Prof. G. Raithel

Problem Set 5

Total 40 Points

1. Problem 10.2

The partial-wave analysis presented in Chapter 10.4 applied to the case of a perfectly conducting sphere with radius $k a \ll 1$ leads to the result stated in Eq. 10.71, which applies to incident electric fields of either ϵ_{+}(upper sign) or ϵ_{-}polarization (lower sign),

$$
\begin{equation*}
\frac{d \sigma_{s c}}{d \Omega}=\frac{2 \pi}{3} a^{2}(k a)^{4}\left|\mathbf{X}_{1, \pm 1} \mp 2 \mathrm{i} \hat{\mathbf{n}} \times \mathbf{X}_{1, \pm 1}\right|^{2} \tag{1}
\end{equation*}
$$

The scattering cross section equals the radiated power per solid angle divided by the incident intensity,

$$
\frac{d \sigma_{s c}}{d \Omega}=\frac{d P_{s c}}{d \Omega} / I_{i n c}=r^{2} \mathbf{E}_{s c} \cdot \mathbf{E}_{s c}^{*} / \mathbf{E}_{0} \cdot \mathbf{E}_{0}^{*}
$$

where $\mathbf{E}_{s c}$ and \mathbf{E}_{0} are the scattered and incident electric fields, respectively. Thus, up to a pre-factor including $\exp (\mathrm{i} k r) / r$ the term $\mathbf{X}_{1, \pm 1} \mp 2 \mathrm{i} \hat{\mathbf{n}} \times \mathbf{X}_{1, \pm 1}$ represents the scattered electric field in the radiation zone for the case of either clean ϵ_{+}or ϵ_{-}polarizations. Based on the superposition principle, for an incident field with a unit polarization vector

$$
\begin{equation*}
\epsilon=\frac{1}{\sqrt{1+r^{2}}}\left(\epsilon_{+}+r \exp (\mathrm{i} \alpha) \epsilon_{-}\right) \tag{2}
\end{equation*}
$$

the scattered electric field is obtained via a corresponding coherent superposition of the scattered fields of ϵ_{+}and ϵ_{-}polarizations. Thus, for the incident polarization of Eq. 2 the scattering cross section is

$$
\begin{aligned}
\frac{d \sigma_{s c}}{d \Omega} & =\frac{2 \pi}{3} a^{2}(k a)^{4} \frac{1}{1+r^{2}}\left|\left[\mathbf{X}_{1,1}-2 \mathrm{i} \hat{\mathbf{n}} \times \mathbf{X}_{1,1}\right]+r \exp (\mathrm{i} \alpha)\left[\mathbf{X}_{1,-1}+2 \mathrm{i} \hat{\mathbf{n}} \times \mathbf{X}_{1,-1}\right]\right|^{2} \\
& =: \frac{2 \pi}{3} a^{2}(k a)^{4} \frac{1}{1+r^{2}}|\mathbf{F}|^{2}
\end{aligned}
$$

Using that

$$
\begin{aligned}
\mathbf{X}_{l, m} & =\frac{1}{\sqrt{l(l+1)}} \hat{\mathbf{L}} Y_{l m} \\
\hat{\mathbf{L}} & =\frac{1}{\mathrm{i}}\left(\hat{\phi} \partial_{\theta}-\frac{\hat{\theta}}{\sin \theta} \partial_{\phi}\right) \\
Y_{1, \pm 1} & =\mp \sqrt{\frac{3}{8 \pi}} \sin \theta \exp (\pm \mathrm{i} \phi)
\end{aligned}
$$

it is found that

$$
\mathbf{X}_{1, \pm 1}=\mp \sqrt{\frac{3}{16 \pi}}\left(\frac{\hat{\phi}}{\mathrm{i}} \cos \theta \mp \hat{\theta}\right) \exp (\pm \mathrm{i} \phi)
$$

