1. Problem 9.1

This problem deals with the implications of the fact that negative frequencies are not allowed in the formalism of Chapter 9 of Jackson (and other parts of the textbook that deal with harmonic time-dependence).
a): For a rigid charge distribution with a body frame with coordinates $(r, \theta, \tilde{\phi})$ rotating with an angularvelocity vector $\hat{\mathbf{z}} \omega$ in the laboratory frame with coordinates (r, θ, ϕ) it is

$$
\rho(\mathbf{x}, t)=\rho(r, \theta, \tilde{\phi})=\rho(r, \theta, \phi-\omega t)
$$

The usual time-dependent multipole moments in the laboratory frame are

$$
q_{l m}(t)=\int r^{l} Y_{l m}^{*}(\theta, \phi) \rho(r, \theta, \phi-\omega t) d^{3} x=\left\{\int r^{l} Y_{l m}^{*}(\theta, \tilde{\phi}) \rho(r, \theta, \tilde{\phi}) d^{3} x\right\} \exp (-\mathrm{i} m \omega t)=\tilde{q}_{l m} \exp (-\mathrm{i} m \omega t)
$$

where $\tilde{q}_{l m}$ is a fixed multipole moment in the body frame ($\tilde{q}_{l m}$ can be thought of as the usual time-dependent multipole moment evaluated at $t=0$, i.e. $\tilde{q}_{l m}=q_{l m}(t=0)$). Since ρ is real and $Y_{l,-m}=(-1)^{m} Y_{l, m}^{*}$, it is $\tilde{q}_{l,-m}=(-1)^{m} \tilde{q}_{l, m}^{*}$.

The positive and negative values of m correspond to positive and negative frequencies. Negative frequencies are not allowed in the formalism of Chapter 9 of Jackson (and other parts of the textbook that deal with harmonic time-dependence). We must therefore re-write equations such that only positive frequencies occur, and deduce suitable multipole moments.

Consider, for instance, the (real-valued) electrostatic potential in the near-field limit at an observation point $\left(r_{o}, \theta_{o}, \phi_{o}\right)$:

$$
\begin{aligned}
\Phi\left(\mathbf{x}_{o}, t\right) & =\frac{1}{4 \pi \epsilon_{0}} \sum_{l=0, m=-l}^{l=\infty, m=l}\left(\frac{4 \pi}{2 l+1}\right) \frac{1}{r_{o}^{l+1}} Y_{l m}\left(\theta_{o}, \phi_{o}\right) q_{l m}(t) \\
& =\frac{1}{4 \pi \epsilon_{0}} \sum_{l, m \geq 0}\left(\frac{4 \pi}{2 l+1}\right) \frac{1}{r_{o}^{l+1}}\left[Y_{l m}\left(\theta_{o}, \phi_{o}\right) q_{l m}(t)+Y_{l,-m}\left(\theta_{o}, \phi_{o}\right) q_{l,-m}(t)\right] \\
& =\frac{1}{4 \pi \epsilon_{0}} \sum_{l, m \geq 0}\left(\frac{4 \pi}{2 l+1}\right) \frac{1}{r_{o}^{l+1}}\left[Y_{l m}\left(\theta_{o}, \phi_{o}\right) \tilde{q}_{l m} \exp (-\mathrm{i} m \omega t)+Y_{l,-m}\left(\theta_{o}, \phi_{o}\right) \tilde{q}_{l,-m} \exp (+\mathrm{i} m \omega t)\right] \\
& =\frac{1}{4 \pi \epsilon_{0}} \sum_{l, m \geq 0}\left(\frac{4 \pi}{2 l+1}\right) \frac{1}{r_{o}^{l+1}}\left[Y_{l m}\left(\theta_{o}, \phi_{o}\right) \tilde{q}_{l m} \exp (-\mathrm{i} m \omega t)+Y_{l, m}^{*}\left(\theta_{o}, \phi_{o}\right) \tilde{q}_{l, m}^{*} \exp (+\mathrm{i} m \omega t)\right] \\
& =\frac{1}{4 \pi \epsilon_{0}} \sum_{l, m \geq 0}\left(\frac{4 \pi}{2 l+1}\right) \frac{1}{r_{o}^{l+1}} \operatorname{Re}\left\{Y_{l m}\left(\theta_{o}, \phi_{o}\right) 2 \tilde{q}_{l m} \exp (-\mathrm{i} m \omega t)\right\}
\end{aligned}
$$

