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1. Problem 10.10a 10 Points

We consider the Smythe-Kirchhoff integral,

Ediff =
1
2π
∇×

∫

hole

n̂×E
exp(ikR)

R
da′

where n̂ is the normal of the conducting plane pointing into the volume of interest, and R = x − x′. It is
n̂ × E = n̂ × Etan, where Etan is the total electric field tangential with the conducting plane. Also, in the
radiation zone

exp(ikR)
R

=
exp(ikr)

r
exp(−ikx′)

where k = kr̂ is the k-vector pointing to the observation point.

Thus, in the radiation zone

Ediff =
1
2π
∇× exp(ikr)

r

∫

hole

(n̂×Etan) exp(−ikx′)da′

Also, since for expressions of the kind ”E = ∇× exp(ikr)
r F(θ, φ)” in the radiation zone the usual replacement

”∇× = ik×” applies, we obtain Eq. 10.109:

Ediff =
i

2π
k× exp(ikr)

r

∫

hole

(n̂×Etan) exp(−ikx′)da′

Since the aperture is small, we can make the small-source approximation for the fields emanating from the
hole, exp(−ikx′) = 1− ik · x′, and get:

Ediff =
i

2π

exp(ikr)
r

k×
[∫

hole

(n̂×Etan)da′ − i
∫

hole

(n̂×Etan)k · x′da′
]

As advertised in class, we employ the vector identity Eq. 9.31 with n̂×Etan in place of J,

(n̂×Etan)k · x′ =
1
2

[x′ × (n̂×Etan)]× k +
1
2

[(k · x′)(n̂×Etan) + (k · (n̂×Etan))x′]

to get

Ediff =
i

2π

exp(ikr)
r

k×
[∫

hole

(n̂×Etan)
{

1− 1
2
ik · x′

}
da′ − i

2

∫

hole

x′ × (n̂×Etan)da′ × k

− i
2

∫

hole

k · (n̂×Etan)x′da′
]



Since the hole is small, in the first integral we may set 1− 1
2 ik·x′ = 1. In the second integral, x′×(n̂×Etan) =

(x′ ·Etan)n̂− (x′ · n̂)Etan = (x′ ·Etan)n̂, because x′ · n̂ = 0. Thus,

Ediff =
i

2π

exp(ikr)
r

k×
[∫

hole

(n̂×Etan)da′ − i
2

(
n̂

∫

hole

x′ ·Etanda′
)
× k− i

2

∫

hole

k · (n̂×Etan)x′da′
]

The first term can be re-written as

Ediff,1 = −Z0k
2

4π

exp(ikr)
r

(
k̂×

[−2i
Z0k

∫

hole

(n̂×Etan)da′
])

This field can be compared with with Eq. 9.36. Thereby, the term in the square bracket can be identified
with an effective magnetic dipole

m =
−2i
Z0k

∫

hole

(n̂×Etan)da′ =
2

iωµ

∫

hole

(n̂×Etan)da′

(note in vacuum k = ω/c = ωµ/Z0). The second term,

Ediff,2 =
Z0ck

2

4π

exp(ikr)
r

k̂×
([

1
Z0c

n̂
∫

hole

x′ ·Etanda′
]
× k

)

can be, by comparison with Eq. 9.19, identified with the electric field of an electric dipole

p = εn̂
∫

hole

x′ ·Etanda′

Both the first and the third term have an n̂×Etan under the integral. Further, the third term is of the order
of the first term times kx′ << 1. Thus, the third term can be neglected.



