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1. Problem 10.2 10 Points

The partial-wave analysis presented in Chapter 10.4 applied to the case of a perfectly conducting sphere
with radius ka ¿ 1 leads to the result stated in Eq. 10.71, which applies to incident electric fields of either
ε+ (upper sign) or ε− polarization (lower sign),

dσsc

dΩ
=

2π

3
a2(ka)4 |X1,±1 ∓ 2in̂×X1,±1|2 (1)

The scattering cross section equals the radiated power per solid angle divided by the incident intensity,

dσsc

dΩ
=

dPsc

dΩ
/Iinc = r2Esc ·E∗sc/E0 ·E∗0

where Esc and E0 are the scattered and incident electric fields, respectively. Thus, up to a pre-factor
including exp(ikr)/r the term X1,±1 ∓ 2in̂ × X1,±1 represents the scattered electric field in the radiation
zone for the case of either clean ε+ or ε− polarizations. Based on the superposition principle, for an incident
field with a unit polarization vector

ε =
1√

1 + r2
(ε+ + r exp(iα)ε−) (2)

the scattered electric field is obtained via a corresponding coherent superposition of the scattered fields of
ε+ and ε− polarizations. Thus, for the incident polarization of Eq. 2 the scattering cross section is

dσsc

dΩ
=

2π

3
a2(ka)4

1
1 + r2

|[X1,1 − 2in̂×X1,1] + r exp(iα) [X1,−1 + 2in̂×X1,−1]|2

= :
2π

3
a2(ka)4

1
1 + r2

|F|2

Using that
Xl,m =

1√
l(l + 1)

L̂Ylm

L̂ =
1
i

(
φ̂∂θ − θ̂

sin θ
∂φ

)

Y1,±1 = ∓
√

3
8π

sin θ exp(±iφ)

it is found that



X1,±1 = ∓
√

3
16π

(
φ̂

i
cos θ ∓ θ̂

)
exp(±iφ)

Inserting into Eq. 3 we find, with n̂× θ̂ = φ̂ and n̂× φ̂ = −θ̂, that the components of the transverse field F̂

are

Fθ =

√
3

16π
[exp(iφ)(1− 2 cos θ) + r exp(−iφ + iα)(1− 2 cos θ)]

Fφ =

√
3

16π
[i exp(iφ)(cos θ − 2) + ir exp(−iφ + iα)(2− cos θ)]

and

dσsc

dΩ
=

2π

3
a2(ka)4

1
1 + r2

(FθF
∗
θ + FφFφ∗)

=
k4a6

8(1 + r2)
[
(1− 2 cos θ)2(1 + r2 + 2r cos(2π − α)) + (2− cos θ)2(1 + r2 − 2r cos(2φ− α))

]

=
k4a6

8(1 + r2)
[
(1 + r2)(5(1 + cos2 θ)− 8 cos θ) + 2r cos(2φ− α)(3 cos2 θ − 3)

]

= k4a6

[
5
8
(1 + cos2 θ)− cos θ − 3r

4(1 + r2)
sin2 θ cos(2φ− α)

]
q.e.d.

A more basic but cumbersome approach is to calculate the scattered electric field in the far zone,

Esc =
k2

4π

exp(ikr)
r

(
1
ε0

(n̂× p) + Z0m
)
× n̂

for the electric and magnetic dipoles p = 4πε0a
3Ein and m = − 2π

µ0
a3Bin induced by an incident field with

k-vector k0 = kẑ

Ein =
E0√
1 + r̃2

(ε+ + r̃ exp(iα)ε−)

Bin =
1
c
ẑ×Ein .

The scattering cross section follows from an elementary calculation of

dσsc

dΩ
=

r2Esc ·E∗sc

Ein ·E∗in



2. Problem 10.3 10 Points

a): Since the skin depth is much smaller than the radius, δ ¿ R, the magnetic field does not penetrate
significantly into the sphere. Also, since kR ¿ 1, the magnetic field in the vicinity of the sphere is essentially
static (near-field limit). Because of both these facts, the H-field in the vicinity of the sphere is obtained by
considering a sphere with radius R and µ = 0 in an external homogeneous magnetic field H0. Due to the
absence of free currents in this model, the magnetostatic potential may be used.

