Prof. G. Raithel
Problem Set 6
Total 30 Points

1. Problem 10.10a

We consider the Smythe-Kirchhoff integral,

$$
E_{d i f f}=\frac{1}{2 \pi} \nabla \times \int_{\text {hole }} \hat{\mathbf{n}} \times \mathbf{E} \frac{\exp (\mathrm{i} k R)}{R} d a^{\prime}
$$

where $\hat{\mathbf{n}}$ is the normal of the conducting plane pointing into the volume of interest, and $\mathbf{R}=\mathbf{x}-\mathbf{x}^{\prime}$. It is $\hat{\mathbf{n}} \times \mathbf{E}=\hat{\mathbf{n}} \times \mathbf{E}_{t a n}$, where $E_{t a n}$ is the total electric field tangential with the conducting plane. Also, in the radiation zone

$$
\frac{\exp (\mathrm{i} k R)}{R}=\frac{\exp (\mathrm{i} k r)}{r} \exp \left(-\mathrm{i} \mathbf{k} \mathbf{x}^{\prime}\right)
$$

where $\mathbf{k}=k \hat{\mathbf{r}}$ is the k -vector pointing to the observation point.
Thus, in the radiation zone

$$
E_{\text {diff }}=\frac{1}{2 \pi} \nabla \times \frac{\exp (\mathrm{i} k r)}{r} \int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{\text {tan }}\right) \exp \left(-\mathrm{i} \mathbf{k} \mathbf{x}^{\prime}\right) d a^{\prime}
$$

Also, since for expressions of the kind " $E=\nabla \times \frac{\exp (\mathrm{i} k r)}{r} \mathbf{F}(\theta, \phi)$ " in the radiation zone the usual replacement $" \nabla \times=\mathrm{i} \mathbf{k} \times$ " applies, we obtain Eq. 10.109:

$$
E_{\text {diff }}=\frac{\mathrm{i}}{2 \pi} \mathbf{k} \times \frac{\exp (\mathrm{i} k r)}{r} \int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) \exp \left(-\mathrm{i} \mathbf{k} \mathbf{x}^{\prime}\right) d a^{\prime}
$$

Since the aperture is small, we can make the small-source approximation for the fields emanating from the hole, $\exp \left(-\mathrm{i} \mathbf{k} \mathbf{x}^{\prime}\right)=1-\mathrm{i} \mathbf{k} \cdot \mathbf{x}^{\prime}$, and get:

$$
E_{d i f f}=\frac{\mathrm{i}}{2 \pi} \frac{\exp (\mathrm{i} k r)}{r} \mathbf{k} \times\left[\int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{\text {tan }}\right) d a^{\prime}-\mathrm{i} \int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{\text {tan }}\right) \mathbf{k} \cdot \mathbf{x}^{\prime} d a^{\prime}\right]
$$

As advertised in class, we employ the vector identity Eq. 9.31 with $\hat{\mathbf{n}} \times \mathbf{E}_{t a n}$ in place of \mathbf{J},

$$
\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) \mathbf{k} \cdot \mathbf{x}^{\prime}=\frac{1}{2}\left[\mathbf{x}^{\prime} \times\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right)\right] \times \mathbf{k}+\frac{1}{2}\left[\left(\mathbf{k} \cdot \mathbf{x}^{\prime}\right)\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right)+\left(\mathbf{k} \cdot\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right)\right) \mathbf{x}^{\prime}\right]
$$

to get

$$
\begin{aligned}
E_{d i f f} & =\frac{\mathrm{i}}{2 \pi} \frac{\exp (\mathrm{i} k r)}{r} \mathbf{k} \times\left[\int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right)\left\{1-\frac{1}{2} \mathrm{i} \mathbf{k} \cdot \mathbf{x}^{\prime}\right\} d a^{\prime}-\frac{\mathrm{i}}{2} \int_{\text {hole }} \mathbf{x}^{\prime} \times\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) d a^{\prime} \times \mathbf{k}\right. \\
& \left.-\frac{\mathrm{i}}{2} \int_{\text {hole }} \mathbf{k} \cdot\left(\hat{\mathbf{n}} \times \mathbf{E}_{\text {tan }}\right) \mathbf{x}^{\prime} d a^{\prime}\right]
\end{aligned}
$$

