1 Problem 13.9

Using Jackson's equation 13.50 and the fact that $n=\sqrt{\varepsilon(\omega)}$ yields:

$$
\begin{equation*}
\cos \theta_{c}=\frac{1}{n \beta} \tag{1}
\end{equation*}
$$

Now, we know that $K=(\gamma-1) m c^{2}=\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right) m c^{2}$. Solving this expression for β yields:

$$
\begin{equation*}
\beta=\frac{\sqrt{K^{2}+2 K m c^{2}}}{K+m c^{2}} \tag{2}
\end{equation*}
$$

Plugging this into equation (1) yields:

$$
\cos \theta_{c}=\frac{K+m c^{2}}{n \sqrt{K^{2}+2 K m c^{2}}}
$$

Jackson's equation 13.48 gives us:

$$
\frac{d E}{d x}=\int \frac{z^{2} e^{2}}{c^{2}} \omega\left(1-\frac{1}{n^{2} \beta^{2}}\right) d \omega
$$

A single energy quantum (i.e., a photon) radiated will have energy $\hbar \omega$. Thus, the above equation can be rewritten to express the number of quanta emitted:

$$
\begin{aligned}
\frac{d N}{d x} & =\int \frac{z^{2} e^{2}}{\hbar c^{2}}\left(1-\frac{1}{n^{2} \beta^{2}}\right) d \omega \\
& =\frac{z^{2} e^{2}}{\hbar c^{2}}\left(1-\frac{1}{n^{2} \beta^{2}}\right)\left[\omega_{\max }-\omega_{\min }\right] \\
& =\frac{z^{2} e^{2}}{\hbar c^{2}}\left(1-\frac{1}{n^{2} \beta^{2}}\right)\left[\frac{2 \pi c}{n \lambda_{\min }}-\frac{2 \pi c}{n \lambda_{\max }}\right] \\
& =\frac{2 \pi z^{2} e^{2}}{n \hbar c}\left(1-\frac{1}{n^{2} \beta^{2}}\right)\left[\frac{1}{\lambda_{\min }}-\frac{1}{\lambda_{\max }}\right]
\end{aligned}
$$

For $z=1$ (since we're dealing with isolated particles), $n=1.5$, and $\lambda_{\text {min }}=4000 \AA$, this equation becomes:

$$
\begin{equation*}
\frac{d N}{d x}=283\left(1-\frac{1}{1.5^{2} \beta^{2}}\right) \mathrm{cm}^{-1} \tag{3}
\end{equation*}
$$

Plugging $K=1 \mathrm{MeV}$ and $m c^{2}=0.511 \mathrm{MeV}$ into equation (2) yields $\beta=0.941$. Plugging this into equation (3) yields $d N / d x=149$ photons per cm .
Plugging $K=500 \mathrm{MeV}$ and $m c^{2}=938 \mathrm{MeV}$ into equation (2) yields $\beta=0.758$. Plugging this into equation (3) yields $d N / d x=64$ photons per cm .
Plugging $K=5000 \mathrm{MeV}$ and $m c^{2}=938 \mathrm{MeV}$ into equation (2) yields $\beta=0.987$. Plugging this into equation (3) yields $d N / d x=154$ photons per cm .

2 Problem 14.4

2.1 Part a

$$
\begin{aligned}
\vec{z} & =a \cos \left(\omega_{0} t\right) \hat{z} \\
\vec{v} & =-a \omega_{0} \sin \left(\omega_{0} t\right) \hat{z} \\
\Longrightarrow \vec{\beta} & =-\frac{a \omega_{0}}{c} \sin \left(\omega_{0} t\right) \hat{z} \\
\dot{\vec{\beta}} & =-\frac{a \omega_{0}^{2}}{c} \cos \left(\omega_{0} t\right) \hat{z}
\end{aligned}
$$

The observer is located at the zenith angle θ from the z-axis. Thus, the angle between \hat{n} and $\dot{\vec{\beta}}$ is θ. Equation 14.20 becomes:

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{e^{2}}{4 \pi c}|\hat{n} \times(\hat{n} \times \dot{\vec{\beta}})|^{2} \\
& =\frac{e^{2}}{4 \pi c}|\hat{n} \times \dot{\vec{\beta}}|^{2} \\
& =\frac{e^{2}}{4 \pi c}|\dot{\vec{\beta}}|^{2} \sin ^{2} \theta \\
& =\frac{e^{2} a^{2} \omega_{0}^{4}}{4 \pi c^{3}} \cos ^{2}\left(\omega_{0} t\right) \sin ^{2} \theta
\end{aligned}
$$

The time average of $\cos ^{2}\left(\omega_{0} t\right)$ is $\frac{\omega_{0}}{2 \pi} \int_{0}^{2 \pi / \omega_{0}} \cos ^{2}\left(\omega_{0} t\right)=\frac{1}{2}$. Thus, the time average of $d P / d \Omega$ is:

$$
\left\langle\frac{d P}{d \Omega}\right\rangle=\frac{e^{2} a^{2} \omega_{0}^{4}}{8 \pi c^{3}} \sin ^{2} \theta
$$

The polar plot of this is shown below, where $\frac{e^{2} a^{2} \omega_{0}^{4}}{8 \pi c^{3}}$ has been set to unity:

The total time-averaged power radiated can be determined by integrating the above expression over solid angle:

$$
\begin{aligned}
\langle P\rangle & =\int_{\varphi=0}^{2 \pi} \int_{\theta=0}^{\pi} \frac{e^{2} a^{2} \omega_{0}^{4}}{8 \pi c^{3}} \sin ^{2} \theta \sin \theta d \theta d \varphi \\
& =\frac{e^{2} a^{2} \omega_{0}^{4}}{3 c^{3}}
\end{aligned}
$$

2.2 Part b

$$
\begin{aligned}
\vec{x} & =R \cos \left(\omega_{0} t\right) \hat{x}+R \sin \left(\omega_{0} t\right) \hat{y} \\
\vec{v} & =R \omega_{0} \sin \left(\omega_{0} t\right) \hat{x}-R \omega_{0} \cos \left(\omega_{0} t\right) \hat{y} \\
\Longrightarrow \vec{\beta} & =\frac{R \omega_{0}}{c} \sin \left(\omega_{0} t\right) \hat{x}-\frac{R \omega_{0}}{c} \cos \left(\omega_{0} t\right) \hat{y} \\
\dot{\vec{\beta}} & =-\frac{R \omega_{0}^{2}}{c} \cos \left(\omega_{0} t\right) \hat{x}-\frac{R \omega_{0}^{2}}{c} \sin \left(\omega_{0} t\right) \hat{y}
\end{aligned}
$$

Because this system has azimuthal symmetry (when averaged over a full period, which is what we will do in the next step), we can rotate the coordinate system such that the observer lies in the $x-z$ plane. Thus,

$$
\hat{n}=\cos \theta \hat{x}+\sin \theta \hat{z}
$$

Note: here, θ is not the zenith angle, but the angle between the observer's position and the $x-y$ plane. Equation 14.20 becomes:

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{e^{2}}{4 \pi c}|\hat{n} \times \dot{\vec{\beta}}|^{2} \\
& =\frac{e^{2}}{4 \pi c}\left|\operatorname{det}\left[\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\cos \theta & 0 & \sin \theta \\
-\frac{R \omega_{0}^{2}}{c} \cos \left(\omega_{0} t\right) & -\frac{R \omega_{0}^{2}}{c} \sin \left(\omega_{0} t\right) & 0
\end{array}\right]\right|^{2} \\
& =\frac{e^{2}}{4 \pi c}\left|\frac{R \omega_{0}^{2}}{c} \sin \left(\omega_{0} t\right) \cos \theta \hat{x}-\frac{R \omega_{0}^{2}}{c} \cos \left(\omega_{0} t\right) \cos \theta \hat{y}-\frac{R \omega_{0}^{2}}{c} \sin \left(\omega_{0} t\right) \sin \theta\right|^{2} \\
& =\frac{R^{2} e^{2} \omega_{0}^{4}}{4 \pi c^{3}}\left[\sin ^{2}\left(\omega_{0} t\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\cos ^{2}\left(\omega_{0} t\right) \cos ^{2} \theta\right] \\
& =\frac{R^{2} e^{2} \omega_{0}^{4}}{4 \pi c^{3}}\left[\sin ^{2}\left(\omega_{0} t\right)+\cos ^{2}\left(\omega_{0} t\right) \cos ^{2} \theta\right]
\end{aligned}
$$