We first assume a magnetic field H0 in the z-direction. The magnetic potentials inside and outside the sphere
are then of the form

Φi =
∑

l

alr
lPl(cos θ)

Φo =
∑

l

blr
−l−1Pl(cos θ)−H0rP1(cos θ)

where the second term in the last equation is added to match the boundary condition

H(r →∞) = −∇Φo(r →∞) = H0 = H0ẑ

The radial boundary condition on the surface is µHr,i = 0 = µ0Hr,o, i.e.

0 = −µ0

∑

l

bl(−l − 1)R−l−2Pl −H0P1

yielding bl = 0 for l 6= 1 and

b1 = −1
2
R3H0 .

The θ-boundary condition on the surface is Hr,i = Hr,o, i.e.

∑

l

alR
l−1P ′l =

∑

l

blR
−l−2P ′l −H0P

′
1 .

With the previous result for the bl, we find al = 0 for l 6= 1, and

a1 = −3
2
H0 .

Result inside:

Φi = −3
2
H0r cos θ

Hr,i =
3
2
H0 cos θ

Hθ,i = −3
2
H0 sin θ

Br,i = Bθ,i = 0



Result outside:

Φo = −
(

R3

2r2
+ r

)
H0 cos θ

Hr,o =
(
−R3

r3
+ 1

)
H0 cos θ

Hθ,o = −
(

R3

2r3
+ 1

)
H0 sin θ

Br,o = µ0

(
−R3

r3
+ 1

)
H0 cos θ

Bθ,o = −µ0

(
R3

2r3
+ 1

)
H0 sin θ

Immediately outside the surface, Hr,s = 0 and Hθ,s = − 3
2H0 sin θ. These results hold for the specialized

case of H0 = H0ẑ; in this case, all φ-components of the fields are zero. Also, from the form of Φo it is seen
that the outside field equals H0 plus that of a magnetic dipole with moment m = −2πR3H0.

Next, we consider the field for general polarization. The outside field in the near zone equals H0 plus the
field of a magnetic dipole m = −2πR3H0. Based on the superposition principle, we can - without further
analysis - state that for a magnetic field H0 of the general form

H0 = H0εH = H0k̂0 × ε

the induced magnetic moment is

m = −2πR3H0εH

There, εH is the polarization vector of the magnetic field of the incident wave, ε the (usual) polarization
vector of the electric field, and k̂0 a unit vector in the direction of propagation of the incident wave. In a
linear-polarization basis, a general polarization state is characterized by the equivalent forms

ε = c1ε1 + c2ε2

εH = c1ε2 − c2ε1 ,

where c1c
∗
1 + c2c

∗
2 = 1. The magnetic field in the near-zone outside the sphere then is

H =
3n̂(n̂ ·m)−m

4πr3
+ H0εH =

[
−R3

2r3
(3n̂(n̂ · εH)− εH) + εH

]
H0

where n̂ is a radial unit vector. The surface field Hs is obtained by setting r = R,

Hs =
3
2
H0 [εH − n̂(n̂ · εH)]

As a test, we can verify that this field is entirely tangential by seeing that n̂ ·Hs = 0.



b): The absorbed power equals, by Eq. 8.15 of Jackson,

Pabs =
1

2σδ

∮ ∣∣n̂×H||
∣∣2 da =

R2

2σδ

∮
Hs ·H∗

sd cos θdφ

=
R2

2σδ

9|H0|2
4

∫
[εH − n̂(n̂ · εH)] [ε∗H − n̂(n̂ · ε∗H)] dΩ

=
9|H0|2R2

8σδ

∫ [
εH · ε∗H − |n̂ · εH |2

]
dΩ

=
9|H0|2R2

8σδ

[
4π − c1c

∗
1

∫
|n̂ · ε2|2 dΩ− c2c

∗
2

∫
|n̂ · ε1|2 dΩ + 2Re

(
c1c

∗
2

∫
(n̂ · ε1)(n̂ · ε2)dΩ

)]

=
9|H0|2R2

8σδ

[
4π − c1c

∗
1

4π

3
− c2c

∗
2

4π

3
+ 2Re (c1c

∗
2 × 0)

]

=
9|H0|2R2

8σδ

[
4π − 4π

3
(c1c

∗
1 + c2c

∗
2)

]

=
9|H0|2R2

8σδ

[
4π − 4π

3

]

=
3|H0|2R2π

σδ

Since the incident intensity

Iin =
1

2Z0
E0 ·E∗0 =

Z0

2
H0 ·H∗

0 =
Z0

2
|H0|2εH · ε∗H =

Z0

2
|H0|2

the absorption cross section is

σabs =
Pabs

Iin
=

6R2π

Z0σδ
=

6R2π

Z0

√
µ0ω

2σ
= 6R2π

√
ε0ω

2σ
∝ √

ω

We find that Pabs and σabs are independent of the polarization state of the incident wave. Therefore, the
results also apply for unpolarized light.



