1 Problem 11.6

1.1 Part a

We begin by differentiating the velocity addition formula (we will assume the space ship is
traveling parallel to the Earth):
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Letting u' = 0 because the ship is, by definition, at rest in its own instantaneous reference

frame:
du 02\ 2% du!
o1 = htadl
dt ( c? ) dt!

Letting u = v because the space ship’s velocity (according to Earth) is equal to the velocity
of the space ship’s reference frame relative to Earth’s:
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Given that dv'/dt' = g = constant,
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Solving for v yields:
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Now, we integrate both sides of the equation for time dilation:
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and substitute in equation (1):

Looking up this integral in a table, we find that it is equal to:
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For the first leg of the journey, ' = 5 years. In addition, ¢ = 9.86 m/s?, and ¢ = 3 x 10®
m/s:

Solving for ¢ in terms of ¢’ yields:

3x10% | (9.86)(5 x 3.16 x 107) 1
t = sinh X
9.86 3 x 108 3.16 x 107
= 86 years

The total journey is 4 x 70 years = 344 years. Hence, it is the year 2100 + 344 =|2444 |.

1.2 Part b

In the first two legs, the rocket ship traveled:
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2 Problem 11.11

Letting A; = *" and A, = AIAIL)

A(/\) — AQAIl — 6A(L+6L)67AL (2)



We want to prove that to first order in dL,
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where Qy = I, Q;(L,0L) = 6L and Q,(L,dL) = [L,Q,_1(L,0L)] for n > 2. Replacing the
left hand side of equation (3) with the Taylor series of A(\) yields:

Hence, it is sufficient to prove:

We will prove this by induction.
We begin by showing that this holds for n =0 and n = 1:

A =1 v

AW©0) = (L +6L) - L=6L v
Now, we assume that to first order, A™(0) = Q,(L, 5L) in order to prove that to first
order, A"*D(0) = Q,1(L,8L). Now, we assume f(™(0) = Q,(A, B) in order to prove that
FFD(0) = Quy1 (A, B) (induction).

A™(0) = Q. (A, B) = [L, Qu_1(L,5L)]
= AM(0) = [L, A" V(0)] = LAV(0) — ADL

Taking the derivative of both sides,

ATD(0) = LA™ (0) — AW L = [L, A™(0)]
= [L, 0, (L,5L)]
- Qn—H (L, 5L>

Hence, we have proved equation (3) by induction.
AM(0) = Q,(L, L)

Letting A = 1 in equation (3) and expanding the summation yields:

L+ [L+60) +
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5L +6L]+



3 Problem 11.14

3.1 Part a
3.1.1 F*F,;

We solve for the Lorentz scalar F*F,4:
FFo5 = —F* Fgq
= —F*Fg.0°

We know that F*F, By is index notation for matrix multiplication and 07 takes the trace of
the resulting multiplication. Hence:

FF,5 = —trace (F*P Fg,) (4)
where FP is defined in Jackson’s equation 11.137:
0 —-E, —E, —E,
E, 0 -B, B,

E, B. 0 -B,
E, -B, B, 0

FoB —

To find F,g, we invert the signs on only the first row and first column (or, just using Jackson’s
equation 11.138 also works):

0O E, E, E,
~E, 0 -B, B,
~B, B, 0 -—B,
~E, -B, B, 0

F,g =

Plugging these matrices into equation (4) yields:

0 -FE, -FE, L, 0 E, E, E,
0 —-B, B —-E 0 -B
af _ T z Y x z Y
FPFap = —trace \ \p g o _B||-E, B. 0 -B
E, -B, B, 0 -K, -B, B, 0
=2B] 4+ 2B] + 2B — 2K, — 2E, — 2E”
=2(Bf* - [E[)
3.1.2 FF,4
Next, we solve for the Lorentz scalar .FO‘BF(W:
FPFog = —F*’ F,
= —F* Fy,02



F*PFo5 = —trace (F*2 Fgq) (5)
where F®# is defined in equation 11.140:
0 -B, —-B, —B,
B, 0 E, -E,
B, -E, 0 E,
B, £, —-E, 0

Fob —

To find Fpg, we invert the signs on only the first row and first column:

0 B, B, B,
B, 0 E, -—E,
-B, —E, 0 B,
-B, E, -E, 0

F.5 =

Plugging the matrices F*# and F,z into equation (5) yields:
0 -B, -B, -B] [0 E E E,

B 0 E, —-FE —-E 0 —-B, B
af _ T z Y T z y
Frbp=—wmcel \p g 0 & ||-BE B 0 -B
B, B, -E, 0 -L., -B, B, 0
= —-4B,FE, —4B,FE, — 4B,E,
=—4E-B
3.1.3 FPF.;s
Finally, we solve for the Lorentz scalar F° F,g:
FP Fop = —F* Fp,
= —F* Fp,0°
}"O‘B}"ag = —trace (J:aﬁfﬁa) (6)

Plugging the matrices F*# and F,g into equation (6) (defined above) yields:
0 -E, —-E, —EJ][0 B, B, B
E

0 -B, B -B, 0 —E
af _ T z Y T z Y
FPFap=—trace |\ \p g o _B||-B, -E. 0 B
E, -B, B, 0 -B, E, —-E, 0
=2E; +2E + 2E; — 2B, — 2B, — 2B

2 2
=2 (|E[" - |Bf)

Because |B|”> — |E|*, |[E[* — |B[*, and E - B are the only three possible ways we can combine

vectors E and B to produce scalars which are quadratic in E and B, there are not any other

invariants quadratic in the field strengths E and B.

5



3.2 Part b

No. Proof by contradiction:

Assume that there exists one reference frame in which we see a purely electric field (i.e.,
|IB| = 0) and another frame where we see a purely magnetic field (i.e., |E| = 0), disregarding
the trivial case where |[E| = |B| = 0.

We have just shown that [E[> — |B|” is an invariant— that is, it must remain constant across
all inertial frames. This invariant is equal to |E|* in the frame where |B| = 0 and it’s equal
to — |B|” in the frame where |E| = 0. Hence:

Bl =~ |B[

which is impossible since the square of a magnitude of a vector cannot be negative. So, no,
it is not possible to have an electromagnetic field which appears as a purely electric field in
one inertial frame and appears as a purely magnetic field in another inertial frame.

Let S be a reference frame where there exists a nonzero electric field and let S’ be a reference
frame where the electric field vanishes. Equating the invariants between these two fields
yields:

B - [E[ = |B|" = [E[’=|B["~[B’
E-B=0

B[ < |BJ?
=
E-B=0
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