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1. Problem 9.10 10 Points

a). In the long-wavelength limit, in the source and its immediate vicinity electro- and magnetostatic
equations apply. Thus, with Eq. 5.53 the magnetization density M is, using r̂ × ẑ = − sin θφ̂ =
− sin θ(−x̂ sin φ + ŷ cos φ), and v0 = αc
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In the calculation of multipole moments at frequency ω0, we may thus replace the current by the given
effective magnetization density and set J = 0. (Note that both M and J carry a time factor exp(−iω0t),
which is not shown.) Since M is of the form

M = φ̂f(r, θ)

with a function f that doesn’t depend on φ, it is

∇ ·M = 0 .

In the long-wavelength limit, for the multipole moments Eqs. 9.169 to 9.172 apply. Thus, with J = 0 and
∇ ·M = 0 both Mlm = 0 and M ′

lm = 0. There are no magnetic multipoles.

From the orthogonality of the spherical harmonics, the only non-vanishing Qlm is
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To find the Q′lm, we note

∇ · (r×M) =
iαca0

4
∇ · (r̂× φ̂)r tan θρ(r, θ)

= − iαca0

4
∇ · (θ̂r tan θρ(r, θ)

= − iαca0

4
1

r sin θ

∂

∂θ
r sin θ tan θρ(r, θ)

(3)

Since the angular dependence of ρ is Y10 ∝ cos θ, this is
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From Eq. 9.170 and the previous result on Qlm, it is seen that the only non-vanishing Q′
lm is

Q′10 = −kαa0
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Since the factor on the rhs is of order 1
1000

1
137 and the radiated power behaves as the square of the multipole

moments, we can safely assume

Q′10 = 0

b: Using Eq. 9.169, it is aE(1, 0) = ck3
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This can be expressed in the required unit, yielding
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c: The transition rate is
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Numerically,

Γ = 6.27× 108s−1 = (1.59ns)−1

This equals the quantum mechanical decay rate of the hydrogen 2P level.

Note. The only non-zero multipole moment found in the classical calculation conforms with quantum
mechanical selection rules explained in Chapter 9.8. First, in a transition from an upper 2P level into a
lower 1S level the atomic angular momentum changes from 1 to 0 (with spin neglected). Thus, only l = 1
radiation can occur. Further, the transition from the 2P level into 1S reverses the parity of the atomic state,
requiring an emission field mode with odd parity (that is, odd magnetic field). This only leaves electric l = 1
decay modes. Finally, in the given example both the upper and lower states have zero z−angular momentum.
Thus, the emitted field cannot carry any z−angular momentum. In summary, the only multipole field allowed
by selection rules is the aE(l = 1,m = 0), as found above.

d: According to an earlier homework problem, for an elementary charge orbiting in the xy-plane at a radius
2a0, the only radiation multipole moment for dipole radiation is

Q11 = 2Q̃11

where Q̃11 is a “usual” spherical multipole evaluated in the rotating frame. Here, Q̃11 = 2ea0
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with a phase φ0 that we may set to zero. Thus,
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The ratio of this classical power and the ”quantum” power of part b) is
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=
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= 3.60



2. Problem 9.16 10 Points

a): In this problem, a calculation in cartesian coordinates is the most straightforward. The current density
is

J(x) = ẑIδ(x)δ(y) sin(kz)

for |z| ≤ λ/2. The radiation pattern is only relevant in the radiation zone. Thus, we calculate
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In the radiation zone, H = ik
µ0

n̂×A, and with r̂× ẑ = − sin θφ̂
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The radiation pattern is dP
dΩ = r2 1
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The result is exact in the radiation-zone limit, kr À 1. For the plot, see Problem 9.17.

b): The radiated power P
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Sine the radiation resistance is defined via P = 1
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3. Problem 9.17 10 Points

a): We use Eqs. 9.167 and 9.168 to obtain multipole moments that are NOT in the small-source approxi-
mation. Since Eqs. 9.167f are processed most efficiently in spherical coordinates, we use
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with I(r) = I sin(kr) for 0 < r < λ/2 and zero otherwise. It is easily verified that the continuity equation,
∇ · J = iωρ, holds. Since there is no intrinsic magnetization M and since at all locations r where there is
current flowing it is r×J = 0, the magnetic moments all vanish. From Eq. 9.167 we find the electric-multipole
amplitudes
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where the antenna half-length L = λ/2. We also use the definition δl,even = 1 for even l and δl,even = 0 for
odd l. For the given I(r) = I sin(kr) it is d2I
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In the long-wavelength approximation, we use Eq. 9.169-9.172. We already note that the long-wavelength
approximation cannot be expected to be tremendously accurate in the given case, because the antenna length
is not small compared with the wavelength.