3. Problem 10.8 10 Points

a): According to Eq. 8.11 of Jackson, the tangential electric and magnetic fields on the surface of a non-ideal
conductor with µ = µ0 follow

Etan =
√

µ0ω

2σ
(1− i)(n̂×Htan) =

√
µ0ω

2σ
(1− i)(n̂×H)

This is of the form of Eq. 10.64,

Etan = Zs(n̂×H)

with surface impedance

Zs =
√

µcω

2σ
(1− i) =

Z0kδ

2
(1− i) ,

where we have used the skin depth δ =
√

2
µ0σω .

b): The long-wavelength limit for l = 1 is obtained from Eq. 10.69 (set x = ka):

α±(1) ≈ −2i(ka)3

3

(
ka− 2ikδ

2 (1− i)
ka + ikδ

2 (1− i)

)
= −2i(ka)3

3

(
(1− δ

a )− i δ
a

(1 + δ
2a ) + i δ

2a

)
q.e.d.

β±(1) ≈ −2i(ka)3

3

(
ka− 2i 2

kδ(1−i)

ka + i 2
kδ(1−i)

)

Since kδ < ka ¿ 1 and, consequently, 1
kδ À 1, we can drop the ka in the large parentheses, and

β±(1) ≈ −2i(ka)3

3

(−2i 2
kδ(1−i)

i 2
kδ(1−i)

)
=

4i(ka)3

3
q.e.d.

c): With

X1,±1 = ∓
√

3
16π

(
φ̂

i
cos θ ∓ θ̂

)
exp(±iφ)

t :=
(1− δ

a )− i δ
a

(1 + δ
2a ) + i δ

2a

and n̂× θ̂ = φ̂ and n̂× φ̂ = −θ̂, from Eq. 10.63 it follows for the given case



dσ

dΩ
=

3π

2k2
|αX1,±1 ± iβn̂×X1,±1|2

=
3π

2k2

4(ka)6

9
|−tX1,±1 ± 2iβn̂×X1,±1|2

=
3π

2k2

4(ka)6

9
3

16π

∣∣∣∣±φ̂

[
t

i
cos θ + 2i

]
+ θ̂ [−t + 2 cos θ]

∣∣∣∣
2

=
(ka)6

8k2
[(t cos θ − 2)(t∗ cos θ − 2) + (t− 2 cos θ)(t∗ − 2 cos θ)]

=
(ka)6

8k2

[
(tt∗ + 4)(1 + cos2 θ)− 4(t + t∗) cos θ

]

In first order of δ
a , we find tt∗ = 1− 3δ

a and t + t∗ = 2Re(t) = 2− 3δ
a . Thus,

dσ

dΩ
=

(ka)6

8k2

[
(5− 3δ

a
)(1 + cos2 θ)− 4(2− 3δ

a
) cos θ

]

As a quick test we note that the result agrees with Eq. 10.72 in the limit δ → 0.

d): According to Eq. 10.61, in the limit that only l = 1 is important, as in the given case, the total absorption
cross section is

σabs =
3π

2k2
(2− αα∗ − ββ∗ − 2Re(α + β)− 2)

The terms ∝ αα∗ and ∝ ββ∗ are of order (ka)6. The term ∝ Re(β) = 0, and the term ∝ Re(α) is of order
(ka)3. Thus, the only term of importance is Re(α),

Re(α) =
2(ka)3

3

(
− δ

a (1 + δ
2a )− δ

2a (1− δ
a )

(1 + δ
2a )2 + δ2

4a2

)

≈ −2(ka)3

3

(
3δ

2a

)
= −(ka)3

δ

a
(3)

where the last line is valid for δ ¿ a. Thus, in first order of δ it is

σabs =
3π

2k2
2(ka)3

δ

a
= 3πkδa2 q.e.d.