The time average of $\cos ^{2}\left(\omega_{0} t\right)$ is $\frac{\omega_{0}}{2 \pi} \int_{0}^{2 \pi / \omega_{0}} \cos ^{2}\left(\omega_{0} t\right)=\frac{1}{2}$ while the time average of $\sin ^{2}\left(\omega_{0} t\right)$ is $\frac{\omega_{0}}{2 \pi} \int_{0}^{2 \pi / \omega_{0}} \sin ^{2}\left(\omega_{0} t\right)=\frac{1}{2}$. Thus, the time average of $d P / d \Omega$ is:

$$
\left\langle\frac{d P}{d \Omega}\right\rangle=\frac{R^{2} e^{2} \omega_{0}^{4}}{8 \pi c^{3}}\left(1+\cos ^{2} \theta\right)
$$

The polar plot of this is shown below, where $\frac{R^{2} e^{2} \omega_{0}^{4}}{8 \pi c^{3}}$ has been set to unity:

The total time-averaged power radiated can be determined by integrating the above expression over solid angle:

$$
\begin{aligned}
\langle P\rangle & =\int_{\varphi=0}^{2 \pi} \int_{\theta=0}^{\pi} \frac{R^{2} e^{2} \omega_{0}^{4}}{8 \pi c^{3}}\left(1+\cos ^{2} \theta\right) \sin \theta d \theta d \varphi \\
& =\frac{R^{2} e^{2} \omega_{0}^{4}}{4 c^{3}}\left(2+\frac{2}{3}\right) \\
& =\frac{2 R^{2} e^{2} \omega_{0}^{4}}{3 c^{3}}
\end{aligned}
$$

3 Problem 14.10

3.1 Part a

Suppose the velocity is in the z-direction. Then, $\vec{\beta}=\beta \hat{z}$ and $\dot{\vec{\beta}}=\dot{\beta} \hat{z}$, where $\dot{\beta}$ is defined as follows:

$$
\dot{\beta}= \begin{cases}0 & t<0 \\ -\frac{\beta_{\text {init }}}{\Delta t} & 0 \leq t \leq \Delta t \\ 0 & t>\Delta t\end{cases}
$$

The observer is located at the zenith angle θ from the z-axis. Thus, the angle between \hat{n} and $\dot{\vec{\beta}}$ is θ. Equation 14.38 (we use this equation since we're not given that the motion is nonrelativistic) becomes:

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{e^{2}}{4 \pi c} \frac{|\hat{n} \times[(\hat{n}-\vec{\beta}) \times \dot{\vec{\beta}}]|^{2}}{(1-\hat{n} \cdot \vec{\beta})^{5}} \\
& =\frac{e^{2}}{4 \pi c} \frac{|\hat{n} \times(\hat{n} \times \dot{\vec{\beta}}-\vec{\beta} \times \dot{\vec{\beta}})|^{2}}{(1-\hat{n} \cdot \vec{\beta})^{5}} \\
& =\frac{e^{2}}{4 \pi c} \frac{|\hat{n} \times \dot{\vec{\beta}}|^{2}}{(1-\hat{n} \cdot \vec{\beta})^{5}} \\
& =\frac{e^{2}}{4 \pi c} \frac{\dot{\beta}^{2} \sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}
\end{aligned}
$$