As before, all moments vanish except the Ql,0 with even l. It is
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b): The exact lowest non-vanishing amplitude is
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The numerical value for the radiation resistance (term in rectangular brackets) is
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The radiation pattern follows from Eq. 9.151 and Table 9.1,
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The lowest non-vanishing amplitude in the long-wavelength approximation is
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Using only this moment, the radiated power is
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The radiation pattern follows from Eq. 9.151 and Table 9.1,
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Discussion of 9.16 and 9.17.

The radiation resistances found are

R1 = Rrad,exact = 93.36Ω

R2 = Rrad,a20,exact = 91.12Ω

R3 = Rrad,a20,approx = 157.8Ω

It is R2 < R1. This is to be expected, because the total radiated powers of multipoles add incoherently.
Thus, by neglecting higher exact multipoles we will slightly underestimate the radiated power, which is
equivalent to underestimating the radiation resistance. In the given case, from R1 and R2 it follows that by
neglecting higher-order exact multipoles we underestimate the radiated power by 2.4% (this is not so bad).

It is R3 >> R1. This is not unexpected, because by making the small-source approximation we essentially
neglect destructive interference of radiation originating from different portions of the source. The destructive
interference reduces the radiation efficiency of sources that are not much smaller than the wavelength. In the
case of large sources, neglecting this destructive interference can lead to gross overestimates of the radiated
power, as in our case.



Figure 1: Radiation patterns for the indicated cases. Bold and solid: exact calculation. Solid: Lowest
exact multipole term (this term is due to aE(2, 0)). Dashed: Same multipole term in the long-wavelength
approximation.



4. Problem 9.22 10 Points

a): Electric-multipole modes = TM modes. We use Eq. 9.122 as starting point. Since the fields must be
regular at r = 0, we choose jl(kr) for all radial functions. The generic form of the field of a TMlm∗-mode,
with amplitude aE(l,m) set to 1, then is
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The cavity frequencies follow from the requirement Eθ = Eφ = 0 at r = a. The frequencies can be obtained
from the transcendental equation
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c = x′ln. The resonance frequencies thus are
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Note that l = 0 does not exist, and that the frequencies are degenerate in m, i.e. for given l and n there are
2l + 1 TM-modes with the same frequency.

Magnetic-multipole modes = TE modes. We use Eq. 9.122 as starting point. The generic form of the field
of a TElm∗-mode, with amplitude aM (l,m) set to 1, then is
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Comparison with the analogous equation for TM-modes shows that the fields of the TE-modes are obtained
by replacing the former H with E/Z0 and the former E with −Z0H. Thus, for TE-modes it is
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The conditions of vanishing transverse electric and vanishing normal magnetic field at r = a are satisfied via
the transcendental equation



jl(ka) = 0

Denoting the n-th root of jl(x) with xln, it is ka = ωlmn
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Again, l = 0-modes don’t exist, and for given l and n there are 2l + 1 TE-modes with the same frequency.

b): (required for TE-modes only). From ωlmn = 2πc
λlmn

= xlnc
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Numerically we find the lowest roots of spherical Bessel functions to be x11 = 4.493, x21 = 5.763, x31 = 6.988
and x12 = 7.725. The lowest four TE-modes therefore are:

l n λlmn

a

1 1 1.398
2 1 1.090
3 1 0.899
1 2 0.813

Figure 2: Lowest spherical Bessel functions and their roots.

c):



The lowest TE-modes are the degenerate TEl=1,m=−1,n=1, TEl=1,m=0,n=1 and TEl=1,m=1,n=1-modes. To
obtain their fields, use the above general equations for the TE-fields to obtain:
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