
1 Problem 13.9

Using Jackson's equation 13.50 and the fact that n =
p
"(!) yields:

cos �c =
1

n�
(1)

Now, we know that K = ( � 1)mc2 =

�
1p
1��2

� 1

�
mc2. Solving this expression for �

yields:

� =

p
K2 + 2Kmc2

K +mc2
(2)

Plugging this into equation (1) yields:

cos �c =
K +mc2

n
p
K2 + 2Kmc2

Jackson's equation 13.48 gives us:

dE

dx
=

Z
z2e2

c2
!

�
1� 1

n2�2

�
d!

A single energy quantum (i.e., a photon) radiated will have energy ~!. Thus, the above
equation can be rewritten to express the number of quanta emitted:

dN

dx
=

Z
z2e2

~c2

�
1� 1

n2�2

�
d!

=
z2e2

~c2

�
1� 1

n2�2

�
[!max � !min]

=
z2e2

~c2

�
1� 1

n2�2

��
2�c

n�min

� 2�c

n�max

�

=
2�z2e2

n~c

�
1� 1

n2�2

��
1

�min

� 1

�max

�

For z = 1 (since we're dealing with isolated particles), n = 1:5, and �min = 4000 �A, this
equation becomes:

dN

dx
= 283

�
1� 1

1:52�2

�
cm�1 (3)

Plugging K = 1 MeV and mc2 = 0:511 MeV into equation (2) yields � = 0:941. Plugging
this into equation (3) yields dN=dx = 149 photons per cm.

Plugging K = 500 MeV and mc2 = 938 MeV into equation (2) yields � = 0:758. Plugging
this into equation (3) yields dN=dx = 64 photons per cm.

Plugging K = 5000 MeV and mc2 = 938 MeV into equation (2) yields � = 0:987. Plugging
this into equation (3) yields dN=dx = 154 photons per cm.
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2 Problem 14.4

2.1 Part a

~z = a cos (!0t) ẑ

~v = �a!0 sin (!0t) ẑ
=) ~� = �a!0

c
sin (!0t) ẑ

_~� = �a!2
0

c
cos (!0t) ẑ

The observer is located at the zenith angle � from the z-axis. Thus, the angle between n̂

and
_~� is �. Equation 14.20 becomes:

dP

d

=

e2

4�c

���n̂� �
n̂� _~�

����2

=
e2

4�c

���n̂� _~�
���2

=
e2

4�c

��� _~����2 sin2 �
=

e2a2!4
0

4�c3
cos2 (!0t) sin

2 �

The time average of cos2(!0t) is
!0
2�

R 2�=!0
0

cos2(!0t) =
1
2
. Thus, the time average of dP=d


is: �
dP

d


�
=

e2a2!4
0

8�c3
sin2 �

The polar plot of this is shown below, where
e2a2!4

0

8�c3
has been set to unity:
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The total time-averaged power radiated can be determined by integrating the above expres-
sion over solid angle:

hP i =
Z 2�

'=0

Z �

�=0

e2a2!4
0

8�c3
sin2 � sin �d�d'

=
e2a2!4

0

3c3

2.2 Part b

~x = R cos (!0t) x̂+R sin (!0t) ŷ

~v = R!0 sin (!0t) x̂�R!0 cos (!0t) ŷ

=) ~� =
R!0
c

sin (!0t) x̂� R!0
c

cos (!0t) ŷ

_~� = �R!2
0

c
cos (!0t) x̂� R!2

0

c
sin (!0t) ŷ

Because this system has azimuthal symmetry (when averaged over a full period, which is
what we will do in the next step), we can rotate the coordinate system such that the observer
lies in the x-z plane. Thus,

n̂ = cos �x̂+ sin �ẑ
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Note: here, � is not the zenith angle, but the angle between the observer's

position and the x-y plane. Equation 14.20 becomes:

dP

d

=

e2

4�c

���n̂� _~�
���2

=
e2

4�c

������det
2
4 x̂ ŷ ẑ

cos � 0 sin �

�R!2
0

c
cos (!0t) �R!2

0

c
sin (!0t) 0

3
5
������
2

=
e2

4�c

����R!
2
0

c
sin (!0t) cos �x̂� R!2

0

c
cos (!0t) cos �ŷ � R!2

0

c
sin (!0t) sin �

����
2

=
R2e2!4

0

4�c3
�
sin2 (!0t)

