
Phys. 506 Electricity and Magnetism Winter 2004
Prof. G. Raithel
Problem Set 7

Total 40 Points

1. Problem 11.3 10 Points

Since the boosts are in parallel directions, we may consider - without loss of generality - two Lorentz
transformations in the x-direction with velocities v1 and v2, described by matrices

A1 =




γ1 −β1γ1 0 0
−β1γ1 γ1 0 0

0 0 1 0
0 0 0 1


 and A2 =




γ2 −β2γ2 0 0
−β2γ2 γ2 0 0

0 0 1 0
0 0 0 1




where βi = vi

c and γi = 1√
1−β2

i

with i=1,2. The net transformation then is

A2 ◦A1 =




γ1γ2(1 + β1β2) −γ1γ2(β1 + β2) 0 0
−γ1γ2(β1 + β2) γ1γ2(1 + β1β2) 0 0

0 0 1 0
0 0 0 1


 .

The 6= 1 diagonal terms can be written as

γ1γ2(1 + β1β2) =
1 + β1β2√

(1− β2
1)(1− β2

2)
=

1√
(1−β2

1)(1−β2
2)

(1+β1β2)2

=
1√

1− (1+β1β2)2−(1−β2
1)(1−β2

2)

(1+β1β2)2

=
1√

1−
(

β1+β2
1+β1β2

)2

=
1√

1− 1
c2

(
v1+v2

1+
v1v2

c2

)2
=:

1√
1− v2

3
c2

=:
1√

1− β2
3

=: γ3

with v3 = v1+v2
1+

v1v2
c2

. Then, the non-zero off-diagonal terms can be written in the form

−γ1γ2(β1 + β2) = − β1 + β2

1 + β1β2
[γ1γ2(1 + β1β2)] = −v3

c
γ3 = −β3γ3

Thus,

A2 ◦A1 =




γ3 −β3γ3 0 0
−β3γ3 γ3 0 0

0 0 1 0
0 0 0 1




This is a net Lorentz transformation with boost velocity v3 = v1+v2
1+

v1v2
c2

, q.e.d.



2. Problem 11.5 10 Points

Inertial frame K ′ moves wrt. frame K with a constant velocity v. Observed in K ′, a particle has a trajectory
(ct′,x′(t′)). The trajectory observed in K, (ct,x(t)), is the inverse Lorentz transform of (ct′,x′(t′)). The
components of the particle velocities parallel to v in K ′ and K, u′|| = dx′(t′)

dt′ and u|| = dx(t)
dt , are related as

shown in Eq. 11.31 of Jackson. The longitudinal acceleration components observed in K ′ and K, denoted
by a′|| and a||, are then related via

a||(t) =
du||
dt

=
d

dt


 u′|| + v

1 +
u′||v

c2




=
1

(1 +
u′||v

c2 )2

[
(1 +

u′||v

c2
)
du′||
dt

− (u′|| + v)
v

c2

du′||
dt

]

=
1

(1 +
u′||v

c2 )2

[
1 +

u′||v

c2
−

u′||v

c2
− v2

c2

] [
dt′

dt

]
du′||
dt′

=
1

(1 +
u′||v

c2 )2

1
γ2

[
dt′

dt

]
a′||

=
a′||

γ2(1 +
u′||v

c2 )2

[
d

dt

(
γt− βγx||(t)

c

)]

=
a′||

γ(1 +
u′||v

c2 )2

[
1− v

c2

dx||
dt

]

=
a′||

γ(1 +
u′||v

c2 )2

[
1− v

c2
u||

]

=
a′||

γ(1 +
u′||v

c2 )2


1− v

c2


 u′|| + v

1 +
u′||v

c2







=
a′||

γ(1 +
u′||v

c2 )3

[
1 +

u′||v

c2
−

v(u′|| + v)

c2

]

=
a′||

γ3(1 +
u′||v

c2 )3

and thus, written as a vector, a||(t) =
a′||

γ3(1 + u·v
c2 )3

q.e.d.

