1 Problem 11.6

1.1 Part a

We begin by differentiating the velocity addition formula (we will assume the space ship is traveling parallel to the Earth):

$$
\begin{aligned}
u & =\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}} \\
\frac{d u}{d t} & =\frac{\left(1+\frac{u^{\prime} v}{c^{2}}\right)\left(\frac{d u^{\prime}}{d t}+\frac{d \chi^{\prime}}{d t}\right)-\left(u^{\prime}+v\right) \frac{1}{c^{2}}\left(\frac{d u^{\prime}}{d t} v+u^{\prime} \frac{d y^{\prime}}{d t}\right)^{0}}{\left(1+\frac{u^{\prime} v}{c^{2}}\right)^{2}} \\
& =\frac{1-\frac{v^{2}}{c^{2}}}{\left(1+\frac{u^{\prime} v}{c^{2}}\right)^{2}} \frac{d u^{\prime}}{d t^{\prime}} \underbrace{\frac{d t^{\prime}}{d t}}_{1 / \gamma}
\end{aligned}
$$

Letting $u^{\prime}=0$ because the ship is, by definition, at rest in its own instantaneous reference frame:

$$
\frac{d u}{d t}=\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2} \frac{d u^{\prime}}{d t^{\prime}}
$$

Letting $u=v$ because the space ship's velocity (according to Earth) is equal to the velocity of the space ship's reference frame relative to Earth's:

$$
\begin{aligned}
\frac{d v}{d t} & =\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2} \frac{d v^{\prime}}{d t^{\prime}} \\
\int \frac{d v}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}} & =\int \frac{d v^{\prime}}{d t^{\prime}} d t
\end{aligned}
$$

Given that $d v^{\prime} / d t^{\prime}=g=$ constant,

$$
\frac{v}{\sqrt{1-\frac{v^{2}}{v^{2}}}}=g t
$$

Solving for v yields:

$$
\begin{equation*}
v=\frac{g t}{\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}} \tag{1}
\end{equation*}
$$

Now, we integrate both sides of the equation for time dilation:

$$
\begin{aligned}
\int d t^{\prime} & =\int \frac{d t}{\gamma} \\
t^{\prime} & =\int \sqrt{1-\frac{v^{2}}{c^{2}}} d t
\end{aligned}
$$

and substitute in equation (1):

$$
\begin{aligned}
t^{\prime} & =\int \sqrt{1-\frac{g^{2} t^{2}}{c^{2}\left(1+\frac{g^{2} t^{2}}{c^{2}}\right)}} d t \\
& =\int\left(1+\frac{g^{2} t^{2}}{c^{2}}\right)^{-1 / 2} d t
\end{aligned}
$$

Looking up this integral in a table, we find that it is equal to:

$$
t^{\prime}=\frac{c}{g} \operatorname{arcsinh}\left(\frac{g t}{c}\right)
$$

Solving for t in terms of t^{\prime} yields:

$$
t=\frac{c}{g} \sinh \left(\frac{g t^{\prime}}{c}\right)
$$

For the first leg of the journey, $t^{\prime}=5$ years. In addition, $g=9.86 \mathrm{~m} / \mathrm{s}^{2}$, and $c=3 \times 10^{8}$ m / s :

$$
\begin{aligned}
t & =\frac{3 \times 10^{8}}{9.86} \sinh \left(\frac{(9.86)\left(5 \times 3.16 \times 10^{7}\right)}{3 \times 10^{8}}\right) \times \frac{1}{3.16 \times 10^{7}} \\
& =86 \text { years }
\end{aligned}
$$

The total journey is 4×70 years $=344$ years. Hence, it is the year $2100+344=2444$.