Integrating the above expression with respect to time will yield $d E / d \Omega$:

$$
\frac{d E}{d \Omega}=\frac{e^{2}}{4 \pi c} \sin ^{2} \theta \int_{-\infty}^{\infty} \frac{\dot{\beta} \dot{\beta}}{(1-\beta \cos \theta)^{5}} d t
$$

Letting $u=\beta, d u=\dot{\beta} d t$ and setting the remaining $\dot{\beta}$ term to its piecewise definition yields:

$$
\begin{aligned}
\frac{d E}{d \Omega} & =\frac{e^{2}}{4 \pi c} \sin ^{2} \theta \int_{u=\beta_{\text {init }}}^{0} \frac{\left(-\beta_{\text {init }} / \Delta t\right)}{(1-u \cos \theta)^{5}} d u \\
& =\frac{e^{2} \beta_{\text {init }}^{2}}{16 \pi c \Delta t} \frac{\left(2-\beta_{\text {init }} \cos \theta\right)\left[1+\left(1-\beta_{\text {init }}\right)^{2}\right] \sin ^{2} \theta}{\left(1-\beta_{\text {init }} \cos \theta\right)^{4}}
\end{aligned}
$$

3.2 Part b

For $\gamma \gg 1$, we only need to consider small values of θ. We note that $1-\beta \cos \theta$ occurs quite frequently in our expression for $d E / d \Omega$; this can be approximated as:

$$
\begin{aligned}
1-\beta \cos \theta & =1-\underbrace{\left(1-\frac{1}{\gamma^{2}}\right)^{1 / 2}}_{\approx 1-\frac{1}{2 \gamma^{2}}} \underbrace{\cos \theta}_{\approx 1-\frac{1}{2} \theta^{2}} \\
& \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1-\frac{1}{2} \theta^{2}\right) \\
& =1-(1-\frac{1}{2 \gamma^{2}}-\frac{1}{2} \theta^{2}+\frac{1}{4} \underbrace{\frac{1}{\gamma^{2}} \theta^{2}}_{\approx 0}) \\
& \approx \frac{1}{2 \gamma^{2}}+\frac{1}{2} \theta^{2}
\end{aligned}
$$

Substituting this into the result from part a yields:

$$
\frac{d E}{d \Omega} \approx \frac{e^{2} \beta_{\text {init }}^{2}}{16 \pi c \Delta t} \frac{\left(1+\frac{1}{2 \gamma^{2}}+\frac{1}{2} \theta^{2}\right)\left[1+\left(\frac{1}{2 \gamma^{2}}+\frac{1}{2} \theta^{2}\right)^{2}\right] \sin \theta}{\left(\frac{1}{2 \gamma^{2}}+\frac{1}{2} \theta^{2}\right)^{4}}
$$

Expanding and replacing $\gamma^{2} \theta^{2}$ with ξ yields:

$$
\frac{d E}{d \Omega} \approx \frac{e^{2} \beta_{\text {init }}^{2}}{16 \pi c \Delta t} \frac{16 \gamma^{8}+4 \gamma^{4}+8 \xi \gamma^{4}+4 \xi^{2} \gamma^{4}+8 \gamma^{6}+2 \gamma^{2}+6 \xi \gamma^{2}+6 \xi^{2} \gamma^{2}+8 \xi \gamma^{6}+2 \xi^{3} \gamma^{2}}{(1+\xi)^{4}} \underbrace{\sin ^{2} \theta}_{\approx \theta^{2}}
$$

Note that the γ^{8} term will dominate. Hence,

$$
\frac{d E}{d \Omega} \approx \frac{e^{2} \beta_{\mathrm{init}}^{2}}{16 \pi c \Delta t} \frac{16 \gamma^{8}}{(1+\xi)^{4}} \theta^{2}
$$

Letting $\theta^{2}=\xi \gamma^{-2}$:

$$
\frac{d E}{d \Omega} \approx \frac{e^{2} \beta_{\text {init }}^{2}}{\pi c \Delta t} \frac{\gamma^{6}}{(1+\xi)^{4}} \xi
$$