We imply that for $m=0$ the factor 2 in front of $\tilde{q}_{l m}$ is dropped. In the complex quantity of the last line only positive-frequency components $m \omega$ with $m \geq 0$ occur, as required. By inspection of the result we see that the multipole moments $Q_{l m}$ suited for Chapter 9 are

$$
Q_{l m}=\left\{\begin{array}{ccc}
2 \tilde{q}_{l m} & , & m>0 \\
\tilde{q}_{l, 0} & , & m=0 \\
0 & , & m<0
\end{array}\right.
$$

with corresponding frequencies $m \omega$. Since static distributions don't radiate, the case $m=0$ is quite irrelevant.
b): At fixed location \mathbf{x}, we perform a discrete temporal Fourier transform,

$$
\rho(\mathbf{x}, t)=\sum_{n=-\infty}^{\infty} c_{n}(\mathbf{x}) f_{n}(t)
$$

with basis functions $f_{n}(t)=\frac{1}{\sqrt{T}} \exp (-\mathrm{i} n \omega t)$, where $T=\frac{2 \pi}{\omega}$. Note the orthonormality $\int_{t=0}^{T} f_{n}^{*}(t) f_{m}(t) d t=$ $\delta_{n m}$ and the closure $\sum_{n=-\infty}^{\infty} f_{n}^{*}\left(t^{\prime}\right) f_{n}(t)=\delta\left(t-t^{\prime}\right)$.

Then,

$$
c_{n}(\mathbf{x})=\int_{t=0}^{T} f_{n}^{*}(t) \rho(\mathbf{x}, t) d t=\frac{1}{\sqrt{T}} \int_{t=0}^{T} \exp (\mathrm{i} n \omega t) \rho(\mathbf{x}, t) d t
$$

Noting $c_{-n}(\mathbf{x})=c_{n}^{*}(\mathbf{x})$,

$$
\begin{align*}
\rho(\mathbf{x}, t) & =c_{0} f_{0}+\sum_{n=1}^{\infty}\left[c_{n}(\mathbf{x}) f_{n}(t)+c_{-n}(\mathbf{x}) f_{-n}(t)\right] \\
& =c_{0} f_{0}+\sum_{n=1}^{\infty}\left[c_{n}(\mathbf{x}) f_{n}(t)+c_{n}^{*}(\mathbf{x}) f_{n}^{*}(t)\right] \\
& =c_{0} f_{0}+\sum_{n=1}^{\infty} \operatorname{Re}\left[2 c_{n}(\mathbf{x}) f_{n}(t)\right] \\
& =\frac{1}{T} \int_{0}^{T} \rho(\mathbf{x}, t) d t+\sum_{n=1}^{\infty} \operatorname{Re}\left[\left\{\frac{2}{T} \int_{0}^{T} \rho(\mathbf{x}, t) \exp (\mathrm{i} n \omega t) d t\right\} \exp (-\mathrm{i} n \omega t)\right] \tag{1}
\end{align*}
$$

Note that all frequencies are positive. By inspection we see that the charge densities to be used in Eq. 9.1 ff are

$$
\rho(\mathbf{x})=\left\{\begin{array}{ccc}
\frac{2}{T} \int_{0}^{T} \rho(\mathbf{x}, t) \exp (\mathrm{i} n \omega t) d t & , \quad n>0 \\
\frac{1}{T} \int_{0}^{T} \rho(\mathbf{x}, t) d t & , \quad n=0
\end{array},\right.
$$

where the frequencies $n \omega$ are all positive, as required. Since static distributions don't radiate, the case $n=0$ is quite irrelevant. The multipole moments for frequency component $n \omega$ with $n>0$ are

