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1. Problem 9.1 10 Points

This problem deals with the implications of the fact that negative frequencies are not allowed in

the formalism of Chapter 9 of Jackson (and other parts of the textbook that deal with harmonic
time-dependence).

a): For a rigid charge distribution with a body frame with coordinates (r, θ, φ̃) rotating with an angular-
velocity vector ẑω in the laboratory frame with coordinates (r, θ, φ) it is

ρ(x, t) = ρ(r, θ, φ̃) = ρ(r, θ, φ− ωt)

The usual time-dependent multipole moments in the laboratory frame are

qlm(t) =
∫

rlY ∗
lm(θ, φ)ρ(r, θ, φ− ωt)d3x =

{∫
rlY ∗

lm(θ, φ̃)ρ(r, θ, φ̃)d3x

}
exp(−imωt) = q̃lm exp(−imωt)

where q̃lm is a fixed multipole moment in the body frame (q̃lm can be thought of as the usual time-dependent
multipole moment evaluated at t = 0, i.e. q̃lm = qlm(t = 0)). Since ρ is real and Yl,−m = (−1)mY ∗

l,m, it is
q̃l,−m = (−1)mq̃∗l,m.

The positive and negative values of m correspond to positive and negative frequencies. Negative frequen-

cies are not allowed in the formalism of Chapter 9 of Jackson (and other parts of the textbook
that deal with harmonic time-dependence). We must therefore re-write equations such that only positive
frequencies occur, and deduce suitable multipole moments.

Consider, for instance, the (real-valued) electrostatic potential in the near-field limit at an observation point
(ro, θo, φo):

Φ(xo, t) =
1

4πε0

l=∞,m=l∑

l=0,m=−l

(
4π

2l + 1

)
1

rl+1
o

Ylm(θo, φo)qlm(t)

=
1

4πε0

∑

l,m≥0

(
4π

2l + 1

)
1

rl+1
o

[Ylm(θo, φo)qlm(t) + Yl,−m(θo, φo)ql,−m(t)]

=
1

4πε0

∑

l,m≥0

(
4π

2l + 1

)
1

rl+1
o

[Ylm(θo, φo)q̃lm exp(−imωt) + Yl,−m(θo, φo)q̃l,−m exp(+imωt)]

=
1

4πε0

∑

l,m≥0

(
4π

2l + 1

)
1

rl+1
o

[
Ylm(θo, φo)q̃lm exp(−imωt) + Y ∗

l,m(θo, φo)q̃∗l,m exp(+imωt)
]

=
1

4πε0

∑

l,m≥0

(
4π

2l + 1

)
1

rl+1
o

Re {Ylm(θo, φo) 2q̃lm exp(−imωt)}



We imply that for m = 0 the factor 2 in front of q̃lm is dropped. In the complex quantity of the last line
only positive-frequency components mω with m ≥ 0 occur, as required. By inspection of the result we see
that the multipole moments Qlm suited for Chapter 9 are

Qlm =





2q̃lm , m > 0
q̃l,0 , m = 0
0 , m < 0

with corresponding frequencies mω. Since static distributions don’t radiate, the case m = 0 is quite irrelevant.

b): At fixed location x, we perform a discrete temporal Fourier transform,

ρ(x, t) =
∞∑

n=−∞
cn(x)fn(t)

with basis functions fn(t) = 1√
T

exp(−inωt), where T = 2π
ω . Note the orthonormality

∫ T

t=0
f∗n(t)fm(t)dt =

δnm and the closure
∑∞

n=−∞ f∗n(t′)fn(t) = δ(t− t′).

Then,

cn(x) =
∫ T

t=0

f∗n(t)ρ(x, t)dt =
1√
T

∫ T

t=0

exp(inωt)ρ(x, t)dt

Noting c−n(x) = c∗n(x),

ρ(x, t) = c0f0 +
∞∑

n=1

[cn(x)fn(t) + c−n(x)f−n(t)]

= c0f0 +
∞∑

n=1

[cn(x)fn(t) + c∗n(x)f∗n(t)]

= c0f0 +
∞∑

n=1

Re [2cn(x)fn(t)]