We note that $d \Omega=2 \pi \sin \theta d \theta \approx 2 \pi \theta d \theta$. Letting $\theta=\sqrt{\xi} \gamma^{-1}$ and $d \theta=\frac{1}{2} \xi^{-1 / 2} \gamma^{-1}$, we find that $d \Omega=\pi \gamma^{-2}$ Substituting this for $d \Omega$ in the above expression yields:

$$
\frac{d E}{d \xi} \approx \frac{e^{2} \beta_{\text {init }}^{2} \gamma^{4}}{c \Delta t} \frac{\xi}{(1+\xi)^{4}}
$$

$$
\begin{gather*}
\sqrt{\left\langle\theta^{2}\right\rangle}=\sqrt{\left\langle\xi / \gamma^{2}\right\rangle} \\
=\sqrt{\langle\xi\rangle / \gamma} \tag{4}\\
\langle\xi\rangle=\frac{\int_{0}^{\infty} \frac{\xi \frac{d E}{d \xi}}{\int_{0}^{\infty} \frac{d E}{d \xi}}=\frac{1 / 3}{1 / 6}=2}{}=2
\end{gather*}
$$

Plugging this into equation (4) yields:

$$
\sqrt{\left\langle\theta^{2}\right\rangle}=\sqrt{2} / \gamma
$$

Integrating our expression for $d E / d \xi$ with respect to ξ yields an expression for E :

$$
\begin{aligned}
E & =\frac{e^{2} \beta^{2} \gamma^{4}}{c \Delta t} \int_{0}^{\infty} \frac{\xi}{(1+\xi)^{4}} \\
& =\frac{e^{2} \beta^{2} \gamma^{4}}{c \Delta t}\left(\frac{1}{6}\right) \\
& =\frac{e^{2} \beta^{2}}{6 c \Delta t}\left(1-\beta^{2}\right)^{-2}
\end{aligned}
$$

And differentiating this with respect to time gives the power:

$$
\begin{aligned}
P & =\frac{e^{2}\left(2 \beta \dot{\beta} \gamma^{4}-2 \beta^{2}\left(1-\beta^{2}\right)^{-3} 2 \beta \dot{\beta}\right)}{6 c \Delta t} \\
& =\frac{e^{2}\left(2 \beta \dot{\beta} \gamma^{4}-4 \beta^{3} \dot{\beta} \gamma^{6}\right)}{6 c \Delta t} \\
& =\frac{e^{2}\left(2(-\Delta t \dot{\beta}) \dot{\beta} \gamma^{4}-4(-\Delta t \dot{\beta})^{3} \dot{\beta} \gamma^{6}\right)}{6 c \Delta t} \\
& =\frac{e^{2}\left(-\dot{\beta}^{2} \gamma^{4}+2 \Delta t^{2} \dot{\beta}^{4} \gamma^{6}\right)}{3 c} \\
& =\frac{2 e^{2} \dot{\beta}^{2} \gamma^{6}}{3 c}\left(-\frac{1}{2 \gamma^{2}}+\Delta t^{2} \dot{\beta}^{2}\right) \\
& \approx \frac{2 e^{2} \dot{\beta}^{2} \gamma^{6}}{3 c}
\end{aligned}
$$

which agrees with equation 14.43.

4 Problem 21

4.1 Part a

Using the Coulomb force law:

$$
\begin{aligned}
F & =\frac{k q_{1} q_{2}}{R^{2}} \\
m \frac{v^{2}}{R} & =\frac{k Z e^{2}}{R^{2}} \\
\omega_{0}^{2}=\frac{v^{2}}{R^{2}} & =\frac{k Z e^{2}}{m R^{3}}
\end{aligned}
$$

