tensors of the auxiliary fields (see page 557 of Jackson).

Two independent combinations between auxiliary-field tensors are

GPGoy = -GGy, = —Trace(Gu o Gd)
0 -D, —-D, —D, o D, D, D,
— —T Dm 0 _Hz Hy o _Dg; 0 _Hz Hy
- el o, H, 0 -H, -D, H, 0 —H,
D, —H, H, 0 -D. —-H, H, 0
= 2(H? - D?%
DG*®G.p = —DG*PGp, = —Trace(DGu o Gd)
0 —-H, —H, —H, o D, D, D,
_ 1 H, 0 D. -D, | | -D, 0 =-H. H,
- %\l H, -D. 0 D, -D, H. 0 —H,
H. D, -D, 0 -D. -H, H, 0
= —4D-H

All other scalar, quadratic combinations between auxiliary-field tensors depend on those.

A complete set of independent invariants involving a fundamental-field and an auxiliary-field tensor are:

F*PG.5 = —F*PGg, = —Trace(Fuo Gd)
0 -E, -E, -E. o D, D, D.
el Beo0 =B B, | [ -De 0 -H. B,
E, B. 0 -B, -D, H, 0 —H,
E. -B, B, 0 -D, -H, H, 0

= 2(B-H-E-D)



—Trace(DFu o Gd)

DF*’G,3 = —DF*Gg,

—2(B-D+E-H)



3. Problem 11.18 10 Points

a): In the rest frame of the decaying particle with initial (rest) mass M, the total relativistic momentum
P = 0 and the relativistic energy E = M (we set ¢ = 1). Both are conserved in the decay process.
Thus, after the decay and in the rest frame, the particles have energy-momentum 4-vectors (F1,p;) and
(E2,p2) = (M — E1, —p1). Equating the corresponding Lorentz invariants and using E2 = m? +p?, i = 1,2,

and using p? = p3, we find

E;—p; = (M—E)*—p]

E? = M?-2ME, +E?
m2+pi = M?—2ME; +m? + p?
mi = M?*—-2ME; +m?
B - M? +m? —m}

2M
Also,

Ef —pl = (M- E»)*-pj
m%—i—p% = M2—2ME2+m%+p§
B — M? +m2 —m?

2M

Note that conservation of relativistic energy and relativistic momentum in the decay process is sufficient to

obtain this result (i.e. the first lines in the above proofs can be skipped).

b): To prove this, in the following we define j to be the opposite of i (j = 2 when ¢ = 1, for instance) and

use the result of a),

2M —2m; — M +m1 +m
= (Mm1Wl2)< oM ! 2)

(M—m1 —m2)(M—mi —|—mj)

2M
_ (M—mi—mj)(M—mi—i—mj)
2M
~(M? +mi —m3) —2Mm;
B 2M
by a) = Ez — my
= Ti q.e.d.

c¢): Say 1 is the p-meson and 2 the neutrino. Use a) to find E; = 109.8MeV. Then,
T1 = E1 - M1 =4.1MeV
Then, due to energy conservation

TQZE—El—MQZE—E1:29.8M€V



4. Problem 11.19 10 Points

a): For a particle moving along the z-axis, equations 11.152 of Jackson are equivalent to

E(CtaxayVZ) = —zZ 3 +r

B(ct,x,y,z) = zZxr,

where r| = (z,y,0). To see the equivalence, perform a suitable translation and a rotation about the z-axis
to get back to Eqns. 11.152.

To obtain the limit v — oo, we first consider the electric field. Considering the denominator, wee see that the
field generally only is appreciable if |vt — z| is of order r /~ or less. Thus, in the limit v — oo non-zero fields

only exist if |vt — z| <« r1. Thus, in the limit v — oo the z-component of the electric field is negligible.