Inserting into Eq. 3 we find, with $\hat{\mathbf{n}} \times \hat{\theta}=\hat{\phi}$ and $\hat{\mathbf{n}} \times \hat{\phi}=-\hat{\theta}$, that the components of the transverse field $\hat{\mathbf{F}}$ are

$$
\begin{aligned}
F_{\theta} & =\sqrt{\frac{3}{16 \pi}}[\exp (\mathrm{i} \phi)(1-2 \cos \theta)+r \exp (-\mathrm{i} \phi+\mathrm{i} \alpha)(1-2 \cos \theta)] \\
F_{\phi} & =\sqrt{\frac{3}{16 \pi}}[\mathrm{i} \exp (\mathrm{i} \phi)(\cos \theta-2)+\mathrm{i} r \exp (-\mathrm{i} \phi+\mathrm{i} \alpha)(2-\cos \theta)]
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d \sigma_{s c}}{d \Omega} & =\frac{2 \pi}{3} a^{2}(k a)^{4} \frac{1}{1+r^{2}}\left(F_{\theta} F_{\theta}^{*}+F_{\phi} F_{\phi^{*}}\right) \\
& =\frac{k^{4} a^{6}}{8\left(1+r^{2}\right)}\left[(1-2 \cos \theta)^{2}\left(1+r^{2}+2 r \cos (2 \pi-\alpha)\right)+(2-\cos \theta)^{2}\left(1+r^{2}-2 r \cos (2 \phi-\alpha)\right)\right] \\
& =\frac{k^{4} a^{6}}{8\left(1+r^{2}\right)}\left[\left(1+r^{2}\right)\left(5\left(1+\cos ^{2} \theta\right)-8 \cos \theta\right)+2 r \cos (2 \phi-\alpha)\left(3 \cos ^{2} \theta-3\right)\right] \\
& =k^{4} a^{6}\left[\frac{5}{8}\left(1+\cos ^{2} \theta\right)-\cos \theta-\frac{3 r}{4\left(1+r^{2}\right)} \sin ^{2} \theta \cos (2 \phi-\alpha)\right] \quad \text { q.e.d. }
\end{aligned}
$$

A more basic but cumbersome approach is to calculate the scattered electric field in the far zone,

$$
\mathbf{E}_{s c}=\frac{k^{2}}{4 \pi} \frac{\exp (\mathrm{i} k r)}{r}\left(\frac{1}{\epsilon_{0}}(\hat{\mathbf{n}} \times \mathbf{p})+Z_{0} \mathbf{m}\right) \times \hat{\mathbf{n}}
$$

for the electric and magnetic dipoles $\mathbf{p}=4 \pi \epsilon_{0} a^{3} \mathbf{E}_{\text {in }}$ and $\mathbf{m}=-\frac{2 \pi}{\mu_{0}} a^{3} \mathbf{B}_{\text {in }}$ induced by an incident field with k-vector $\mathbf{k}_{0}=k \hat{\mathbf{z}}$

$$
\begin{array}{r}
\mathbf{E}_{i n}=\frac{E_{0}}{\sqrt{1+\tilde{r}^{2}}}\left(\epsilon_{+}+\tilde{r} \exp (\mathrm{i} \alpha) \epsilon_{-}\right) \\
\mathbf{B}_{i n}=\frac{1}{c} \hat{\mathbf{z}} \times \mathbf{E}_{i n} .
\end{array}
$$

The scattering cross section follows from an elementary calculation of

$$
\frac{d \sigma_{s c}}{d \Omega}=\frac{r^{2} \mathbf{E}_{s c} \cdot \mathbf{E}_{s c}^{*}}{\mathbf{E}_{i n} \cdot \mathbf{E}_{i n}^{*}}
$$

a): Since the skin depth is much smaller than the radius, $\delta \ll R$, the magnetic field does not penetrate significantly into the sphere. Also, since $k R \ll 1$, the magnetic field in the vicinity of the sphere is essentially static (near-field limit). Because of both these facts, the H-field in the vicinity of the sphere is obtained by considering a sphere with radius R and $\mu=0$ in an external homogeneous magnetic field \mathbf{H}_{0}. Due to the absence of free currents in this model, the magnetostatic potential may be used.