Since the hole is small, in the first integral we may set $1-\frac{1}{2} \mathbf{i} \mathbf{k} \cdot \mathbf{x}^{\prime}=1$. In the second integral, $\mathbf{x}^{\prime} \times\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right)=$ $\left(\mathbf{x}^{\prime} \cdot \mathbf{E}_{t a n}\right) \hat{\mathbf{n}}-\left(\mathbf{x}^{\prime} \cdot \hat{\mathbf{n}}\right) \mathbf{E}_{t a n}=\left(\mathbf{x}^{\prime} \cdot \mathbf{E}_{t a n}\right) \hat{\mathbf{n}}$, because $\mathbf{x}^{\prime} \cdot \hat{\mathbf{n}}=0$. Thus,

$$
E_{d i f f}=\frac{\mathrm{i}}{2 \pi} \frac{\exp (\mathrm{i} k r)}{r} \mathbf{k} \times\left[\int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) d a^{\prime}-\frac{\mathrm{i}}{2}\left(\hat{\mathbf{n}} \int_{\text {hole }} \mathbf{x}^{\prime} \cdot \mathbf{E}_{t a n} d a^{\prime}\right) \times \mathbf{k}-\frac{\mathrm{i}}{2} \int_{\text {hole }} \mathbf{k} \cdot\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) \mathbf{x}^{\prime} d a^{\prime}\right]
$$

The first term can be re-written as

$$
E_{d i f f, 1}=-\frac{Z_{0} k^{2}}{4 \pi} \frac{\exp (\mathrm{i} k r)}{r}\left(\hat{\mathbf{k}} \times\left[\frac{-2 \mathrm{i}}{Z_{0} k} \int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) d a^{\prime}\right]\right)
$$

This field can be compared with with Eq. 9.36. Thereby, the term in the square bracket can be identified with an effective magnetic dipole

$$
\mathbf{m}=\frac{-2 \mathrm{i}}{Z_{0} k} \int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) d a^{\prime}=\frac{2}{\mathrm{i} \omega \mu} \int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{t a n}\right) d a^{\prime}
$$

(note in vacuum $k=\omega / c=\omega \mu / Z_{0}$). The second term,

$$
E_{d i f f, 2}=\frac{Z_{0} c k^{2}}{4 \pi} \frac{\exp (\mathrm{i} k r)}{r} \hat{\mathbf{k}} \times\left(\left[\frac{1}{Z_{0} c} \hat{\mathbf{n}} \int_{\text {hole }} \mathbf{x}^{\prime} \cdot \mathbf{E}_{t a n} d a^{\prime}\right] \times \mathbf{k}\right)
$$

can be, by comparison with Eq. 9.19, identified with the electric field of an electric dipole

$$
\mathbf{p}=\epsilon \hat{\mathbf{n}} \int_{\text {hole }} \mathbf{x}^{\prime} \cdot \mathbf{E}_{t a n} d a^{\prime}
$$

Both the first and the third term have an $\hat{\mathbf{n}} \times \mathbf{E}_{\text {tan }}$ under the integral. Further, the third term is of the order of the first term times $k x^{\prime} \ll 1$. Thus, the third term can be neglected.

We start with the Smythe-Kirchhoff formula in the radiation zone,

$$
E_{d i f f}=\frac{\mathrm{i}}{2 \pi} \frac{\exp (\mathrm{i} k r)}{r} \mathbf{k} \times \int_{\text {hole }}\left(\hat{\mathbf{n}} \times \mathbf{E}_{\text {tan }}\right) \exp \left(-\mathrm{i} \mathbf{k} \mathbf{x}^{\prime}\right) d a^{\prime}
$$

The plane normal $\hat{\mathbf{n}}=\hat{\mathbf{z}}$, the incident wavevector $\mathbf{k}_{0}=k(\cos \alpha \hat{\mathbf{z}}+\sin \alpha \hat{\mathbf{x}})$, and the wavevector pointing to the observation point, $\mathbf{k}=k(\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}})$. The incident electric field is linearly polarized transverse to the plane of incidence (the $x z$-plane), i.e. $\mathbf{E}_{0}=E_{0} \hat{\mathbf{y}}$. The circular hole over which we integrate extends in the $x^{\prime} y^{\prime}$-plane. Thus, using 2 -dimensional cylindrical coordinates ρ^{\prime} and β^{\prime} in the $x^{\prime} y^{\prime}$-plane,