$$
\begin{aligned}
Q_{l m} & =\frac{2}{T} \int d^{3} x \int_{0}^{T} d t \rho(r, \theta, \phi-\omega t) r^{l} Y_{l m}^{*}(\theta, \phi) \exp (\mathrm{i} n \omega t) \\
& =\frac{2}{T} \int d^{3} x \int_{0}^{T} d t \rho(r, \theta, \phi) r^{l} Y_{l m}^{*}(\theta, \phi+\omega t) \exp (\mathrm{i} n \omega t) \\
& =\frac{2}{T} \int d^{3} x \int_{0}^{T} d t \rho(r, \theta, \phi) r^{l} Y_{l m}^{*}(\theta, \phi) \exp (-\mathrm{i} m \omega t) \exp (\mathrm{i} n \omega t) \\
& =\delta_{m n}\left\{2 \int \rho(r, \theta, \phi) r^{l} Y_{l m}^{*}(\theta, \phi) d^{3} x\right\}
\end{aligned}
$$

For $n=0$, drop the factor 2 . This result is equivalent to that of part a).
c): We have already generally shown that both methods a) and b) lead to identical multipole moments that are simply related to the multipole moments in the body frame. For a charge q located at ($R, \theta=\pi / 2, \phi=\phi_{0}$) rotating about the z-axis with frequency ω_{0}, the body-frame charge density in spherical and cylindrical coordinates is

$$
\rho(\mathbf{x})=q \frac{\delta(r-R)}{R^{2}} \delta(\cos \theta) \delta\left(\phi-\phi_{0}\right)=q \frac{\delta(r-R)}{R} \delta(z) \delta\left(\phi-\phi_{0}\right)
$$

and it is
Monopole moment:
Spherical: $Q_{00}=\frac{q}{\sqrt{4 \pi}}$. Cartesian: $Q=q$. Since $m=0$, the frequency of the monopole moment is zero. This is generally the case, and explains why monopole moments do not occur in radiation problems.

Dipole moment:
Spherical:

$$
\begin{align*}
Q_{11} & =2 \int r Y_{11}^{*} \rho(\mathbf{x}) d^{3} x=-2 q R \sqrt{\frac{3}{8 \pi}} \exp \left(-\mathrm{i} \phi_{0}\right) \\
Q_{10} & =0 \\
Q_{1-1} & =0 \tag{2}
\end{align*}
$$

The frequency of Q_{11} is $m \omega_{0}=\omega_{0}$.
Cartesian: Use Eq. 4.5 in Jackson to find

$$
\begin{aligned}
& p_{x}=\frac{Q_{11}-Q_{1,-1}}{-2 \sqrt{\frac{3}{8 \pi}}}=q R \exp \left(-\mathrm{i} \phi_{0}\right) \\
& p_{y}=\frac{Q_{11}+Q_{1,-1}}{2 \mathrm{i} \sqrt{\frac{3}{8 \pi}}}=\mathrm{i} q R \exp \left(-\mathrm{i} \phi_{0}\right)
\end{aligned}
$$

$$
p_{z}=\frac{Q_{10}}{\sqrt{\frac{3}{4 \pi}}}=0
$$

Thus, $\mathbf{p}=q R \exp \left(-\mathrm{i} \phi_{0}\right)(\hat{\mathbf{x}}+\mathrm{i} \hat{\mathbf{y}})$. The frequency is ω_{0}, and the dipole moment with explicitly displayed time dependence is

$$
\mathbf{p}=q R \exp \left(-\mathrm{i} \phi_{0}\right)(\hat{\mathbf{x}}+\mathrm{i} \hat{\mathbf{y}}) \exp \left(-\mathrm{i} \omega_{0} t\right)
$$

Note. One may choose the time origin such that the global phase term $\exp \left(-\mathrm{i} \phi_{0}\right)$ becomes 1 .