We first assume a magnetic field H_{0} in the z-direction. The magnetic potentials inside and outside the sphere are then of the form

$$
\begin{aligned}
\Phi_{i} & =\sum_{l} a_{l} r^{l} P_{l}(\cos \theta) \\
\Phi_{o} & =\sum_{l} b_{l} r^{-l-1} P_{l}(\cos \theta)-H_{0} r P_{1}(\cos \theta)
\end{aligned}
$$

where the second term in the last equation is added to match the boundary condition

$$
\mathbf{H}(r \rightarrow \infty)=-\nabla \Phi_{o}(r \rightarrow \infty)=\mathbf{H}_{0}=H_{0} \hat{\mathbf{z}}
$$

The radial boundary condition on the surface is $\mu H_{r, i}=0=\mu_{0} H_{r, o}$, i.e.

$$
0=-\mu_{0} \sum_{l} b_{l}(-l-1) R^{-l-2} P_{l}-H_{0} P_{1}
$$

yielding $b_{l}=0$ for $l \neq 1$ and

$$
b_{1}=-\frac{1}{2} R^{3} H_{0}
$$

The θ-boundary condition on the surface is $H_{r, i}=H_{r, o}$, i.e.

$$
\sum_{l} a_{l} R^{l-1} P_{l}^{\prime}=\sum_{l} b_{l} R^{-l-2} P_{l}^{\prime}-H_{0} P_{1}^{\prime}
$$

With the previous result for the b_{l}, we find $a_{l}=0$ for $l \neq 1$, and

$$
a_{1}=-\frac{3}{2} H_{0}
$$

Result inside:

$$
\begin{aligned}
\Phi_{i} & =-\frac{3}{2} H_{0} r \cos \theta \\
H_{r, i} & =\frac{3}{2} H_{0} \cos \theta \\
H_{\theta, i} & =-\frac{3}{2} H_{0} \sin \theta \\
B_{r, i} & =B_{\theta, i}=0
\end{aligned}
$$

Result outside:

$$
\begin{aligned}
\Phi_{o} & =-\left(\frac{R^{3}}{2 r^{2}}+r\right) H_{0} \cos \theta \\
H_{r, o} & =\left(-\frac{R^{3}}{r^{3}}+1\right) H_{0} \cos \theta \\
H_{\theta, o} & =-\left(\frac{R^{3}}{2 r^{3}}+1\right) H_{0} \sin \theta \\
B_{r, o} & =\mu_{0}\left(-\frac{R^{3}}{r^{3}}+1\right) H_{0} \cos \theta \\
B_{\theta, o} & =-\mu_{0}\left(\frac{R^{3}}{2 r^{3}}+1\right) H_{0} \sin \theta
\end{aligned}
$$

Immediately outside the surface, $H_{r, s}=0$ and $H_{\theta, s}=-\frac{3}{2} H_{0} \sin \theta$. These results hold for the specialized case of $\mathbf{H}_{0}=H_{0} \hat{\mathbf{z}}$; in this case, all ϕ-components of the fields are zero. Also, from the form of Φ_{o} it is seen that the outside field equals \mathbf{H}_{0} plus that of a magnetic dipole with moment $\mathbf{m}=-2 \pi R^{3} \mathbf{H}_{0}$.

