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1. Problem 10.10a 10 Points

We consider the Smythe-Kirchhoff integral,

1 exp(ikR
Ediff:—Vx/ ﬁwada’
27 hole R
where 1 is the normal of the conducting plane pointing into the volume of interest, and R = x — x’. It is
n x E =n x E,,, where Ey,, is the total electric field tangential with the conducting plane. Also, in the
radiation zone
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where k = kr is the k-vector pointing to the observation point.
Thus, in the radiation zone
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Also, since for expressions of the kind ”E =V x MF(Q, ¢)” in the radiation zone the usual replacement
"V x =ikx” applies, we obtain Eq. 10.109:
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Since the aperture is small, we can make the small-source approximation for the fields emanating from the

hole, exp(—ikx’) = 1 — ik - x/, and get:
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As advertised in class, we employ the vector identity Eq. 9.31 with i x Ey,,, in place of J,
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Since the hole is small, in the first integral we may set 1— %ikx' = 1. In the second integral, x' x (A X B4y ) =

(x' - Eggn)t — (X' - ) Eyapn = (X' - Egqn )i, because x’ - i = 0. Thus,
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The first term can be re-written as
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This field can be compared with with Eq. 9.36. Thereby, the term in the square bracket can be identified

with an effective magnetic dipole
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(note in vacuum k = w/c = wu/Zy). The second term,
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can be, by comparison with Eq. 9.19, identified with the electric field of an electric dipole
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Both the first and the third term have an n x Ey,,, under the integral. Further, the third term is of the order
of the first term times k2’ << 1. Thus, the third term can be neglected.



2. Problem 10.12 10 Points

We start with the Smythe-Kirchhoff formula in the radiation zone,
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The plane normal i = 2, the incident wavevector ko = k(cos az+sin ax), and the wavevector pointing to the
observation point, k = k(sin 6 cos ¢x + sin 0 sin ¢y + cos 0z). The incident electric field is linearly polarized
transverse to the plane of incidence (the zz-plane), i.e. Eg = Egy. The circular hole over which we integrate

extends in the z’y’-plane. Thus, using 2-dimensional cylindrical coordinates p’ and 3’ in the x’y’-plane,
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The angular function in the exponent can be rewritten,
sinacos 3 —sinfcos(¢p — 3) = cosf[sina — sinf cos ¢ + sin B [— sin O sin ¢]
= Ecos(B +9)

where the amplitude £ is the square-root of the sum of the squares of the terms in square-brackets, and ¢ is

a constant phase shift. Thus,
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In the angular integral the phase shift § is irrelevant, because the angular integral is over a full circle:
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and the diffracted fields
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The diffracted power per solid angle
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This can be normalized with the power incident on the hole,
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yielding
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b): The result we have obtained equals that of Eq. 10.114 (case of polarization in plane of incidence) times

a factor
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It is also somewhat similar with the result of the scalar calculation, given in Eq. 10.119. In fact, all three

results share the essential dependence
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It is also noted that for the case of normal incidence a = 0 the two vectorial results are identical, as required.
To see this, take the polarization directions into account. Then, note that in the case of normal incidence in
both calculations - polarization perpendicular to and in the plane of incidence - the respective terms sin ¢
and cos ¢ are equal to the sine of the angle between the laser polarization and the projection of k into the

xy-plane.



3. Problem 10.16 10 Points

a): Using Eq. 10.125 of Jackson, the scattering cross section for incident field Ey = Epep with incident

polarization €g, summed over exit polarizations, is
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where the integrals go over the shadow of the object in the xy-plane. As orthonormal basis for the exit

polarizations we can use

— sin ¢y, cos 0 cos ¢y,
€1 = ¢ = COS ¢, and e =0, = cos 0, sin ¢y,
0 —sin Hk

To cover the case of arbitrary incident polarization, we use €y = c1X+coy with complex numbers ¢;cj+coch =
1. Then,
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Then,
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Since Xx-k=%-k| =k, = ksinf,cos¢y and y-k =y -k =k, = ksin0j sin ¢y, in the angular integration

we can substitute
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Since the shadow region is much larger than the wavelength, in the double-integration over the area the
phase term is rapidly oscillating unless k; < k, that is unless 6 = 0. Angles 0}, substantially different form

0 will not significantly contribute to the integral. We are, essentially, restating the fact that short-wavelength
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shadow scattering mostly occurs into the forward directions. Thus, in the angle-dependent term

may set 0, = 0, and we may extend the integration range over &k, to infinity:
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b): According to the optical theorem, the total cross section (= the sum of scattering and absorption cross

section) is
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This result makes sense because of the following. As seen in part a), small-angle shadow scattering has a

cross section of Agpadow, independent of what happens to the radiation that actually hits the target. Since

the radiation that hits the target either gets absorbed or re-scattered into directions k # kg, absorption
and scattering of the illuminated portion of the target also have a cross section of Agpqdow- The total cross

section thus is 2A4444dow-



