Phys. 506 Electricity and Magnetism Winter 2004
Prof. G. Raithel
Problem Set 5
Total 40 Points

1. Problem 10.2 10 Points

The partial-wave analysis presented in Chapter 10.4 applied to the case of a perfectly conducting sphere
with radius ka < 1 leads to the result stated in Eq. 10.71, which applies to incident electric fields of either

€+ (upper sign) or e_ polarization (lower sign),
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The scattering cross section equals the radiated power per solid angle divided by the incident intensity,
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where E,;. and Ey are the scattered and incident electric fields, respectively. Thus, up to a pre-factor
including exp(ikr)/r the term X; 11 F 2i x Xy 11 represents the scattered electric field in the radiation
zone for the case of either clean € or e_ polarizations. Based on the superposition principle, for an incident

field with a unit polarization vector
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the scattered electric field is obtained via a corresponding coherent superposition of the scattered fields of

e+ and e_ polarizations. Thus, for the incident polarization of Eq. 2 the scattering cross section is
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it is found that
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Inserting into Eq. 3 we find, with n x 6 = é and n x qAS = —0, that the components of the transverse field F

are
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A more basic but cumbersome approach is to calculate the scattered electric field in the far zone,

k2 ik 1
g, — k& exp(ikr) (mx p>+zom> “
4r T €0

for the electric and magnetic dipoles p = 47epa’E;, and m = —Z—Za?’Bm induced by an incident field with

k-vector kg = kz
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The scattering cross section follows from an elementary calculation of
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2. Problem 10.3 10 Points

a): Since the skin depth is much smaller than the radius, § < R, the magnetic field does not penetrate
significantly into the sphere. Also, since kR < 1, the magnetic field in the vicinity of the sphere is essentially
static (near-field limit). Because of both these facts, the H-field in the vicinity of the sphere is obtained by
considering a sphere with radius R and g = 0 in an external homogeneous magnetic field Hy. Due to the

absence of free currents in this model, the magnetostatic potential may be used.

We first assume a magnetic field Hy in the z-direction. The magnetic potentials inside and outside the sphere

are then of the form
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where the second term in the last equation is added to match the boundary condition
H(r — 00) = =V®,(r — o0) = Hy = Hoz

The radial boundary condition on the surface is pH,; = 0 = poH,,, i.e.
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yielding b; = 0 for [ # 1 and
1
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The #-boundary condition on the surface is H,; = H,.,, i.e.
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With the previous result for the b;, we find a; = 0 for [ # 1, and

3
a1:7§H0
Result inside: 5
D, = —§H0rc059
3
H,;, = §H0cos¢9
3 .
Hy; = —§H081n9

B.;, = Bp;=0



Result outside:
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Immediately outside the surface, H,, = 0 and Hp, = f%HO sinf. These results hold for the specialized

case of Hy = Hyz; in this case, all ¢-components of the fields are zero. Also, from the form of ®, it is seen

that the outside field equals Hy plus that of a magnetic dipole with moment m = —27R3H,.

Next, we consider the field for general polarization. The outside field in the near zone equals Hy plus the
field of a magnetic dipole m = —27R3Hy. Based on the superposition principle, we can - without further

analysis - state that for a magnetic field Hy of the general form
Hy = Hoeg = HolA(o X €
the induced magnetic moment is
m = —27R3Hyey

There, ep is the polarization vector of the magnetic field of the incident wave, e the (usual) polarization
vector of the electric field, and ko a unit vector in the direction of propagation of the incident wave. In a
linear-polarization basis, a general polarization state is characterized by the equivalent forms

€ = C1€1 + Co€

€ = Ci1€2 —C2€1

where cjc] + cacs = 1. The magnetic field in the near-zone outside the sphere then is
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where n is a radial unit vector. The surface field H, is obtained by setting r = R,
3 R
Hs = §H0 [EH — n(n . EH)]

As a test, we can verify that this field is entirely tangential by seeing that in - Hy = 0.



b): The absorbed power equals, by Eq. 8.15 of Jackson,
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Since the incident intensity
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the absorption cross section is
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We find that P,;s and 0.5 are independent of the polarization state of the incident wave. Therefore, the

results also apply for unpolarized light.



3. Problem 10.8 10 Points

a): According to Eq. 8.11 of Jackson, the tangential electric and magnetic fields on the surface of a non-ideal

conductor with p = pg follow
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This is of the form of Eq. 10.64,
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with surface impedance
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where we have used the skin depth § = /—2—.
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b): The long-wavelength limit for [ = 1 is obtained from Eq. 10.69 (set = ka):
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Since k§ < ka < 1 and, consequently, % > 1, we can drop the ka in the large parentheses, and
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and fi x 6 = QAS and n x ngS = ,9A7 from Eq. 10.63 it follows for the given case
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In first order of g, we find tt* =1 — 37? and t +t* = 2Re(t) =2 — 373. Thus,
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As a quick test we note that the result agrees with Eq. 10.72 in the limit 6 — 0.

d): According to Eq. 10.61, in the limit that only I = 1 is important, as in the given case, the total absorption

cross section is
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The terms oc aa* and o 33* are of order (ka)S. The term o< Re(3) = 0, and the term x Re(a) is of order

(ka)3. Thus, the only term of importance is Re(«),
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where the last line is valid for § < a. Thus, in first order of § it is
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For 6 = a we use the first line of Eq. 3 to find Re(a) = —2(ka)?, and
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This is only 40% of the result that would follow from the equation valid for § < a. Also, note that one

cannot expect the underlying analysis of Chapter 8.1 to be very accurate for § = a.



4. Problem 10.9a 10 Points

For ¢, close to 1, we can use the Born approximation. For the given case, the normalized polarization-resolved

scattering amplitude in Born approximation is,
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Averaging over the incident and summing over the exit polarizations leads to
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(see Chapter 10.1 and lecture). We note that by the law of cosines it is ¢ = k4/2(1 — cos ), where 6 is the

scattering angle.

Trends. For ka > 1, ga = ka\/m also tends to be > 1. This limit applies in all cases except for
0 less than a critical value ~ ﬁ The critical angle 6, = ﬁ corresponds to a small forward-scattering cone
with solid angle 7, in which the limit ga > 1 does not apply. However, for ka > 1 the solid angle 7~
will be negligibly small, and can be ignored. For an estimate, we may thus assume ga > 1 for all 6.

Since for large ga = x it is ji(x) ~ %sin(:ﬂ — 7/2), the following approximate scaling applies:
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Thus, the scattering cross section approximately scales as
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and is clearly peaked at small ¢, corresponding to scattering in forward directions. Consequently, in the

integral for the total scattering cross section we may set cosf = 1 and get
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Since for large x the scaling of ﬁ% is ~ 1—13, for the purpose of an estimate we may extend the integration
range to infinity,
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