Next, we consider the field for general polarization. The outside field in the near zone equals \mathbf{H}_{0} plus the field of a magnetic dipole $\mathbf{m}=-2 \pi R^{3} \mathbf{H}_{0}$. Based on the superposition principle, we can - without further analysis - state that for a magnetic field \mathbf{H}_{0} of the general form

$$
\mathbf{H}_{0}=H_{0} \epsilon_{H}=H_{0} \hat{\mathbf{k}}_{0} \times \epsilon
$$

the induced magnetic moment is

$$
\mathbf{m}=-2 \pi R^{3} H_{0} \epsilon_{H}
$$

There, ϵ_{H} is the polarization vector of the magnetic field of the incident wave, ϵ the (usual) polarization vector of the electric field, and $\hat{\mathbf{k}}_{0}$ a unit vector in the direction of propagation of the incident wave. In a linear-polarization basis, a general polarization state is characterized by the equivalent forms

$$
\begin{aligned}
\epsilon & =c_{1} \epsilon_{1}+c_{2} \epsilon_{2} \\
\epsilon_{H} & =c_{1} \epsilon_{2}-c_{2} \epsilon_{1},
\end{aligned}
$$

where $c_{1} c_{1}^{*}+c_{2} c_{2}^{*}=1$. The magnetic field in the near-zone outside the sphere then is

$$
\mathbf{H}=\frac{3 \hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{m})-\mathbf{m}}{4 \pi r^{3}}+H_{0} \epsilon_{H}=\left[-\frac{R^{3}}{2 r^{3}}\left(3 \hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \epsilon_{H}\right)-\epsilon_{H}\right)+\epsilon_{H}\right] H_{0}
$$

where $\hat{\mathbf{n}}$ is a radial unit vector. The surface field \mathbf{H}_{s} is obtained by setting $r=R$,

$$
\mathbf{H}_{s}=\frac{3}{2} H_{0}\left[\epsilon_{H}-\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \epsilon_{H}\right)\right]
$$

As a test, we can verify that this field is entirely tangential by seeing that $\hat{\mathbf{n}} \cdot \mathbf{H}_{s}=0$.
b): The absorbed power equals, by Eq. 8.15 of Jackson,

$$
\begin{aligned}
P_{a b s} & =\frac{1}{2 \sigma \delta} \oint\left|\hat{\mathbf{n}} \times \mathbf{H}_{\| \mid}\right|^{2} d a=\frac{R^{2}}{2 \sigma \delta} \oint \mathbf{H}_{s} \cdot \mathbf{H}_{s}^{*} d \cos \theta d \phi \\
& =\frac{R^{2}}{2 \sigma \delta} \frac{9\left|H_{0}\right|^{2}}{4} \int\left[\epsilon_{H}-\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \epsilon_{H}\right)\right]\left[\epsilon_{H}^{*}-\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \epsilon_{H}^{*}\right)\right] d \Omega \\
& =\frac{9\left|H_{0}\right|^{2} R^{2}}{8 \sigma \delta} \int\left[\epsilon_{H} \cdot \epsilon_{H}^{*}-\left|\hat{\mathbf{n}} \cdot \epsilon_{H}\right|^{2}\right] d \Omega \\
& =\frac{9\left|H_{0}\right|^{2} R^{2}}{8 \sigma \delta}\left[4 \pi-c_{1} c_{1}^{*} \int\left|\hat{\mathbf{n}} \cdot \epsilon_{2}\right|^{2} d \Omega-c_{2} c_{2}^{*} \int\left|\hat{\mathbf{n}} \cdot \epsilon_{1}\right|^{2} d \Omega+2 \operatorname{Re}\left(c_{1} c_{2}^{*} \int\left(\hat{\mathbf{n}} \cdot \epsilon_{1}\right)\left(\hat{\mathbf{n}} \cdot \epsilon_{2}\right) d \Omega\right)\right] \\
& =\frac{9\left|H_{0}\right|^{2} R^{2}}{8 \sigma \delta}\left[4 \pi-c_{1} c_{1}^{*} \frac{4 \pi}{3}-c_{2} c_{2}^{*} \frac{4 \pi}{3}+2 \operatorname{Re}\left(c_{1} c_{2}^{*} \times 0\right)\right] \\
& =\frac{9\left|H_{0}\right|^{2} R^{2}}{8 \sigma \delta}\left[4 \pi-\frac{4 \pi}{3}\left(c_{1} c_{1}^{*}+c_{2} c_{2}^{*}\right)\right] \\
& =\frac{9\left|H_{0}\right|^{2} R^{2}}{8 \sigma \delta}\left[4 \pi-\frac{4 \pi}{3}\right] \\
& =\frac{3\left|H_{0}\right|^{2} R^{2} \pi}{\sigma \delta}
\end{aligned}
$$