�
cos2 � + sin2 �

�
+ cos2 (!0t) cos

2 �
�

=
R2e2!4

0

4�c3
�
sin2 (!0t) + cos2 (!0t) cos

2 �
�

The time average of cos2(!0t) is
!0
2�

R 2�=!0
0

cos2(!0t) =
1
2
while the time average of sin2(!0t)

is !0
2�

R 2�=!0
0

sin2(!0t) =
1
2
. Thus, the time average of dP=d
 is:

�
dP

d


�
=

R2e2!4
0

8�c3
�
1 + cos2 �

�

The polar plot of this is shown below, where
R2e2!4

0

8�c3
has been set to unity:
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The total time-averaged power radiated can be determined by integrating the above expres-
sion over solid angle:

hP i =
Z 2�

'=0

Z �

�=0

R2e2!4
0

8�c3
�
1 + cos2 �

�
sin �d�d'

=
R2e2!4

0

4c3

�
2 +

2

3

�

=
2R2e2!4

0

3c3

3 Problem 14.10

3.1 Part a

Suppose the velocity is in the z-direction. Then, ~� = �ẑ and
_~� = _�ẑ, where _� is de�ned as

follows:

_� =

8><
>:
0 t < 0

��init
�t

0 � t � �t

0 t > �t

The observer is located at the zenith angle � from the z-axis. Thus, the angle between n̂

and
_~� is �. Equation 14.38 (we use this equation since we're not given that the motion is

nonrelativistic) becomes:

dP

d

=

e2

4�c

���n̂� h�
n̂� ~�

�
� _~�

i���2�
1� n̂ � ~�

�5

=
e2

4�c

���n̂� �
n̂� _~� � ~� � _~�

����2�
1� n̂ � ~�

�5

=
e2

4�c

���n̂� _~�
���2�

1� n̂ � ~�
�5

=
e2

4�c

_�2 sin2 �

(1� � cos �)5

Integrating the above expression with respect to time will yield dE=d
:

dE

d

=

e2

4�c
sin2 �

Z
1

�1

_� _�

(1� � cos �)5
dt
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Letting u = �, du = _�dt and setting the remaining _� term to its piecewise de�nition yields:

dE

d

=

e2

4�c
sin2 �

Z 0

u=�init

(��init=�t)
(1� u cos �)5

du

=
e2�2init
16�c�t

(2� �init cos �)
�
1 + (1� �init)

2
�
sin2 �

(1� �init cos �)
4

3.2 Part b

For  � 1, we only need to consider small values of �. We note that 1� � cos � occurs quite
frequently in our expression for dE=d
; this can be approximated as:

1� � cos � = 1�
�
1� 1

2

�1=2

| {z }
�1� 1

22

cos �|{z}
�1� 1

2
�2

� 1�
�
1� 1

22

��
1� 1

2
�2
�

= 1�

0
BB@1� 1

22
� 1

2
�2 +

1

4

1

2
�2|{z}
�0

1
CCA

� 1

22
+

1

2
�2

Substituting this into the result from part a yields:

dE

d

� e2�2init

16�c�t

�
1 + 1

22
+ 1

2
�2
��

1 +
�

1
22

+ 1
2
�2
�2�

sin �

�
1
22

+ 1
2
�2
�4

Expanding and replacing 2�2 with � yields:

dE

d

� e2�2init

16�c�t

168 + 44 + 8�4 + 4�24 + 86 + 22 + 6�2 + 6�22 + 8�6 + 2�32

(1 + �)4
sin2 �| {z }
��2

Note that the 8 term will dominate. Hence,

dE

d

� e2�2init

16�c�t

168

(1 + �)4
�2

Letting �2 = ��2:
dE

d

� e2�2init

�c�t

6

(1 + �)4
�
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We note that d
 = 2� sin �d� � 2��d�. Letting � =
p
��1 and d� = 1