$$
\begin{aligned}
E_{d i f f} & =\frac{\mathrm{i} \mathrm{E}_{0}}{2 \pi} \frac{\exp (\mathrm{i} k r)}{r} \mathbf{k} \times \int_{\rho^{\prime}=0}^{a} \int_{\beta=0}^{2 \pi}(\hat{\mathbf{z}} \times \hat{\mathbf{y}}) \exp \left(\mathrm{i}\left(\mathbf{k}_{\mathbf{0}}-\mathbf{k}\right) \mathbf{x}^{\prime}\right) \rho^{\prime} d \rho^{\prime} d \beta^{\prime} \\
& =\frac{-\mathrm{i} \mathrm{E}_{0}}{2 \pi} \frac{\exp (\mathrm{i} k r)}{r}(\mathbf{k} \times \hat{\mathbf{x}}) \int_{\rho^{\prime}=0}^{a}\left\{\int_{\beta^{\prime}=0}^{2 \pi} \exp \left(\mathrm{i} k \rho^{\prime}\left(\sin \alpha \cos \beta^{\prime}-\sin \theta \cos \left(\phi-\beta^{\prime}\right)\right)\right) d \beta^{\prime}\right\} \rho^{\prime} d \rho^{\prime}
\end{aligned}
$$

The angular function in the exponent can be rewritten,

$$
\begin{aligned}
\sin \alpha \cos \beta^{\prime}-\sin \theta \cos \left(\phi-\beta^{\prime}\right) & =\cos \beta[\sin \alpha-\sin \theta \cos \phi]+\sin \beta[-\sin \theta \sin \phi] \\
& =\xi \cos \left(\beta^{\prime}+\delta\right)
\end{aligned}
$$

where the amplitude ξ is the square-root of the sum of the squares of the terms in square-brackets, and δ is a constant phase shift. Thus,

$$
\xi=\sqrt{[\sin \alpha-\sin \theta \cos \phi]^{2}+[-\sin \theta \sin \phi]^{2}}=\sqrt{\sin ^{2} \theta+\sin ^{2} \alpha-2 \sin \alpha \sin \theta \cos \phi}
$$

In the angular integral the phase shift δ is irrelevant, because the angular integral is over a full circle:

$$
\begin{aligned}
\int_{\beta^{\prime}=0}^{2 \pi} \exp \left(\mathrm{i} k \rho^{\prime}\left(\sin \alpha \cos \beta^{\prime}-\sin \theta \cos \left(\phi-\beta^{\prime}\right)\right)\right) d \beta^{\prime} & =\int_{0}^{2 \pi} \exp \left(\mathrm{i} k \rho^{\prime} \xi \cos \left(\beta^{\prime}+\delta\right)\right) d \beta^{\prime} \\
=\int_{0}^{2 \pi} \exp \left(\mathrm{i} k \rho^{\prime} \xi \cos \beta^{\prime}\right) d \beta^{\prime}=\int_{0}^{2 \pi} \exp \left(\mathrm{i} k \rho^{\prime} \xi \sin \beta^{\prime}\right) d \beta^{\prime} & =2 \pi J_{0}\left(k \rho^{\prime} \xi\right)
\end{aligned}
$$

and the diffracted fields

$$
\begin{aligned}
\mathbf{E}_{d i f f}(r, \alpha, \theta, \phi) & =-\mathrm{i} E_{0} \frac{\exp (\mathrm{i} k r)}{r}(\mathbf{k} \times \hat{\mathbf{x}}) \int_{\rho^{\prime}=0}^{a} J_{0}\left(k \rho^{\prime} \xi\right) \rho^{\prime} d \rho^{\prime} \\
& =-\mathrm{i} E_{0} a^{2} \frac{\exp (\mathrm{i} k r)}{r}(\mathbf{k} \times \hat{\mathbf{x}}) \frac{J_{1}(k \xi a)}{a k \xi} \\
\mathbf{H}_{d i f f}(r, \alpha, \theta, \phi) & =\frac{1}{Z_{0}} \hat{\mathbf{k}} \times \mathbf{E}_{d i f f}(\mathbf{x})
\end{aligned}
$$

The diffracted power per solid angle

$$
\begin{aligned}
\frac{d P}{d \Omega} & =r^{2} \frac{1}{2 Z_{0}} \mathbf{E}_{d i f f} \cdot \mathbf{E}_{d i f f}^{*} \\
& =\frac{\left|E_{0}\right|^{2}}{2 Z_{0}} a^{4}\left(\frac{J_{1}(k \xi a)}{a k \xi}\right)^{2}|(\mathbf{k} \times \hat{\mathbf{x}})|^{2} \\
& =\frac{\left|E_{0}\right|^{2}}{2 Z_{0}} a^{4} k^{2}\left(\frac{J_{1}(k \xi a)}{a k \xi}\right)^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \phi\right)
\end{aligned}
$$