Note. It is still instructive to obtain the cartesian moments by first calculating the harmonic charge densities and then their moments. With

$$
\rho(\mathbf{x}, t)=q \frac{\delta(r-R)}{R} \delta(z) \delta\left(\phi-\phi_{0}-\omega_{0} t\right)
$$

Frequency zero:

$$
\rho_{0}(\mathbf{x})=\frac{1}{T} \int_{0}^{T} q \frac{\delta(r-R)}{R} \delta(z) \delta\left(\phi-\phi_{0}-\omega_{0} t\right) d t=\frac{q}{T \omega_{0}} \frac{\delta(r-R)}{R} \delta(z)=\frac{q}{2 \pi} \frac{\delta(r-R)}{R} \delta(z)
$$

which has a zero-frequency cartesian monopole moment, $Q=q$.
n-th harmonic frequency:

$$
\rho(\mathbf{x})=\frac{2}{T} \int_{0}^{T} q \frac{\delta(r-R)}{R} \delta(z) \delta\left(\phi-\phi_{0}-\omega_{0} t\right) \exp \left(\mathrm{i} n \omega_{0} t\right) d t=\frac{q}{\pi} \frac{\delta(r-R)}{R} \delta(z) \exp \left(\mathrm{i} n\left(\phi-\phi_{0}\right)\right)
$$

from which we can see, for instance, that the electric-dipole components are radiating at the fundamental (as is generally the case),

$$
\begin{align*}
p_{x} & =\frac{q}{\pi} \exp \left(-\mathrm{i} n \phi_{0}\right) \int r \cos \phi \frac{\delta(r-R)}{R} \delta(z) \exp (\mathrm{i} n \phi) r d r d z d \phi=q R \exp \left(-\mathrm{i} \phi_{0}\right) \delta_{n, 1} \\
p_{y} & =\frac{q}{\pi} \exp \left(-\mathrm{i} n \phi_{0}\right) \int r \sin \phi \frac{\delta(r-R)}{R} \delta(z) \exp (\mathrm{i} n \phi) r d r d z d \phi=\mathrm{i} q R \exp \left(-\mathrm{i} \phi_{0}\right) \delta_{n, 1} \\
p_{z} & =0 \tag{3}
\end{align*}
$$

Higher moments. As explained above, only moments with $m>0$ exist. For $m>0$, the spherical moments have oscillation frequencies $m \omega_{0}$ and magnitudes

$$
Q_{l m}=2 q \int r^{l} \frac{\delta(r-R)}{R^{2}} \delta(\cos \theta) \delta\left(\phi-\phi_{0}\right) Y_{l m}^{*}(\theta, \phi) r^{2} d r d \cos \theta d \phi
$$

$$
\begin{aligned}
& =2 q R^{l} Y_{l m}^{*}\left(\pi / 2, \phi_{0}\right) \\
& =2 q R^{l} \exp \left(-\mathrm{i} m \phi_{0}\right) \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(0)
\end{aligned}
$$

Thereby, for even $l-m$ it is $P_{l}^{m}(0)=(-1)^{\frac{l+m}{2}} \frac{(l+m)!}{2^{l}\left(\frac{l-m}{2}\right)!\left(\frac{l+m}{2}\right)!}$, while for odd $l-m$ it is $P_{l}^{m}(0)=0$. Thus, radiation occurs at all harmonic frequencies $m \omega_{0}$. The lowest-order non-zero multipole at frequency $m \omega_{0}$ is $Q_{l=m, m}$. Non-zero higher-order multipoles at frequency $m \omega_{0}$ are $Q_{l=m+2, m}, Q_{l=m+4, m}$ etc.

According to Problem 9.1, it is

$$
Q_{l m}=\left\{\begin{array}{ccc}
2 \tilde{q}_{l m} & , \quad m>0 \\
\tilde{q}_{l, 0} & , \quad m=0 \\
0 & , \quad m<0
\end{array}\right.
$$

where the frequencies are $m \omega$ and

$$
\tilde{q}_{l m}=\int r^{l} Y_{l m}^{*}(\theta, \phi) \rho(r, \theta, \phi(t=0)) d^{3} x
$$