Since the incident intensity

$$
I_{i n}=\frac{1}{2 Z_{0}} \mathbf{E}_{0} \cdot \mathbf{E}_{0}^{*}=\frac{Z_{0}}{2} \mathbf{H}_{0} \cdot \mathbf{H}_{0}^{*}=\frac{Z_{0}}{2}\left|H_{0}\right|^{2} \epsilon_{H} \cdot \epsilon_{H}^{*}=\frac{Z_{0}}{2}\left|H_{0}\right|^{2}
$$

the absorption cross section is

$$
\sigma_{a b s}=\frac{P_{a b s}}{I_{i n}}=\frac{6 R^{2} \pi}{Z_{0} \sigma \delta}=\frac{6 R^{2} \pi}{Z_{0}} \sqrt{\frac{\mu_{0} \omega}{2 \sigma}}=6 R^{2} \pi \sqrt{\frac{\epsilon_{0} \omega}{2 \sigma}} \propto \sqrt{\omega}
$$

We find that $P_{a b s}$ and $\sigma_{a b s}$ are independent of the polarization state of the incident wave. Therefore, the results also apply for unpolarized light.
a): According to Eq. 8.11 of Jackson, the tangential electric and magnetic fields on the surface of a non-ideal conductor with $\mu=\mu_{0}$ follow

$$
\mathbf{E}_{t a n}=\sqrt{\frac{\mu_{0} \omega}{2 \sigma}}(1-\mathrm{i})\left(\hat{\mathbf{n}} \times \mathbf{H}_{t a n}\right)=\sqrt{\frac{\mu_{0} \omega}{2 \sigma}}(1-\mathrm{i})(\hat{\mathbf{n}} \times \mathbf{H})
$$

This is of the form of Eq. 10.64,

$$
\mathbf{E}_{t a n}=Z_{s}(\hat{\mathbf{n}} \times \mathbf{H})
$$

with surface impedance

$$
Z_{s}=\sqrt{\frac{\mu_{c} \omega}{2 \sigma}}(1-\mathrm{i})=\frac{Z_{0} k \delta}{2}(1-\mathrm{i})
$$

where we have used the skin depth $\delta=\sqrt{\frac{2}{\mu_{0} \sigma \omega}}$.
b): The long-wavelength limit for $l=1$ is obtained from Eq. 10.69 (set $x=k a$):

$$
\begin{gathered}
\alpha_{ \pm}(1) \approx-\frac{2 \mathrm{i}(k a)^{3}}{3}\left(\frac{k a-2 \mathrm{i} \frac{k \delta}{2}(1-\mathrm{i})}{k a+\mathrm{i} \frac{k \delta}{2}(1-\mathrm{i})}\right)=-\frac{2 \mathrm{i}(k a)^{3}}{3}\left(\frac{\left(1-\frac{\delta}{a}\right)-\mathrm{i} \frac{\delta}{a}}{\left(1+\frac{\delta}{2 a}\right)+\mathrm{i} \frac{\delta}{2 a}}\right) \quad \text { q.e.d. } \\
\beta_{ \pm}(1) \approx-\frac{2 \mathrm{i}(k a)^{3}}{3}\left(\frac{k a-2 \mathrm{i} \frac{2}{k \delta(1-\mathrm{i})}}{k a+\mathrm{i} \frac{2}{k \delta(1-\mathrm{i})}}\right)
\end{gathered}
$$