This can be normalized with the power incident on the hole,

$$
P_{i n}=\frac{1}{2 Z_{0}}\left|E_{0}\right|^{2} a^{2} \pi \cos \alpha
$$

yielding

$$
\frac{d P}{d \Omega} / P_{i n}=\frac{a^{2} k^{2}}{\pi \cos \alpha}\left(\frac{J_{1}(k \xi a)}{a k \xi}\right)^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \phi\right)
$$

b): The result we have obtained equals that of Eq. 10.114 (case of polarization in plane of incidence) times a factor

$$
\frac{1}{\cos ^{2} \alpha} \frac{\left(\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \phi\right)}{\left(\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi\right)}
$$

It is also somewhat similar with the result of the scalar calculation, given in Eq. 10.119. In fact, all three results share the essential dependence

$$
\propto k^{2} a^{2}\left(\frac{J_{1}(k \xi a)}{a k \xi}\right)^{2}
$$

It is also noted that for the case of normal incidence $\alpha=0$ the two vectorial results are identical, as required. To see this, take the polarization directions into account. Then, note that in the case of normal incidence in both calculations - polarization perpendicular to and in the plane of incidence - the respective terms $\sin \phi$ and $\cos \phi$ are equal to the sine of the angle between the laser polarization and the projection of \mathbf{k} into the $x y$-plane.
a): Using Eq. 10.125 of Jackson, the scattering cross section for incident field $\mathbf{E}_{0}=E_{0} \epsilon_{0}$ with incident polarization ϵ_{0}, summed over exit polarizations, is

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\sum_{i} \frac{\left(\epsilon_{i}^{*} \cdot F_{s h}\right)\left(\epsilon_{i} \cdot F_{s h}^{*}\right)}{E_{0} E_{0}^{*}} \\
& =\frac{k^{2}}{4 \pi^{2}} \sum_{i}\left|\epsilon_{i}^{*} \cdot \epsilon_{0}\right|^{2}\left(\int_{\text {shadow }} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}\right) d^{2} x_{\perp}\right)\left(\int_{\text {shadow }} \exp \left(\mathrm{i} \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}^{\prime}\right) d^{2} x_{\perp}^{\prime}\right)
\end{aligned}
$$

where the integrals go over the shadow of the object in the $x y$-plane. As orthonormal basis for the exit polarizations we can use

$$
\epsilon_{1}=\hat{\phi}_{k}=\left(\begin{array}{c}
-\sin \phi_{k} \\
\cos \phi_{k} \\
0
\end{array}\right) \quad \text { and } \quad \epsilon_{2}=\hat{\theta}_{k}=\left(\begin{array}{c}
\cos \theta_{k} \cos \phi_{k} \\
\cos \theta_{k} \sin \phi_{k} \\
-\sin \theta_{k}
\end{array}\right)
$$

To cover the case of arbitrary incident polarization, we use $\epsilon_{0}=c_{1} \hat{\mathbf{x}}+c_{2} \hat{\mathbf{y}}$ with complex numbers $c_{1} c_{1}^{*}+c_{2} c_{2}^{*}=$ 1. Then,

$$
\sum_{i}\left|\epsilon_{i}^{*} \cdot \epsilon_{0}\right|^{2}=\left|c_{1}\right|^{2}\left(\sin ^{2} \phi_{k}+\cos ^{2} \theta_{k} \cos ^{2} \phi_{k}\right)+\left|c_{2}\right|^{2}\left(\cos ^{2} \phi_{k}+\cos ^{2} \theta_{k} \sin ^{2} \phi_{k}\right)=: A\left(\theta_{k}, \phi_{k}\right)
$$

Then,

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{k^{2}}{4 \pi^{2}} \int_{s h} \int_{s h} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot\left(\mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}\right)\right) A\left(\theta_{k}, \phi_{k}\right) d^{2} x_{\perp} d^{2} x_{\perp}^{\prime} \\
\sigma & =\frac{k^{2}}{4 \pi^{2}} \int_{\theta_{k}, \phi_{k}} \int_{s h} \int_{s h} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot\left(\mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}\right)\right) A\left(\theta_{k}, \phi_{k}\right) d^{2} x_{\perp} d^{2} x_{\perp}^{\prime} \sin \theta_{k} d \theta_{k} d \phi_{k}
\end{aligned}
$$