For δ = a we use the first line of Eq. 3 to find Re(α) = − 2
5 (ka)3, and

σabs(δ = a) = 3πka3 × 2
5

This is only 40% of the result that would follow from the equation valid for δ ¿ a. Also, note that one
cannot expect the underlying analysis of Chapter 8.1 to be very accurate for δ = a.



4. Problem 10.9a 10 Points

For εr close to 1, we can use the Born approximation. For the given case, the normalized polarization-resolved
scattering amplitude in Born approximation is,

ε∗ ·Asc

D0
=

k2

4π
(εr − 1)ε∗ · ε0

∫

r<a

exp(iq · x′)d3x′

The integral

∫

r<a

exp(iq · x′)d3x′ =
∫ a

0

r′2
[∫

exp(iqr′ cos θ′)dΩ′
]

dr′ = 2π

∫ a

0

r′2
[∫

exp(iqr′ cos θ′)d cos θ′
]

dr′

= 4π

∫ a

0

r′2
sin(qr′)

qr′
dr′ =

4π

q3

∫ qa

0

z sin zdz

=
4π

q3
(sin(qa)− qa cos(qa)) = 4πa3 j1(qa)

qa

Thus, ε∗·Asc

D0
= k2(εr − 1)ε∗ · ε0a3 j1(qa)

qa , and

dσ

dΩ
(ε, ε0) =

∣∣∣∣
ε∗ ·Asc

D0

∣∣∣∣
2

= k4a6(εr − 1)2
∣∣∣∣
j1(qa)

qa

∣∣∣∣
2

|ε∗ · ε0|2

Averaging over the incident and summing over the exit polarizations leads to

dσ

dΩ
= k4a6(εr − 1)2

∣∣∣∣
j1(qa)

qa

∣∣∣∣
2 1

2
(1 + cos2 θ)

(see Chapter 10.1 and lecture). We note that by the law of cosines it is q = k
√

2(1− cos θ), where θ is the
scattering angle.

Trends. For ka À 1, qa = ka
√

2(1− cos θ) also tends to be À 1. This limit applies in all cases except for
θ less than a critical value ∼ 1

ka . The critical angle θc = 1
ka corresponds to a small forward-scattering cone

with solid angle π
k2a2 , in which the limit qa À 1 does not apply. However, for ka À 1 the solid angle π

k2a2

will be negligibly small, and can be ignored. For an estimate, we may thus assume qa À 1 for all θ.

Since for large qa = x it is j1(x) ≈ 1
x sin(x− π/2), the following approximate scaling applies:

∣∣∣∣
j1(qa)

qa

∣∣∣∣
2

∝
∣∣∣∣

1
(qa)2

∣∣∣∣
2

=
1

(qa)4

Thus, the scattering cross section approximately scales as

dσ

dΩ
∝ a2

(
k

q

)4



and is clearly peaked at small q, corresponding to scattering in forward directions. Consequently, in the
integral for the total scattering cross section we may set cos θ = 1 and get

σ =
∫

dσ

dΩ
dΩ = k4a6(εr − 1)2

∫ ∣∣∣∣
j1(qa)

qa

∣∣∣∣
2 1

2
(1 + cos2 θ)dΩ ≈ k4a6(εr − 1)2

∫ ∣∣∣∣
j1(qa)

qa

∣∣∣∣
2

dΩ

Also, with q = k
√

2(1− cos θ) it is dq
d cos θ = −k2

q and

σ ≈ −2πk4a6(εr−1)2
∫ 0

2k

∣∣∣∣
j1(qa)

qa

∣∣∣∣
2

q

k2
dq = −2πk2a4(εr−1)2

∫ 0

2k

j2
1(qa)

q
dq = 2πk2a4(εr−1)2

∫ 2ka

0

j2
1(x)
x

d(x)

Since for large x the scaling of j2
1(x)
x is ∼ 1

x3 , for the purpose of an estimate we may extend the integration
range to infinity,

σ ≈ 2πk2a4(εr − 1)2
∫ ∞

0

j2
1(x)
x

d(x) = 2πk2a4(εr − 1)2 × 1
4

σ ≈ π

2
k2a4(εr − 1)2 q.e.d