Since $k \delta<k a \ll 1$ and, consequently, $\frac{1}{k \delta} \gg 1$, we can drop the $k a$ in the large parentheses, and

$$
\beta_{ \pm}(1) \approx-\frac{2 \mathrm{i}(k a)^{3}}{3}\left(\frac{-2 \mathrm{i} \frac{2}{k \delta(1-\mathrm{i})}}{\mathrm{i} \frac{2}{k \delta(1-\mathrm{i})}}\right)=\frac{4 \mathrm{i}(k a)^{3}}{3} \quad \text { q.e.d. }
$$

c): With

$$
\begin{aligned}
\mathbf{X}_{1, \pm 1} & =\mp \sqrt{\frac{3}{16 \pi}}\left(\frac{\hat{\phi}}{\mathrm{i}} \cos \theta \mp \hat{\theta}\right) \exp (\pm \mathrm{i} \phi) \\
t & :=\frac{\left(1-\frac{\delta}{a}\right)-\mathrm{i} \frac{\delta}{a}}{\left(1+\frac{\delta}{2 a}\right)+\mathrm{i} \frac{\delta}{2 a}}
\end{aligned}
$$

and $\hat{\mathbf{n}} \times \hat{\theta}=\hat{\phi}$ and $\hat{\mathbf{n}} \times \hat{\phi}=-\hat{\theta}$, from Eq. 10.63 it follows for the given case

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{3 \pi}{2 k^{2}}\left|\alpha \mathbf{X}_{1, \pm 1} \pm \mathrm{i} \beta \hat{\mathbf{n}} \times \mathbf{X}_{1, \pm 1}\right|^{2} \\
& =\frac{3 \pi}{2 k^{2}} \frac{4(k a)^{6}}{9}\left|-t \mathbf{X}_{1, \pm 1} \pm 2 \mathrm{i} \beta \hat{\mathbf{n}} \times \mathbf{X}_{1, \pm 1}\right|^{2} \\
& =\frac{3 \pi}{2 k^{2}} \frac{4(k a)^{6}}{9} \frac{3}{16 \pi}\left| \pm \hat{\phi}\left[\frac{t}{\mathrm{i}} \cos \theta+2 \mathrm{i}\right]+\hat{\theta}[-t+2 \cos \theta]\right|^{2} \\
& =\frac{(k a)^{6}}{8 k^{2}}\left[(t \cos \theta-2)\left(t^{*} \cos \theta-2\right)+(t-2 \cos \theta)\left(t^{*}-2 \cos \theta\right)\right] \\
& =\frac{(k a)^{6}}{8 k^{2}}\left[\left(t t^{*}+4\right)\left(1+\cos ^{2} \theta\right)-4\left(t+t^{*}\right) \cos \theta\right]
\end{aligned}
$$

In first order of $\frac{\delta}{a}$, we find $t t^{*}=1-\frac{3 \delta}{a}$ and $t+t^{*}=2 \operatorname{Re}(t)=2-\frac{3 \delta}{a}$. Thus,

$$
\frac{d \sigma}{d \Omega}=\frac{(k a)^{6}}{8 k^{2}}\left[\left(5-\frac{3 \delta}{a}\right)\left(1+\cos ^{2} \theta\right)-4\left(2-\frac{3 \delta}{a}\right) \cos \theta\right]
$$

As a quick test we note that the result agrees with Eq. 10.72 in the limit $\delta \rightarrow 0$.
d): According to Eq. 10.61, in the limit that only $l=1$ is important, as in the given case, the total absorption cross section is

$$
\sigma_{a b s}=\frac{3 \pi}{2 k^{2}}\left(2-\alpha \alpha^{*}-\beta \beta^{*}-2 \operatorname{Re}(\alpha+\beta)-2\right)
$$