Since $\hat{\mathbf{x}} \cdot \mathbf{k}=\hat{\mathbf{x}} \cdot \mathbf{k}_{\perp}=k_{x}=k \sin \theta_{k} \cos \phi_{k}$ and $\hat{\mathbf{y}} \cdot \mathbf{k}=\hat{\mathbf{y}} \cdot \mathbf{k}_{\perp}=k_{y}=k \sin \theta_{k} \sin \phi_{k}$, in the angular integration we can substitute

$$
d \theta_{k} d \phi_{k}=\left|\frac{\partial\left(\theta_{k}, \phi_{k}\right)}{\partial\left(k_{x}, k_{y}\right)}\right| d k_{x} d k_{y}=\left|\frac{\partial\left(k_{x}, k_{y}\right)}{\partial\left(\theta_{k}, \phi_{k}\right)}\right|^{-1} d^{2} k_{\perp}=\frac{1}{k^{2} \sin \theta_{k} \cos \theta_{k}} d^{2} k_{\perp}
$$

and

$$
\sigma=\frac{1}{4 \pi^{2}} \int_{\left|\mathbf{k}_{\perp}\right|<k} \int_{s h} \int_{s h} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot\left(\mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}\right)\right) \frac{A\left(\theta_{k}, \phi_{k}\right)}{\cos \theta_{k}} d^{2} x_{\perp} d^{2} x_{\perp}^{\prime} d^{2} k_{\perp}
$$

Since the shadow region is much larger than the wavelength, in the double-integration over the area the phase term is rapidly oscillating unless $k_{\perp} \ll k$, that is unless $\theta_{k} \approx 0$. Angles θ_{k} substantially different form 0 will not significantly contribute to the integral. We are, essentially, restating the fact that short-wavelength
shadow scattering mostly occurs into the forward directions. Thus, in the angle-dependent term $\frac{A\left(\theta_{k}, \phi_{k}\right)}{\cos \theta_{k}}$ we may set $\theta_{k}=0$, and we may extend the integration range over k_{\perp} to infinity:

$$
\begin{aligned}
\sigma & =\frac{1}{4 \pi^{2}} \int_{\left|\mathbf{k}_{\perp}\right|<\infty} \int_{s h} \int_{s h} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot\left(\mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}\right)\right) \frac{A\left(0, \phi_{k}\right)}{\cos (0)} d^{2} x_{\perp} d^{2} x_{\perp}^{\prime} d^{2} k_{\perp} \\
& =\frac{1}{4 \pi^{2}} \int_{\left|\mathbf{k}_{\perp}\right|<\infty} \int_{s h} \int_{s h} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot\left(\mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}\right)\right)\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right) d^{2} x_{\perp} d^{2} x_{\perp}^{\prime} d^{2} k_{\perp} \\
& =\frac{1}{4 \pi^{2}} \int_{s h} \int_{s h}\left\{\int_{\left|\mathbf{k}_{\perp}\right|<\infty} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot\left(\mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}\right)\right) d^{2} k_{\perp}\right\} d^{2} x_{\perp} d^{2} x_{\perp}^{\prime} \\
& =\frac{1}{4 \pi^{2}} \int_{s h} \int_{s h}(2 \pi)^{2} \delta^{2}\left(\mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}\right) d^{2} x_{\perp} d^{2} x_{\perp}^{\prime} \\
& =\int_{s h} d^{2} x_{\perp}=A_{\text {shadow }}
\end{aligned}
$$

b): According to the optical theorem, the total cross section ($=$ the sum of scattering and absorption cross section) is

$$
\begin{align*}
\sigma_{t} & =\sigma+\sigma_{a b s}=\frac{4 \pi}{k} \operatorname{Im}\left[\epsilon_{0}^{*} \cdot \frac{\mathbf{F}\left(\mathbf{k}_{0} \cdot \mathbf{k}_{0}\right)}{E_{0}}\right] \\
& \approx \frac{4 \pi}{k} \operatorname{Im}\left[\epsilon_{0}^{*} \cdot \frac{\mathbf{F}_{s h}\left(\mathbf{k}_{0} \cdot \mathbf{k}_{0}\right)}{E_{0}}\right] \\
& =\frac{4 \pi}{k} \operatorname{Im}\left[\frac{\mathrm{i} k}{2 \pi}\left(\epsilon_{0}^{*} \cdot \epsilon_{0}\right) \frac{E_{0}}{E_{0}} \int_{\text {shadow }} \exp \left(-\mathrm{i} \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}\right) d^{2} x_{\perp}\right]_{\mathbf{k}_{\perp}=0} \\
& =2 A_{\text {shadow }} \tag{1}
\end{align*}
$$

This result makes sense because of the following. As seen in part a), small-angle shadow scattering has a cross section of $A_{\text {shadow }}$, independent of what happens to the radiation that actually hits the target. Since the radiation that hits the target either gets absorbed or re-scattered into directions $\mathbf{k} \neq \mathbf{k}_{0}$, absorption and scattering of the illuminated portion of the target also have a cross section of $A_{\text {shadow }}$. The total cross section thus is $2 A_{\text {shadow }}$.