Here,

$$
\rho(\mathbf{x}, t=0)=\frac{q}{R^{2}} \delta(r-R) \delta(\cos \theta)[\delta(\phi)+\delta(\phi+\pi)-\delta(\phi+\pi / 2)-\delta(\phi+3 \pi / 2)]
$$

and

$$
\begin{align*}
Q_{l m} & =2 \int r^{l+2} \frac{q}{R^{2}} \delta(r-R) \delta(\cos \theta)[\delta(\phi)+\delta(\phi+\pi)-\delta(\phi+\pi / 2)-\delta(\phi+3 \pi / 2)] Y_{l m}^{*}(\theta, \phi) d r d \cos \theta d \phi \\
& =2 q R^{l}\left[Y_{l m}^{*}(0,0)+Y_{l m}^{*}(0, \pi)-Y_{l m}^{*}(0, \pi / 2)-Y_{l m}^{*}(0,3 \pi / 2)\right] \\
& =2 q R^{l} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(0)[1+\exp (\mathrm{i} m \pi)-\exp (\mathrm{i} m \pi / 2)-\exp (\mathrm{i} m 3 \pi / 2)] \\
& =2 q R^{l} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}}\left[(-1)^{\frac{l+m}{2}} \frac{(l+m)!}{2^{l}\left(\frac{l-m}{2}\right)!\left(\frac{l+m}{2}\right)!}\right] \times 4 \tag{4}
\end{align*}
$$

where for the result to be different from zero it must be both $l-m$ even and $m=2+4 p$ with integer $p=1,2,3 \ldots$ Thus, the lowest non-zero moments are $Q_{22}, Q_{42}, Q_{62}, \ldots$ and Q_{66}, Q_{86}, \ldots Also, there is no magnetic dipole moment, because the net circular current is zero. Thus, in the long wavelength limit the leading radiation term comes from Q_{22}, which radiates at a frequency 2ω and has a value, following the above formula, of

$$
Q_{22}=q R^{2} \sqrt{\frac{30}{\pi}}
$$

Since the sidelength $a=R \sqrt{2}$, it also is

$$
Q_{22}=q a^{2} \sqrt{\frac{15}{2 \pi}}
$$

There are no other non-zero spherical quadrupole moments.

The quadrupole radiation field in the far field is given by Eqs. 9.169 and 9.149 (applied in that order),

$$
\begin{aligned}
\mathbf{H} & =\exp (\mathrm{i} k r-2 \mathrm{i} \omega t) \frac{-\mathrm{i}^{3} c k^{4}}{\mathrm{i} k r 3 \times 5} \sqrt{\frac{3}{2}} q a^{2} \sqrt{\frac{15}{2 \pi}} \mathbf{X}_{22}=\exp (\mathrm{i} k r-2 \mathrm{i} \omega t) \frac{q a^{2} c k^{3}}{r} \sqrt{\frac{1}{20 \pi}} \mathbf{X}_{22} \\
\mathbf{E} & =Z_{0} \mathbf{H} \times \mathbf{n}
\end{aligned}
$$

The radiation pattern is, following Eqn. 9.151,

$$
\frac{d P}{d \Omega}=\frac{Z_{0}}{2 k^{2}}\left|a_{E}(2,2)\right|^{2}\left|\mathbf{X}_{22}\right|^{2}
$$

where $a_{E}(2,2)=\frac{c k^{4}}{\mathrm{i} 15} \sqrt{\frac{3}{2}} q a^{2} \sqrt{\frac{15}{2 \pi}}$. Using further that $k=2 \omega / c$ and the table 9.1 one finds

$$
\frac{d P}{d \Omega}=\frac{Z_{0} \omega^{6} q^{2} a^{4}}{2 \pi^{2}}\left(1-\cos ^{4} \theta\right)
$$

This result can also be obtained directly from the fields, because

$$
\frac{d P}{d \Omega}=\frac{r^{2}}{2} \operatorname{Re}\left[\hat{\mathbf{n}} \cdot\left(\mathbf{E} \times \mathbf{H}^{*}\right)\right]
$$

This may be integrated, or one may use Eq. 9.154, to find

$$
P=\int_{4 \pi} \frac{d P}{d \Omega} d \Omega=\frac{Z_{0}}{2 k^{2}}\left|a_{E}(2,2)\right|^{2}=\frac{8 Z_{0} \omega^{6} q^{2} a^{4}}{5 \pi c^{4}}
$$

Note. From Q_{22} and Eqns. 4.6 one may also derive the cartesian quadrupole tensor

$$
Q=3 q a^{2}\left(\begin{array}{ccc}
1 & \mathrm{i} & 0 \\
\mathrm{i} & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and then use Eqs. 9.45 and 9.49 to arrive at the same result. This method is less elegant, however.