The terms $\propto \alpha \alpha^{*}$ and $\propto \beta \beta^{*}$ are of order $(k a)^{6}$. The term $\propto \operatorname{Re}(\beta)=0$, and the term $\propto \operatorname{Re}(\alpha)$ is of order $(k a)^{3}$. Thus, the only term of importance is $\operatorname{Re}(\alpha)$,

$$
\begin{align*}
\operatorname{Re}(\alpha) & =\frac{2(k a)^{3}}{3}\left(\frac{-\frac{\delta}{a}\left(1+\frac{\delta}{2 a}\right)-\frac{\delta}{2 a}\left(1-\frac{\delta}{a}\right)}{\left(1+\frac{\delta}{2 a}\right)^{2}+\frac{\delta^{2}}{4 a^{2}}}\right) \\
& \approx-\frac{2(k a)^{3}}{3}\left(\frac{3 \delta}{2 a}\right)=-(k a)^{3} \frac{\delta}{a} \tag{3}
\end{align*}
$$

where the last line is valid for $\delta \ll a$. Thus, in first order of δ it is

$$
\sigma_{a b s}=\frac{3 \pi}{2 k^{2}} 2(k a)^{3} \frac{\delta}{a}=3 \pi k \delta a^{2} \quad \text { q.e.d. }
$$

For $\delta=a$ we use the first line of Eq. 3 to find $\operatorname{Re}(\alpha)=-\frac{2}{5}(k a)^{3}$, and

$$
\sigma_{a b s}(\delta=a)=3 \pi k a^{3} \times \frac{2}{5}
$$

This is only 40% of the result that would follow from the equation valid for $\delta \ll a$. Also, note that one cannot expect the underlying analysis of Chapter 8.1 to be very accurate for $\delta=a$.

For ϵ_{r} close to 1, we can use the Born approximation. For the given case, the normalized polarization-resolved scattering amplitude in Born approximation is,

$$
\frac{\epsilon^{*} \cdot \mathbf{A}_{s c}}{\mathbf{D}_{0}}=\frac{k^{2}}{4 \pi}\left(\epsilon_{r}-1\right) \epsilon^{*} \cdot \epsilon_{0} \int_{r<a} \exp \left(\mathbf{i q} \cdot \mathbf{x}^{\prime}\right) d^{3} x^{\prime}
$$

The integral

$$
\begin{aligned}
\int_{r<a} \exp \left(\mathrm{iq} \cdot \mathrm{x}^{\prime}\right) d^{3} x^{\prime} & =\int_{0}^{a} r^{\prime 2}\left[\int \exp \left(\mathrm{i} q r^{\prime} \cos \theta^{\prime}\right) d \Omega^{\prime}\right] d r^{\prime}=2 \pi \int_{0}^{a} r^{\prime 2}\left[\int \exp \left(\mathrm{i} q r^{\prime} \cos \theta^{\prime}\right) d \cos \theta^{\prime}\right] d r^{\prime} \\
& =4 \pi \int_{0}^{a} r^{\prime 2} \frac{\sin \left(q r^{\prime}\right)}{q r^{\prime}} d r^{\prime}=\frac{4 \pi}{q^{3}} \int_{0}^{q a} z \sin z d z \\
& =\frac{4 \pi}{q^{3}}(\sin (q a)-q a \cos (q a))=4 \pi a^{3} \frac{j_{1}(q a)}{q a}
\end{aligned}
$$

Thus, $\frac{\epsilon^{*} \cdot \mathbf{A}_{s c}}{\mathbf{D}_{0}}=k^{2}\left(\epsilon_{r}-1\right) \epsilon^{*} \cdot \epsilon_{0} a^{3} \frac{j_{1}(q a)}{q a}$, and

$$
\frac{d \sigma}{d \Omega}\left(\epsilon, \epsilon_{0}\right)=\left|\frac{\epsilon^{*} \cdot \mathbf{A}_{s c}}{\mathbf{D}_{0}}\right|^{2}=k^{4} a^{6}\left(\epsilon_{r}-1\right)^{2}\left|\frac{j_{1}(q a)}{q a}\right|^{2}\left|\epsilon^{*} \cdot \epsilon_{0}\right|^{2}
$$

Averaging over the incident and summing over the exit polarizations leads to

$$
\frac{d \sigma}{d \Omega}=k^{4} a^{6}\left(\epsilon_{r}-1\right)^{2}\left|\frac{j_{1}(q a)}{q a}\right|^{2} \frac{1}{2}\left(1+\cos ^{2} \theta\right)
$$

(see Chapter 10.1 and lecture). We note that by the law of cosines it is $q=k \sqrt{2(1-\cos \theta)}$, where θ is the scattering angle.