2
��1=2�1, we �nd

that d
 = ��2 Substituting this for d
 in the above expression yields:

dE

d�
� e2�2init

4

c�t

�

(1 + �)4

p
h�2i =

p
h�=2i

=
p
h�i= (4)

h�i =
R
1

0
� dE
d�R

1

0
dE
d�

=
1=3

1=6
= 2

Plugging this into equation (4) yields:

p
h�2i =

p
2=

Integrating our expression for dE=d� with respect to � yields an expression for E:

E =
e2�24

c�t

Z
1

0

�

(1 + �)4

=
e2�24

c�t

�
1

6

�

=
e2�2

6c�t

�
1� �2

�
�2

And di�erentiating this with respect to time gives the power:

P =
e2
�
2� _�4 � 2�2 (1� �2)

�3
2� _�

�
6c�t

=
e2
�
2� _�4 � 4�3 _�6

�
6c�t

=

e2
�
2
�
��t _�

�
_�4 � 4

�
��t _�

�3
_�6

�

6c�t

=
e2
�
� _�24 + 2�t2 _�46

�
3c

=
2e2 _�26

3c

�
� 1

22
+�t2 _�2

�

� 2e2 _�26

3c

which agrees with equation 14.43.
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4 Problem 21

4.1 Part a

Using the Coulomb force law:

F =
kq1q2
R2

m
v2

R
=

kZe2

R2

!2
0 =

v2

R2
=

kZe2

mR3

Plugging this value for !0 into the result from problem 14.4.b yields:

P =
2R2e2!4

0

3c3

=
2R2e2

3c3

�
kZe2

mR3

�2

=
2k2Z2e6

3m2R4c3

According to the problem statement, Bohr's correspondence principle states that P =
~!0=� =) 1=� = P=~!0:

1

�
=

P

~!0

=
2k2Z2e6

3m2R4c3~!0
(5)

Now, we use the Rydberg formula to �nd an expression for !0 in terms of n (in order to get
our answer in the desired form):

!0 =
2�

�
= 2�RRydZ

2

�
��

�
1

n2

��

Where �
�
1
n2

�
= 1

n2
2

� 1
n2
1

. But since n1 and n2 are close, �
�
1
n2

� � @
@n

�
1
n2

�
= � 2

n3
. Hence:

!0 = 4�RRyd

Z2

n3

where RRyd is the Rydberg constant: RRyd =
me4

8"2
0
h3c

. Substituting this into the above expres-

sion yields:

!0 = 4�
Z2me4

8"20h
3cn3
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Also, the allowed orbital radius is:

R =
n2~2

Zke2m

Substituting the above two equations into equation (5) and simplifying yields:

1

�
= 32k6�2"20

Z4e10m

3n5~6c2

= 16k4
�

1

4�"0

�2

�2"20
2

3

e2

~c

�
Ze2

~c

�4
mc2

~

1

n5

=
2

3

k4e2

~c

�
Ze2

~c

�4
mc2

~

1

n5

Converting to Gaussian units, we let k = 1. Moreover, the Rydberg constant does not have
a c in the denominator, which means that we need to divide the above expression by an
overall factor of c. Thus, 1=� becomes:

1

�
=

2

3

e2

~c

�
Ze2

~c

�4
mc2

~

1

n5

4.2 Part b

Setting Z = 1 and substituting in the values of the physical constants, the result from part
a becomes:

1

�
� 1� 1010

1

n5

=) � � 1� 10�10n5

n classical quantum

2p! 1s 2 3:2� 10�9 1:6� 10�9

4f ! 3d 4 1:0� 10�7 7:3� 10�8

6h! 5g 6 7:8� 10�7 6:1� 10�7
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