Plugging this value for ω_{0} into the result from problem 14.4.b yields:

$$
\begin{aligned}
P & =\frac{2 R^{2} e^{2} \omega_{0}^{4}}{3 c^{3}} \\
& =\frac{2 R^{2} e^{2}}{3 c^{3}}\left(\frac{k Z e^{2}}{m R^{3}}\right)^{2} \\
& =\frac{2 k^{2} Z^{2} e^{6}}{3 m^{2} R^{4} c^{3}}
\end{aligned}
$$

According to the problem statement, Bohr's correspondence principle states that $P=$ $\hbar \omega_{0} / \tau \Longrightarrow 1 / \tau=P / \hbar \omega_{0}:$

$$
\begin{align*}
\frac{1}{\tau} & =\frac{P}{\hbar \omega_{0}} \\
& =\frac{2 k^{2} Z^{2} e^{6}}{3 m^{2} R^{4} c^{3} \hbar \omega_{0}} \tag{5}
\end{align*}
$$

Now, we use the Rydberg formula to find an expression for ω_{0} in terms of n (in order to get our answer in the desired form):

$$
\omega_{0}=\frac{2 \pi}{\lambda}=2 \pi R_{\mathrm{Ryd}} Z^{2}\left[-\Delta\left(\frac{1}{n^{2}}\right)\right]
$$

Where $\Delta\left(\frac{1}{n^{2}}\right)=\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}$. But since n_{1} and n_{2} are close, $\Delta\left(\frac{1}{n^{2}}\right) \approx \frac{\partial}{\partial n}\left(\frac{1}{n^{2}}\right)=-\frac{2}{n^{3}}$. Hence:

$$
\omega_{0}=4 \pi R_{\mathrm{Ryd}} \frac{Z^{2}}{n^{3}}
$$

where R_{Ryd} is the Rydberg constant: $R_{\mathrm{Ryd}}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}$. Substituting this into the above expression yields:

$$
\omega_{0}=4 \pi \frac{Z^{2} m e^{4}}{8 \varepsilon_{0}^{2} h^{3} c n^{3}}
$$

Also, the allowed orbital radius is:

$$
R=\frac{n^{2} \hbar^{2}}{Z k e^{2} m}
$$

Substituting the above two equations into equation (5) and simplifying yields:

$$
\begin{aligned}
\frac{1}{\tau} & =32 k^{6} \pi^{2} \varepsilon_{0}^{2} \frac{Z^{4} e^{10} m}{3 n^{5} \hbar^{6} c^{2}} \\
& =16 k^{4}\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \pi^{2} \varepsilon_{0}^{2} \frac{2}{3} \frac{e^{2}}{\hbar c}\left(\frac{Z e^{2}}{\hbar c}\right)^{4} \frac{m c^{2}}{\hbar} \frac{1}{n^{5}} \\
& =\frac{2}{3} \frac{k^{4} e^{2}}{\hbar c}\left(\frac{Z e^{2}}{\hbar c}\right)^{4} \frac{m c^{2}}{\hbar} \frac{1}{n^{5}}
\end{aligned}
$$

Converting to Gaussian units, we let $k=1$. Moreover, the Rydberg constant does not have a c in the denominator, which means that we need to divide the above expression by an overall factor of c. Thus, $1 / \tau$ becomes:

$$
\frac{1}{\tau}=\frac{2}{3} \frac{e^{2}}{\hbar c}\left(\frac{Z e^{2}}{\hbar c}\right)^{4} \frac{m c^{2}}{\hbar} \frac{1}{n^{5}}
$$

4.2 Part b

Setting $Z=1$ and substituting in the values of the physical constants, the result from part a becomes:

$$
\begin{aligned}
\frac{1}{\tau} & \approx 1 \times 10^{10} \frac{1}{n^{5}} \\
\Longrightarrow \tau & \approx 1 \times 10^{-10} n^{5}
\end{aligned}
$$

	n	classical	quantum
$2 p \rightarrow 1 s$	2	3.2×10^{-9}	1.6×10^{-9}
$4 f \rightarrow 3 d$	4	1.0×10^{-7}	7.3×10^{-8}
$6 h \rightarrow 5 g$	6	7.8×10^{-7}	6.1×10^{-7}