Trends. For $k a \gg 1, q a=k a \sqrt{2(1-\cos \theta)}$ also tends to be $\gg 1$. This limit applies in all cases except for θ less than a critical value $\sim \frac{1}{k a}$. The critical angle $\theta_{c}=\frac{1}{k a}$ corresponds to a small forward-scattering cone with solid angle $\frac{\pi}{k^{2} a^{2}}$, in which the limit $q a \gg 1$ does not apply. However, for $k a \gg 1$ the solid angle $\frac{\pi}{k^{2} a^{2}}$ will be negligibly small, and can be ignored. For an estimate, we may thus assume $q a \gg 1$ for all θ.

Since for large $q a=x$ it is $j_{1}(x) \approx \frac{1}{x} \sin (x-\pi / 2)$, the following approximate scaling applies:

$$
\left|\frac{j_{1}(q a)}{q a}\right|^{2} \propto\left|\frac{1}{(q a)^{2}}\right|^{2}=\frac{1}{(q a)^{4}}
$$

Thus, the scattering cross section approximately scales as

$$
\frac{d \sigma}{d \Omega} \propto a^{2}\left(\frac{k}{q}\right)^{4}
$$

and is clearly peaked at small q, corresponding to scattering in forward directions. Consequently, in the integral for the total scattering cross section we may set $\cos \theta=1$ and get

$$
\sigma=\int \frac{d \sigma}{d \Omega} d \Omega=k^{4} a^{6}\left(\epsilon_{r}-1\right)^{2} \int\left|\frac{j_{1}(q a)}{q a}\right|^{2} \frac{1}{2}\left(1+\cos ^{2} \theta\right) d \Omega \approx k^{4} a^{6}\left(\epsilon_{r}-1\right)^{2} \int\left|\frac{j_{1}(q a)}{q a}\right|^{2} d \Omega
$$

Also, with $q=k \sqrt{2(1-\cos \theta)}$ it is $\frac{d q}{d \cos \theta}=-\frac{k^{2}}{q}$ and

$$
\sigma \approx-2 \pi k^{4} a^{6}\left(\epsilon_{r}-1\right)^{2} \int_{2 k}^{0}\left|\frac{j_{1}(q a)}{q a}\right|^{2} \frac{q}{k^{2}} d q=-2 \pi k^{2} a^{4}\left(\epsilon_{r}-1\right)^{2} \int_{2 k}^{0} \frac{j_{1}^{2}(q a)}{q} d q=2 \pi k^{2} a^{4}\left(\epsilon_{r}-1\right)^{2} \int_{0}^{2 k a} \frac{j_{1}^{2}(x)}{x} d(x)
$$

Since for large x the scaling of $\frac{j_{1}^{2}(x)}{x}$ is $\sim \frac{1}{x^{3}}$, for the purpose of an estimate we may extend the integration range to infinity,

$$
\begin{aligned}
\sigma & \approx 2 \pi k^{2} a^{4}\left(\epsilon_{r}-1\right)^{2} \int_{0}^{\infty} \frac{j_{1}^{2}(x)}{x} d(x)=2 \pi k^{2} a^{4}\left(\epsilon_{r}-1\right)^{2} \times \frac{1}{4} \\
\sigma & \approx \frac{\pi}{2} k^{2} a^{4}\left(\epsilon_{r}-1\right)^{2} \quad \text { q.e.d }
\end{aligned}
$$