=
1
T

∫ T

0

ρ(x, t)dt +
∞∑

n=1

Re

[{
2
T

∫ T

0

ρ(x, t) exp(inωt)dt

}
exp(−inωt)

]
(1)

Note that all frequencies are positive. By inspection we see that the charge densities to be used in Eq. 9.1 ff
are

ρ(x) =

{
2
T

∫ T

0
ρ(x, t) exp(inωt)dt , n > 0
1
T

∫ T

0
ρ(x, t)dt , n = 0

,

where the frequencies nω are all positive, as required. Since static distributions don’t radiate, the case n = 0
is quite irrelevant. The multipole moments for frequency component nω with n > 0 are



Qlm =
2
T

∫
d3x

∫ T

0

dtρ(r, θ, φ− ωt)rlY ∗
lm(θ, φ) exp(inωt)

=
2
T

∫
d3x

∫ T

0

dtρ(r, θ, φ)rlY ∗
lm(θ, φ + ωt) exp(inωt)

=
2
T

∫
d3x

∫ T

0

dtρ(r, θ, φ)rlY ∗
lm(θ, φ) exp(−imωt) exp(inωt)

= δmn

{
2

∫
ρ(r, θ, φ)rlY ∗

lm(θ, φ)d3x

}

For n = 0, drop the factor 2. This result is equivalent to that of part a).

c): We have already generally shown that both methods a) and b) lead to identical multipole moments that
are simply related to the multipole moments in the body frame. For a charge q located at (R, θ = π/2, φ = φ0)
rotating about the z-axis with frequency ω0, the body-frame charge density in spherical and cylindrical
coordinates is

ρ(x) = q
δ(r −R)

R2
δ(cos θ)δ(φ− φ0) = q

δ(r −R)
R

δ(z)δ(φ− φ0)

and it is

Monopole moment:

Spherical: Q00 = q√
4π

. Cartesian: Q = q. Since m = 0, the frequency of the monopole moment is zero. This
is generally the case, and explains why monopole moments do not occur in radiation problems.

Dipole moment:

Spherical:

Q11 = 2
∫

rY ∗
11ρ(x)d3x = −2qR

√
3
8π

exp(−iφ0)

Q10 = 0

Q1−1 = 0 (2)

The frequency of Q11 is mω0 = ω0.

Cartesian: Use Eq. 4.5 in Jackson to find

px =
Q11 −Q1,−1

−2
√

3
8π

= qR exp(−iφ0)

py =
Q11 + Q1,−1

2i
√

3
8π

= iqR exp(−iφ0)



pz =
Q10√

3
4π

= 0

Thus, p = qR exp(−iφ0)(x̂+iŷ). The frequency is ω0, and the dipole moment with explicitly displayed time
dependence is

p = qR exp(−iφ0)(x̂ + iŷ) exp(−iω0t)

Note. One may choose the time origin such that the global phase term exp(−iφ0) becomes 1.

Note. It is still instructive to obtain the cartesian moments by first calculating the harmonic charge densities
and then their moments. With

ρ(x, t) = q
δ(r −R)

R
δ(z)δ(φ− φ0 − ω0t)

Frequency zero:

ρ0(x) =
1
T

∫ T

0

q
δ(r −R)

R
δ(z)δ(φ− φ0 − ω0t)dt =

q

Tω0

δ(r −R)
R

δ(z) =
q

2π

δ(r −R)
R

δ(z)

which has a zero-frequency cartesian monopole moment, Q = q.

n-th harmonic frequency:

ρ(x) =
2
T

∫ T

0

q
δ(r −R)

R
δ(z)δ(φ− φ0 − ω0t) exp(inω0t)dt =

q

π

δ(r −R)
R

δ(z) exp(in(φ− φ0))

from which we can see, for instance, that the electric-dipole components are radiating at the fundamental
(as is generally the case),

px =
q

π
exp(−inφ0)

∫
r cosφ

δ(r −R)
R

δ(z) exp(inφ)rdrdzdφ = qR exp(−iφ0)δn,1

py =
q

π
exp(−inφ0)

∫
r sin φ

δ(r −R)
R

δ(z) exp(inφ)rdrdzdφ = iqR exp(−iφ0)δn,1

pz = 0 (3)

Higher moments. As explained above, only moments with m > 0 exist. For m > 0, the spherical moments
have oscillation frequencies mω0 and magnitudes

Qlm = 2q

∫
rl δ(r −R)

R2
δ(cos θ)δ(φ− φ0)Y ∗

lm(θ, φ)r2drd cos θdφ



= 2qRlY ∗
lm(π/2, φ0)

= 2qRl exp(−imφ0)

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (0)

Thereby, for even l −m it is Pm
l (0) = (−1)

l+m
2

(l+m)!