2. Problem 10.12 10 Points

We start with the Smythe-Kirchhoff formula in the radiation zone,

Ediff =
i

2π

exp(ikr)
r

k×
∫

hole

(n̂×Etan) exp(−ikx′)da′

The plane normal n̂ = ẑ, the incident wavevector k0 = k(cos αẑ+sinαx̂), and the wavevector pointing to the
observation point, k = k(sin θ cosφx̂ + sin θ sin φŷ + cos θẑ). The incident electric field is linearly polarized
transverse to the plane of incidence (the xz-plane), i.e. E0 = E0ŷ. The circular hole over which we integrate
extends in the x′y′-plane. Thus, using 2-dimensional cylindrical coordinates ρ′ and β′ in the x′y′-plane,

Ediff =
iE0

2π

exp(ikr)
r

k×
∫ a

ρ′=0

∫ 2π

β=0

(ẑ× ŷ) exp(i(k0 − k)x′)ρ′dρ′dβ′

=
−iE0

2π

exp(ikr)
r

(k× x̂)
∫ a

ρ′=0

{∫ 2π

β′=0

exp(ikρ′(sinα cos β′ − sin θ cos(φ− β′)))dβ′
}

ρ′dρ′

The angular function in the exponent can be rewritten,

sin α cos β′ − sin θ cos(φ− β′) = cos β [sinα− sin θ cos φ] + sin β [− sin θ sin φ]

= ξ cos(β′ + δ)

where the amplitude ξ is the square-root of the sum of the squares of the terms in square-brackets, and δ is
a constant phase shift. Thus,

ξ =
√

[sin α− sin θ cos φ]2 + [− sin θ sin φ]2 =
√

sin2 θ + sin2 α− 2 sin α sin θ cosφ

In the angular integral the phase shift δ is irrelevant, because the angular integral is over a full circle:

∫ 2π

β′=0

exp(ikρ′(sinα cosβ′ − sin θ cos(φ− β′)))dβ′ =
∫ 2π

0

exp(ikρ′ξ cos(β′ + δ))dβ′

=
∫ 2π

0

exp(ikρ′ξ cos β′)dβ′ =
∫ 2π

0

exp(ikρ′ξ sin β′)dβ′ = 2πJ0(kρ′ξ)

and the diffracted fields

Ediff (r, α, θ, φ) = −iE0
exp(ikr)

r
(k× x̂)

∫ a

ρ′=0

J0(kρ′ξ)ρ′dρ′

= −iE0a
2 exp(ikr)

r
(k× x̂)

J1(kξa)
akξ

Hdiff (r, α, θ, φ) =
1
Z0

k̂×Ediff (x)



The diffracted power per solid angle

dP

dΩ
= r2 1

2Z0
Ediff ·E∗diff

=
|E0|2
2Z0

a4

(
J1(kξa)

akξ

)2

|(k× x̂)|2

=
|E0|2
2Z0

a4k2

(
J1(kξa)

akξ

)2

(cos2 θ + sin2 θ sin2 φ)

This can be normalized with the power incident on the hole,

Pin =
1

2Z0
|E0|2 a2π cos α

yielding

dP

dΩ
/Pin =

a2k2

π cosα

(
J1(kξa)

akξ

)2

(cos2 θ + sin2 θ sin2 φ)

b): The result we have obtained equals that of Eq. 10.114 (case of polarization in plane of incidence) times
a factor

1
cos2 α

(cos2 θ + sin2 θ sin2 φ)
(cos2 θ + sin2 θ cos2 φ)

It is also somewhat similar with the result of the scalar calculation, given in Eq. 10.119. In fact, all three
results share the essential dependence

∝ k2a2

(
J1(kξa)

akξ

)2

It is also noted that for the case of normal incidence α = 0 the two vectorial results are identical, as required.
To see this, take the polarization directions into account. Then, note that in the case of normal incidence in
both calculations - polarization perpendicular to and in the plane of incidence - the respective terms sinφ

and cos φ are equal to the sine of the angle between the laser polarization and the projection of k into the
xy-plane.