(Note that we use γ = γv = 1√
1− v2

c2

.) Also, beginning with Eq. 11.31 we find for the transverse accelerations

in K ′ and K, denoted a′⊥ and a⊥

a⊥(t) =
1
γ

d

dt


 u′⊥

1 +
u′||v

c2




=
1

γ(1 +
u′||v

c2 )2

[
(1 +

u′||v

c2
)

d

dt
u′⊥ − u′⊥

d

dt
(1 +

u′||v

c2
)

]

=
1

γ(1 +
u′||v

c2 )2

[
dt′

dt

][
(1 +

u′||v

c2
)

d

dt′
u′⊥ − u′⊥

v

c2

d

dt′
u′||

]



=
1

γ2(1 +
u′||v

c2 )3

[
(1 +

u′||v

c2
)

d

dt′
u′⊥ − u′⊥

v

c2

d

dt′
u′||

]

=
1

γ2(1 +
u′||v

c2 )3

[
(1 +

u′||v

c2
)a′⊥ − u′⊥

v

c2
a′||

]

=
1

γ2(1 +
u′||v

c2 )3

[
a′⊥ + a′⊥

u′||v

c2
− u′⊥

v

c2
a′||

]

=
1

γ2(1 +
u′||v

c2 )3

[
a′⊥ +

(
a′ − a′||v̂

) u′||v

c2
− u′⊥

v

c2
a′||

]

=
1

γ2(1 +
u′||v

c2 )3

[
a′⊥ + a′

u′||v

c2
+

va′||
c2

(
−u′⊥ − v̂u′||

)]

=
1

γ2(1 +
u′||v

c2 )3

[
a′⊥ +

1
c2

(
a′u′||v − va′||u

′
)]

=
1

γ2(1 +
u′||v

c2 )3

[
a′⊥ +

1
c2

(a′(u′ · v)− (a′ · v)u′)
]

=
1

γ2(1 + u′·v
c2 )3

[
a′⊥ +

1
c2

v × (a′ × u′)
]

q.e.d.

There, we have used the unit vector v̂ = v
v .



3. Problem 11.6 10 Points

a): To calculate the time interval in the earth frame K along the first acceleration leg,

T1 =
∫ 5a

0

γ(τ)dτ =
∫ 5a

0

1√
1− u2(τ)

c2

dτ , (1)

we require u(τ). To find u(τ), we use the parallel-component result of Problem 11.5 for the case that K ′ is
the instantaneously co-moving frame of the rocket and K is the earth frame. Then, dt′ = dτ and u′|| = 0,
and

du

dt
=

1
γ3

u

du′

dt
=

1
γ3

u

du′

dτ
=

g

γ3
u

(2)

Also, due to time delation between the earth and the instantaneously co-moving rocket frame it is dt = γudτ ,
and therefore

du

dt
=

du

γudτ
=

g

γ3
u

γ2
udu = gdτ

∫ u(τ)

u=0

1
1− u2/c2

du =
∫ τ

τ=0

gdτ = gτ

u(τ)
c

= tanh
gτ

c

Insertion into Eq. 1 allows us to calculate the travel time of the first leg observed in K,

T1 =
∫ 5a

τ=0

1√
1− tanh2

(
gτ
c

)dτ =
∫ 5a

τ=0

cosh
(gτ

c

)
dτ =

c

g
sinh

(
g × 5a

c

)
= 84a

By symmetry, all other legs give the same result, yielding a travel time observed in K of T = 4 T1 = 336a.
Thus, the year of return to earth is 2436.

Note that in the analysis the instantaneously co-moving frame (ICMF) of the rocket K ′ is an inertial frame;
for that reason the presented analysis is valid. As the rocket moves along, it marks the origins of an infinite
sequence of different ICMFs. The rocket itself is not an inertial frame, of course, but the rocket frame never
enters in our analysis.

b): The travel distance in K along the first leg

L1 =
∫ T1

t=0

u(t)dt =
∫ 84a

t=0

u(t)dt

requires knowledge of the rocket velocity u(t) observed in K. From Eq. 2 it follows



γ3(u)du = gdt
∫ u(t)

u=0

1
√

1− u2

c2

3 du =
∫ t

0

gdt

u(t)
1√

1− u(t)2

c2

= gt

u(t) =
gt√

1 + g2t2

c2

Insertion into the previous equation yields

L1 =
c2

g

∫ T1×g/c

t=0

gt/c√
1 + g2t2

c2

d(gt/c) =
c2

g

[√
1 +

g2T 2
1

c2
− 1

]

Since gT1
c À 1, the square-root can be developed, yielding with T1 = 84a

L1 ≈ cT1 +
c2

g

(
c

2gT1
− 1

)
≈ cT1 − c2

g
= (84− 0.969) lightyears

Since all legs have, for symmetry, the same length, we find a total travel distance of L = 2 L1 =
166 lightyears, which is almost as far as a beam of light would travel (which would be 168 lightyears).