3. Problem 9.3

We show that there is a non-zero electric-dipole moment. From that it follows that the leading radiation term in the long-wavelength approximation is the electric-dipole radiation.

We also show that the magnetic-dipole moment is zero. This step is not really necessary, because electricdipole radiation dominates magnetic-dipole radiation of the same order by a factor of order $(k d)^{-2}$.

From Eq. 3.38 in Jackson we see that in the near field the scalar potential produced by the hemispheres is

$$
\Phi(r, \theta, t)=\frac{V(t)}{\sqrt{\pi}} \sum_{j=1}^{\infty}(-1)^{j+1} \frac{(2 j-1 / 2) \Gamma(j-1 / 2)}{j!}\left(\frac{a}{r}\right)^{2 j} P_{2 j-1}(\cos \theta)
$$

The electric-dipole term of that corresponds to $j=1$, i.e.
$\Phi_{E 1}(r, \theta, t)=\frac{V}{\sqrt{\pi}}(3 / 2) \Gamma(1 / 2)\left(\frac{R}{r}\right)^{2}(\cos \theta) \cos (\omega t)=\operatorname{Re}\left\{\frac{3 V R^{2}}{2 r^{2}} \cos \theta \exp (-\mathrm{i} \omega t)\right\}=\operatorname{Re}\left\{\frac{p}{4 \pi \epsilon_{0} r^{2}} \cos \theta \exp (-\mathrm{i} \omega t)\right\}$
We thus see by comparison that the complex dipole moment vector at frequency ω is

$$
\mathbf{p}=6 V R^{2} \pi \epsilon_{0} \hat{\mathbf{z}}
$$

In the long-wavelength $=$ small-source approximation, a non-vanishing electric-dipole moment produces the dominant radiation. Eqns. 9.19, 9.23 and 9.24 then yield, in the radiation zone,

$$
\begin{aligned}
\mathbf{H} & =-\frac{3 V}{2 Z_{0}}(k R)^{2} \frac{\exp (\mathrm{i} k r)}{r} \sin \theta \hat{\phi} \\
\mathbf{E} & =-\frac{3 V}{2}(k R)^{2} \frac{\exp (\mathrm{i} k r)}{r} \sin \theta \hat{\theta} \\
\frac{d P}{d \Omega} & =\frac{9 V^{2}}{8 Z_{0}}(k R)^{4} \sin ^{2} \theta \\
P & =3 \pi(k R)^{4} \frac{V^{2}}{Z_{0}}
\end{aligned}
$$

where $k=\frac{\omega}{c}$.

To show that the magnetic-dipole moment is zero, we note that for symmetry reasons the surface current has even spatial parity, i.e. $\mathbf{K}(\theta, \phi)=\mathbf{K}(\pi-\theta, \phi+\pi)$. Thus,

$$
\begin{aligned}
\mathbf{m} & =\frac{1}{2} \int_{\phi=0}^{2 \pi} \int_{\cos \theta=-1}^{1} \mathbf{x} \times \mathbf{K}(\theta, \phi) R^{2} d \phi d \cos \theta \\
& =\frac{1}{2} \int_{\phi=0}^{2 \pi} \int_{\cos \theta=0}^{1}[\mathbf{x} \times \mathbf{K}(\theta, \phi)+(-\mathbf{x}) \times \mathbf{K}(\pi-\theta, \phi+\pi)] R^{2} d \phi d \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{\phi=0}^{2 \pi} \int_{\cos \theta=0}^{1}[\mathbf{x} \times \mathbf{K}(\theta, \phi)-\mathbf{x} \times \mathbf{K}(\theta, \phi)] R^{2} d \phi d \cos \theta \\
& =0
\end{aligned}
$$

a): For $\mathbf{A}(\mathbf{x})$, copy Eqns. 9.13-9.16 of Jackson. For $\Phi(\mathbf{x})$, write the analogue of Eq. 9.30 for $\Phi(\mathbf{x})$,