Next, we observe that

inthelimit ~+ — oo

y & — 00 , vt—2z=0
N e e i W = R ol

Further, at fixed time the integral over z is

v

3 dz = 736@ V3| T =
s==00 /1] + 72 (vt — 2)? —o0 /r} + 7222 i VIS IR EE I

<
WEPN

This result can, of course, also obtained by considering a fixed position and integrating over ct. Thus, in the

limit v — oo it is

7 = —0(ct —2)
2+ 2 (vt — 2)? s
and therefore
2
E(ct,z,y,2z) = rL —zqé(ct —z)
L
R 2q
B(ct,z,y,2) = zxry —6(ct—=z) qed
L

b): V-E = 47p: For the above E, it is

_ 245006 — )| = R B 9 ( v .
V-E=V [rLrié(ct z)}—Qqé(ct Z)[8x<x2+y2)+8y(x2+y2>}_0



unless r; =0 and z = c¢t. Thus, V - E is of the form
V-E =4nf6*(r,)d(ct — 2)

with a constant f that we can determine by integrating this equation over an infinitesimal spherical volume

centered around the particle location (0, 0, ct):

/V-Edmdyd(ct—z) = /47rf52(rj_)(5(ct—z)d:cdyd(ct—z)

%E-da = Adrnf

Since the field is localized to the plane ¢t = z, the area integral only yields contributions from a thin

azimuthal band in the ¢t = z plane. We can therefore write the area integral in the form

€ 2m
/ / rL2—2q§(ctfz)~rld(ctfz)d¢ = Adrnf
c ¢

t—z=—¢€ =0 L
g = f

There, € is an infinitesimal length. Thus, from the given field alone we have derived that

V- E = 471q6*(r 1 )d(ct — 2)
By Gauss’s law, it must also be V - E = 4mp. Thus, the charge density for the given field is p(x) =
q6%(r)d(ct — z). The zero-th component of the four-current producing the field given in part a) must
therefore be

JO = cqd?(r)d(ct — 2)

This is in agreement with the 0-component of the current specified in the problem.

V - B = 0: The validity can be verified explicitly for locations x # (0,0,ct). It is then concluded that

V B = 4mg§?(r)d(ct — z). The constant g is determined via a small volume integral,

/V -Bdxdyd(ct —z) = /47rg52(1l)6(ct —2)dxdyd(ct — z)

%Bwia = 4dmng

Since the B-field is also localized to the plane ct = z, the area integral is, with an infinitesimal €,

7{B da—/ / (r19) —(5 (ct —z)-ryd(ct—2z)dp =0
ct—z=—e Jp= L



Thus, it is g = 0, and it is, as required, V- B =0 everywhere. We conclude that the B-field given in a) is

consistent with Gauss’s law for B.

V xB-— %E = 47”.]: By direct calculation using the given fields, it is found that

VxB= X%é’(ct —2)+ y%é'(ct —2)+26(ct —2)-0
L Tl

where &'(ct — 2) = L5(2)|=ct—2-
Also, it is found that

0 LT g
@E = xgé'(ct —2)+ ygé’(ct —2)

so that V x B — %E =0, unless r; =0 and z = ct. Thus, Vx B — %E must be of the form

9 2
VXB—@E—h(S (r1)d(ct — 2)

with a vector constant h to be determined. We note that due to the cylindrical symmetry of the fields on
the left side of the equation, the right side must have cylindrical symmetry as well. We conclude that h can

only point in the z-direction, and thus

O o s
\Y xBf%Efzfﬁ (rp)o(ct — z) (1)

with a scalar constant h to be determined. To find h, we consider the area integral of Eq. 1 over a small disk
centered around the location (0,0, ct) with area vector in the +2z-direction. Using Stokes’s theorem, the left

side yields, with the given electric and magnetic fields,
/(VXB_iE) da—%B dl_/iE (8da) = drqd(ct — =)
Jdct N Jdct 4 = AN — 2
(The Stokes loop is in the +¢A>—direction). The area integral of the right side of Eq. 1 yields,
/ihéQ(rL)é(ct —z)-zda = hé(ct — 2)
Comparing the last two equations, we see h = 4mq, and therefore
o
V xB— —E = 247¢6°(r 1 )d(ct — z)

Oct

Note that this result is obtained solely from the given fields. By Maxwell-Ampere’s law, it must in addition

be Vx B — %E = 47”.] . By comparison we see that the current density must be



J = 2qc*(r)6(ct — 2)

This is in agreement with the spatial components of the current specified in the problem.