4. Problem 11.9 10 Points

The objective of the problem is to find the generators of the Lorentz transformation in a simplified way
(compared with Chapter 11.7 of Jackson). The simplification is achieved by considering finite Lorentz
transformations as a sequence of infinitesimal ones. The generators of the latter are obtained in the following.

a): We consider the effect of the consecutive application of the transformation given in the problem and its
inverse,

x′′α = (gαβ + ε′αβ)x′β

= (gαβ + ε′αβ) gβγ x′γ

= (gαβ + ε′αβ) gβγ (gγδ + εγδ) xδ

= (gαβ + ε′αβ) gβγ (gγδ + εγδ) gδη xη

Since the two consecutive transformations are the inverse of each other, it also is x′′α = δα
ηxη for all x. By

comparison with the previous equation, we can write

δα
η = (gαβ + ε′αβ) gβγ (gγδ + εγδ) gδη

=
[
δα

γ (gγδ + εγδ) + ε′αβ gβγ (gγδ + εγδ)
]
gδη

=
[
gαδ + εαδ + ε′αβ (δ δ

β + gβγ εγδ)
]
gδη

=
[
gαδ + εαδ + ε′αδ + ε′αβ gβγ εγδ

]
gδη

=
[
gαδ + εαδ + ε′αδ

]
gδη

= δα
η + gδη(εαδ + ε′αδ) = δα

η + (εα
η + ε′αη)

Note that due to the infinitesimal character of the elements of the ε-tensors, we were allowed to drop terms
quadratic in them. From the last line it follows that εαδ = −ε′αδ, q.e.d.

b): Beginning with norm conservation, we find by application of the infinitesimal transformation law specified
in the problem,

xα xα = x′α x′α

= (gαβ + εαβ) xβ x′α = (gαβ + εαβ)xβ gαγx′γ

= (gαβ + εαβ) xβ gαγ(gγδ + εγδ) xδ

= (gαβ + εαβ)
[
gαγ(gγδ + εγδ)

]
gδη xβ xη

= (gαβ + εαβ) (δ δ
α + gαγ εγδ) gδη xβ xη

= (gαβ + εαβ)
[
(δ δ

α + gαγ εγδ) gδη

]
xβ xη

= (gαβ + εαβ) (gαη + gαγ εγδ gδη) xβ xη

= (δβ
η + δβ

γ εγδ gδη + εαβ gαη) xβ xη



= xβ xβ + (εβδ gδη + εαβ gαη) xβ xη

= xα xα + (εβα gαη + εαβ gαη) xβ xη

= xα xα + (εβα + εαβ) gαη xβ xη

= xα xα + (εβα + εαβ) gαη xβ xη

= xα xα + (εβα + εαβ)xα xβ

Again, due to the infinitesimal character of the elements of the ε-tensors we were allowed to drop terms
quadratic in them. Since the result must be valid for all x, it follows that εαβ = −εβα, q.e.d.

c): It is

x′α = (gαβ + εαβ)xβ = (gαβ + εαβ) gβγ xγ = (δα
γ + εαβ gβγ)xγ

Also, an infinitesimal Lorentz transformation matrix with generator L is of the form A = exp(L) = 1 + L.
In index notation, the effect of such a transformation is

x′α = Aα
γxγ = (δα

γ + Lα
γ)xγ

Comparison of the last two equations shows

Lα
γ = εαβ gβγ

which is equivalent to Lα
γgγδ = εαβ gβγgγδ = εαβ δ δ

β = εαδ. Written in matrix form, L ◦ g = ε with an
antisymmetric matrix ε. This is equivalent to Eq. 11.89 of Jackson, which directly leads to Eqs. 11.90-11.93.