3. Problem 10.16 10 Points

a): Using Eq. 10.125 of Jackson, the scattering cross section for incident field E0 = E0ε0 with incident
polarization ε0, summed over exit polarizations, is

dσ

dΩ
=

∑

i

(ε∗i · Fsh)(εi · F ∗sh)
E0E∗

0

=
k2

4π2

∑

i

|ε∗i · ε0|2
(∫

shadow

exp(−ik⊥ · x⊥)d2x⊥

)(∫

shadow

exp(ik⊥ · x′⊥)d2x′⊥

)

where the integrals go over the shadow of the object in the xy-plane. As orthonormal basis for the exit
polarizations we can use

ε1 = φ̂k =



− sinφk

cosφk

0


 and ε2 = θ̂k =




cos θk cos φk

cos θk sinφk

− sin θk




To cover the case of arbitrary incident polarization, we use ε0 = c1x̂+c2ŷ with complex numbers c1c
∗
1+c2c

∗
2 =

1. Then,

∑

i

|ε∗i · ε0|2 = |c1|2 (sin2 φk + cos2 θk cos2 φk) + |c2|2 (cos2 φk + cos2 θk sin2 φk) =: A(θk, φk)

Then,

dσ

dΩ
=

k2

4π2

∫

sh

∫

sh

exp(−ik⊥ · (x⊥ − x′⊥))A(θk, φk)d2x⊥d2x′⊥

σ =
k2

4π2

∫

θk,φk

∫

sh

∫

sh

exp(−ik⊥ · (x⊥ − x′⊥))A(θk, φk)d2x⊥d2x′⊥ sin θkdθkdφk

Since x̂ ·k = x̂ ·k⊥ = kx = k sin θk cosφk and ŷ ·k = ŷ ·k⊥ = ky = k sin θk sin φk, in the angular integration
we can substitute

dθkdφk =
∣∣∣∣
∂(θk, φk)
∂(kx, ky)

∣∣∣∣ dkxdky =
∣∣∣∣
∂(kx, ky)
∂(θk, φk)

∣∣∣∣
−1

d2k⊥ =
1

k2 sin θk cos θk
d2k⊥

and

σ =
1

4π2

∫

|k⊥|<k

∫

sh

∫

sh

exp(−ik⊥ · (x⊥ − x′⊥))
A(θk, φk)

cos θk
d2x⊥d2x′⊥d2k⊥

Since the shadow region is much larger than the wavelength, in the double-integration over the area the
phase term is rapidly oscillating unless k⊥ ¿ k, that is unless θk ≈ 0. Angles θk substantially different form
0 will not significantly contribute to the integral. We are, essentially, restating the fact that short-wavelength



shadow scattering mostly occurs into the forward directions. Thus, in the angle-dependent term A(θk,φk)
cos θk

we
may set θk = 0, and we may extend the integration range over k⊥ to infinity:

σ =
1

4π2

∫

|k⊥|<∞

∫

sh

∫

sh

exp(−ik⊥ · (x⊥ − x′⊥))
A(0, φk)
cos(0)

d2x⊥d2x′⊥d2k⊥

=
1

4π2

∫

|k⊥|<∞

∫

sh

∫

sh

exp(−ik⊥ · (x⊥ − x′⊥))(|c1|2 + |c2|2)d2x⊥d2x′⊥d2k⊥

=
1

4π2

∫

sh

∫

sh

{∫

|k⊥|<∞
exp(−ik⊥ · (x⊥ − x′⊥))d2k⊥

}
d2x⊥d2x′⊥

=
1

4π2

∫

sh

∫

sh

(2π)2δ2(x⊥ − x′⊥)d2x⊥d2x′⊥

=
∫

sh

d2x⊥ = Ashadow

b): According to the optical theorem, the total cross section (= the sum of scattering and absorption cross
section) is

σt = σ + σabs =
4π

k
Im

[
ε∗0 ·

F(k0 · k0)
E0

]

≈ 4π

k
Im

[
ε∗0 ·

Fsh(k0 · k0)
E0

]

=
4π

k
Im

[
ik
2π

(ε∗0 · ε0)
E0

E0

∫

shadow

exp(−ik⊥ · x⊥)d2x⊥

]

k⊥=0

= 2Ashadow (1)

This result makes sense because of the following. As seen in part a), small-angle shadow scattering has a
cross section of Ashadow, independent of what happens to the radiation that actually hits the target. Since
the radiation that hits the target either gets absorbed or re-scattered into directions k 6= k0, absorption
and scattering of the illuminated portion of the target also have a cross section of Ashadow. The total cross
section thus is 2Ashadow.