2l( l−m
2 )!( l+m

2 )! , while for odd l −m it is Pm
l (0) = 0. Thus,

radiation occurs at all harmonic frequencies mω0. The lowest-order non-zero multipole at frequency mω0 is
Ql=m,m. Non-zero higher-order multipoles at frequency mω0 are Ql=m+2,m, Ql=m+4,m etc.



2. Problem 9.2 10 Points

According to Problem 9.1, it is

Qlm =





2q̃lm , m > 0
q̃l,0 , m = 0
0 , m < 0

where the frequencies are mω and

q̃lm =
∫

rlY ∗
lm(θ, φ)ρ(r, θ, φ(t = 0))d3x

Here,

ρ(x, t = 0) =
q

R2
δ(r −R)δ(cos θ) [δ(φ) + δ(φ + π)− δ(φ + π/2)− δ(φ + 3π/2)]

and

Qlm = 2
∫

rl+2 q

R2
δ(r −R)δ(cos θ) [δ(φ) + δ(φ + π)− δ(φ + π/2)− δ(φ + 3π/2)] Y ∗

lm(θ, φ)drd cos θdφ

= 2qRl [Y ∗
lm(0, 0) + Y ∗

lm(0, π)− Y ∗
lm(0, π/2)− Y ∗

lm(0, 3π/2)]

= 2qRl

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (0) [1 + exp(imπ)− exp(imπ/2)− exp(im3π/2)]

= 2qRl

√
2l + 1

4π

(l −m)!
(l + m)!

[
(−1)

l+m
2

(l + m)!
2l

(
l−m

2

)
!
(

l+m
2

)
!

]
× 4 (4)

where for the result to be different from zero it must be both l − m even and m = 2 + 4p with integer
p = 1, 2, 3... Thus, the lowest non-zero moments are Q22, Q42, Q62, ... and Q66, Q86, ... Also, there is no
magnetic dipole moment, because the net circular current is zero. Thus, in the long wavelength limit the
leading radiation term comes from Q22, which radiates at a frequency 2ω and has a value, following the
above formula, of

Q22 = qR2

√
30
π

Since the sidelength a = R
√

2, it also is

Q22 = qa2

√
15
2π

There are no other non-zero spherical quadrupole moments.



The quadrupole radiation field in the far field is given by Eqs. 9.169 and 9.149 (applied in that order),

H = exp(ikr − 2iωt)
−i3ck4

ikr3× 5

√
3
2
qa2

√
15
2π

X22 = exp(ikr − 2iωt)
qa2ck3

r

√
1

20π
X22

E = Z0H× n

The radiation pattern is, following Eqn. 9.151,

dP

dΩ
=

Z0

2k2
|aE(2, 2)|2 |X22|2

where aE(2, 2) = ck4

i 15

√
3
2qa2

√
15
2π . Using further that k = 2ω/c and the table 9.1 one finds

dP

dΩ
=

Z0ω
6q2a4

2π2
(1− cos4 θ)

This result can also be obtained directly from the fields, because

dP

dΩ
=

r2

2
Re [n̂ · (E×H∗)]

This may be integrated, or one may use Eq. 9.154, to find

P =
∫

4π

dP

dΩ
dΩ =

Z0

2k2
|aE(2, 2)|2 =

8Z0ω
6q2a4

5πc4

Note. From Q22 and Eqns. 4.6 one may also derive the cartesian quadrupole tensor

Q = 3qa2




1 i 0
i −1 0
0 0 0


 ,

and then use Eqs. 9.45 and 9.49 to arrive at the same result. This method is less elegant, however.



3. Problem 9.3 10 Points

We show that there is a non-zero electric-dipole moment. From that it follows that the leading radiation
term in the long-wavelength approximation is the electric-dipole radiation.