VxE+ 5 B = 0: For locations x # (0,0, ct), validity of Faraday’s law can be shown by direct calculation.

To verify con51stency at the particle location, consider the area integral of the field-side of Faraday’s law
over a small disk centered around the location (0,0, ¢t) with area vector in the 42z-direction. Using Stokes’s

theorem, from the given electric and magnetic fields it is, finally and thankfully, found that

j{ -dl + / (zda) =0

Combining the above results, the four-current J* that is consistent with the given fields and with Maxwell’s

equations is

J%pe,J) = (J°,J) = qcd®(rL)d(ct — 2)(1,¥) ,q.e.d.

c¢): To derive the fields from the potentials, use

B=VxA and E_fiA V- A°
Oct
or, equivalently,
0 -E, -E, —-L,
0 FE 0 -B B
aB _ guAB _ 9B pa — (7 _ . 0 af _ T z y
FYP =0%A 0" A (8ct’ V) (4% A) and F E, B. 0 B,

E, -B, B, 0

For A* = —2¢d(ct — z) In(Ar1)(1,0,0,1) = —2¢d(ct — 2z) In(A/2% 4+ y2)(1,0,0,1) we find

E, = 0'A"-3°A' = 2¢5(ct — Z)Og In(Av/ 22 + y?) = 2¢d(ct — 2) *
z

q

E, = 0°A"—-0°A% = 2¢6(ct — z)a2 In(A/ 22 + y?) = 2¢d(ct — Z)r%

1

E. = 9%AY —9°4% = 2¢qIn(\ /22 + 3?) [ + 88t] d(ct—2z)=0

B, = 0%A% -0%A% = —2¢0(ct — 2)=— ln (A ax?+y?) = —2q¢d(ct — z)ri2
1

B, = 0'A*-0%A! —2q(5(ct—z n(Avx? +y?) =2¢6 ct—z)—2

L

B, = 0*A'—9'4%2 =0



which agrees with the fields specified in part a).

For A* = —2¢O(ct — 2)(0, V1 In(Ar1)) = —2¢O(ct — 2)(0, 5, %,0) = —2¢O(ct — 2)(0

find

0] x
E, = 0'4° %A =22 T 0(ct — 2) = 2¢6(ct — )=
0 0 qr2l 8ct@)(c z) = 2¢d(ct — 2) =
B, = 0°A"-9%4% = 2qii®(ct —z) =2q6(ct — z)l
Y r? dct r?
E, = 0°A"-9°4*>=0
B, = 0%A% -9%A3 = qug@(ct —z) = —2q0(ct — z)i
* r? 9z r?
0 x
B, = 0'A%—PA' = —2q— —O(ct — z) = 2qb(ct — 2)—5
Y 0 0 qr2L 326(Ct z) = 2qd(ct z)r2l
0 x 0
Bz = 82A1 _ 81A2 = 2q®(ct — Z) |:ay <.’L’2—|-y2) — % (M

which also agrees with the fields specified in part a).

.z _ Y
?w2+y27w2+y2?

0) we

The two gauges must necessarily be related via a gauge transformation. To show this, we find the scalar

function A that effects the gauge transformation

Ao = a0 —ora) o (g )< (Al

In the given case, it must thus be

52 A(ct, x) A0 — 40 O(ct — 2) 7+
C — — _2q s
VA(ct,x) A —A O(ct — 2)4

From the first (time) line we may guess that A = —2¢O(ct —z) In(Ar ), and then verify that this also satisfies

the three spatial equations. Thus, the gauge transformation is effected by the function

A =—-2¢0(ct — z)In(Ar)