$$
\Phi(\mathbf{x})=\frac{1}{4 \pi \epsilon_{0}} \frac{\exp (\mathrm{i} k r)}{r}\left(\frac{1}{r}-\mathrm{i} k\right) \int \rho\left(\mathbf{x}^{\prime}\right) \hat{\mathbf{n}} \cdot \mathbf{x}^{\prime} d^{3} x^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \frac{\exp (\mathrm{i} k r)}{r}\left(\frac{1}{r}-\mathrm{i} k\right) \hat{\mathbf{n}} \cdot \mathbf{p}
$$

b):

$$
\begin{align*}
\mathbf{B} & =\nabla \times \mathbf{A}=-\frac{\mathrm{i} \mu_{0} \omega}{4 \pi} \nabla \times\left(\mathbf{p} \frac{\exp (\mathrm{i} k r)}{r}\right) \\
& =-\frac{\mathrm{i} \mu_{0} \omega}{4 \pi}\left[\left(\nabla \frac{\exp (\mathrm{i} k r)}{r}\right) \times \mathbf{p}+\frac{\exp (\mathrm{i} k r)}{r}(\nabla \times \mathbf{p})\right]= \\
& =-\frac{\mathrm{i} \mu_{0} \omega}{4 \pi}\left(\hat{\mathbf{n}} \frac{\exp (\mathrm{i} k r)}{r}\left[\mathrm{i} k-\frac{1}{r^{2}}\right]\right) \times \mathbf{p} \\
& =\frac{c k^{2} \mu_{0}}{4 \pi} \frac{\exp (\mathrm{i} k r)}{r}\left[1-\frac{1}{\mathrm{i} k r}\right](\hat{\mathbf{n}} \times \mathbf{p}) \tag{5}
\end{align*}
$$

One way to obtain \mathbf{E} is

$$
\begin{aligned}
\mathbf{E} & =-\frac{\partial}{\partial t} \mathbf{A}-\nabla \Phi \\
& =\frac{1}{4 \pi \epsilon_{0}} \frac{\exp (\mathrm{i} k r)}{r}\left\{k^{2} \mathbf{p}+\hat{\mathbf{r}}\left[\hat{\mathbf{r}} \cdot \mathbf{p}\left(\left(\frac{1}{r}-\mathrm{i} k\right)^{2}+\frac{1}{r^{2}}\right)\right]-\hat{\theta}\left[\hat{\theta} \cdot \mathbf{p}\left(\frac{1}{r}-\mathrm{i} k\right)\left(\frac{1}{r}\right)\right]-\hat{\phi}\left[\hat{\phi} \cdot \mathbf{p}\left(\frac{1}{r}-\mathrm{i} k\right)\left(\frac{1}{r}\right)\right]\right\}
\end{aligned}
$$

where we have used $\partial_{\theta}(\hat{\mathbf{r}} \cdot \mathbf{p})=\mathbf{p} \cdot \hat{\theta}$ and $\partial_{\phi}(\hat{\mathbf{r}} \cdot \mathbf{p})=(\mathbf{p} \cdot \hat{\phi}) \sin \theta$. The result simplifies to

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{\exp (\mathrm{i} k r)}{r} k^{2}\left\{\mathbf{p}-p_{r} \hat{\mathbf{r}}\right\}-\frac{1}{4 \pi \epsilon_{0}} \frac{\exp (\mathrm{i} k r)}{r^{2}}\left(\frac{1}{r}-\mathrm{i} k\right)\left\{\hat{\theta} p_{\theta}+\hat{\phi} p_{\phi}-2 \hat{\mathbf{r}} p_{r}\right\}
$$

Noting that $\hat{\mathbf{r}}=\hat{\mathbf{n}}$, the first curly bracket equals $(\hat{\mathbf{n}} \times \mathbf{p}) \times \hat{\mathbf{n}}$ and the second $\mathbf{p}-3 \hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{p})$ we find the final result,

$$
\begin{equation*}
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}}\left\{k^{2}(\hat{\mathbf{n}} \times \mathbf{p}) \frac{\exp (\mathrm{i} k r)}{r}+[3 \hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{p})-\mathbf{p}]\left(\frac{1}{r^{3}}-\frac{\mathrm{i} k}{r^{2}}\right) \exp (\mathrm{i} k r)\right\} \tag{6}
\end{equation*}
$$