We also show that the magnetic-dipole moment is zero. This step is not really necessary, because electric-
dipole radiation dominates magnetic-dipole radiation of the same order by a factor of order (kd)−2.

From Eq. 3.38 in Jackson we see that in the near field the scalar potential produced by the hemispheres is

Φ(r, θ, t) =
V (t)√

π

∞∑

j=1

(−1)j+1 (2j − 1/2)Γ(j − 1/2)
j!

(a

r

)2j

P2j−1(cos θ)

The electric-dipole term of that corresponds to j = 1, i.e.

ΦE1(r, θ, t) =
V√
π

(3/2)Γ(1/2)
(

R

r

)2

(cos θ) cos(ωt) = Re
{

3V R2

2r2
cos θ exp(−iωt)

}
= Re

{
p

4πε0r2
cos θ exp(−iωt)

}

We thus see by comparison that the complex dipole moment vector at frequency ω is

p = 6V R2πε0ẑ

In the long-wavelength = small-source approximation, a non-vanishing electric-dipole moment produces the
dominant radiation. Eqns. 9.19, 9.23 and 9.24 then yield, in the radiation zone,

H = − 3V

2Z0
(kR)2

exp(ikr)
r

sin θφ̂

E = −3V

2
(kR)2

exp(ikr)
r

sin θθ̂

dP

dΩ
=

9V 2

8Z0
(kR)4 sin2 θ

P = 3π(kR)4
V 2

Z0

where k = ω
c .

To show that the magnetic-dipole moment is zero, we note that for symmetry reasons the surface current
has even spatial parity, i.e. K(θ, φ) = K(π − θ, φ + π). Thus,

m =
1
2

∫ 2π

φ=0

∫ 1

cos θ=−1

x×K(θ, φ)R2dφd cos θ

=
1
2

∫ 2π

φ=0

∫ 1

cos θ=0

[x×K(θ, φ) + (−x)×K(π − θ, φ + π)] R2dφd cos θ



=
1
2

∫ 2π

φ=0

∫ 1

cos θ=0

[x×K(θ, φ)− x×K(θ, φ)] R2dφd cos θ

= 0



4. Problem 9.5 10 Points

a): For A(x), copy Eqns. 9.13-9.16 of Jackson. For Φ(x), write the analogue of Eq. 9.30 for Φ(x),

Φ(x) =
1

4πε0

exp(ikr)
r

(
1
r
− ik

) ∫
ρ(x′)n̂ · x′d3x′ =

1
4πε0

exp(ikr)
r

(
1
r
− ik

)
n̂ · p

b):

B = ∇×A = − iµ0ω

4π
∇×

(
p

exp(ikr)
r

)

= − iµ0ω

4π

[(
∇exp(ikr)

r

)
× p +

exp(ikr)
r

(∇× p)
]

=

= − iµ0ω

4π

(
n̂

exp(ikr)
r

[
ik − 1

r2

])
× p

=
ck2µ0

4π

exp(ikr)
r

[
1− 1

ikr

]
(n̂× p) (5)

One way to obtain E is

E = − ∂

∂t
A−∇Φ

=
1

4πε0

exp(ikr)
r

{
k2p + r̂

[
r̂ · p

((
1
r
− ik

)2

+
1
r2

)]
− θ̂

[
θ̂ · p

(
1
r
− ik

)(
1
r

)]
− φ̂

[
φ̂ · p

(
1
r
− ik

)(
1
r

)]}

where we have used ∂θ(r̂ · p) = p · θ̂ and ∂φ(r̂ · p) = (p · φ̂) sin θ. The result simplifies to

E =
1

4πε0

exp(ikr)
r

k2 {p− pr r̂} − 1
4πε0

exp(ikr)
r2

(
1
r
− ik

) {
θ̂pθ + φ̂pφ − 2r̂pr

}

Noting that r̂ = n̂, the first curly bracket equals (n̂× p)× n̂ and the second p− 3n̂(n̂ · p) we find the final
result,

E =
1

4πε0

{
k2(n̂× p)

exp(ikr)
r

+ [3n̂(n̂ · p)− p]
(

1
r3
− ik

r2

)
exp(ikr)

}
(6)