1.2 Part b

In the first two legs, the rocket ship traveled:

$$
\begin{aligned}
d & =2 \int_{0}^{T} v d t \\
& =2 \int_{0}^{5 \times 3.16 \times 10^{7}} \frac{g t}{\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}} d t \\
& =7.83 \times 10^{16} \mathrm{~m}
\end{aligned}
$$

2 Problem 11.11

Letting $A_{1}=e^{\lambda L}$ and $A_{2}=e^{\lambda(L+\delta L)}$,

$$
\begin{equation*}
A(\lambda)=A_{2} A_{1}^{-1}=e^{\lambda(L+\delta L)} e^{-\lambda L} \tag{2}
\end{equation*}
$$

We want to prove that to first order in δL,

$$
\begin{equation*}
A(\lambda)=\sum_{n=0}^{\infty} \frac{\lambda}{n!} \Omega_{n}(L, \delta L) \tag{3}
\end{equation*}
$$

where $\Omega_{0}=I, \Omega_{1}(L, \delta L)=\delta L$ and $\Omega_{n}(L, \delta L)=\left[L, \Omega_{n-1}(L, \delta L)\right]$ for $n \geq 2$. Replacing the left hand side of equation (3) with the Taylor series of $A(\lambda)$ yields:

$$
\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} A^{(n)}(0)=\sum_{n=0}^{\infty} \frac{\lambda}{n!} \Omega_{n}(L, \delta L)
$$

Hence, it is sufficient to prove:

$$
A^{(n)}(0)=\Omega_{n}(L, \delta L)
$$

We will prove this by induction.
We begin by showing that this holds for $n=0$ and $n=1$:

$$
\begin{aligned}
& A^{(0)}(0)=I \checkmark \\
& A^{(1)}(0)=(L+\delta L)-L=\delta L \checkmark
\end{aligned}
$$

Now, we assume that to first order, $A^{(n)}(0)=\Omega_{n}(L, \delta L)$ in order to prove that to first order, $A^{(n+1)}(0)=\Omega_{n+1}(L, \delta L)$. Now, we assume $f^{(n)}(0)=\Omega_{n}(A, B)$ in order to prove that $f^{(n+1)}(0)=\Omega_{n+1}(A, B)$ (induction).

$$
\begin{aligned}
A^{(n)}(0) & =\Omega_{n}(A, B)=\left[L, \Omega_{n-1}(L, \delta L)\right] \\
\Longrightarrow A^{(n)}(0) & =\left[L, A^{(n-1)}(0)\right]=L A^{(n-1)}(0)-A^{(n-1)} L
\end{aligned}
$$

Taking the derivative of both sides,

$$
\begin{aligned}
A^{(n+1)}(0) & =L A^{(n)}(0)-A^{(n)} L=\left[L, A^{(n)}(0)\right] \\
& =\left[L, \Omega_{n}(L, \delta L)\right] \\
& =\Omega_{n+1}(L, \delta L)
\end{aligned}
$$

Hence, we have proved equation (3) by induction.

$$
A^{(n)}(0)=\Omega_{n}(L, \delta L)
$$

Letting $\lambda=1$ in equation (3) and expanding the summation yields:

$$
A=I+\delta L+\frac{1}{2!}[L+\delta L]+\frac{1}{3!}[L+[L+\delta L]]+\ldots
$$

3 Problem 11.14

3.1 Part a

3.1.1 $\quad F^{\alpha \beta} F_{\alpha \beta}$

We solve for the Lorentz scalar $F^{\alpha \beta} F_{\alpha \beta}$:

$$
\begin{aligned}
F^{\alpha \beta} F_{\alpha \beta} & =-F^{\alpha \beta} F_{\beta \alpha} \\
& =-F^{\alpha \beta} F_{\beta \gamma} \delta_{\gamma}^{\alpha}
\end{aligned}
$$

We know that $F^{\alpha \beta} F_{\beta \gamma}$ is index notation for matrix multiplication and δ_{γ}^{α} takes the trace of the resulting multiplication. Hence:

$$
\begin{equation*}
F^{\alpha \beta} F_{\alpha \beta}=-\operatorname{trace}\left(\boldsymbol{F}^{\alpha \beta} \boldsymbol{F}_{\boldsymbol{\beta} \boldsymbol{\alpha}}\right) \tag{4}
\end{equation*}
$$

where $\boldsymbol{F}^{\alpha \beta}$ is defined in Jackson's equation 11.137:

$$
\boldsymbol{F}^{\boldsymbol{\alpha} \beta}=\left[\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right]
$$

To find $\boldsymbol{F}_{\boldsymbol{\alpha} \boldsymbol{\beta}}$, we invert the signs on only the first row and first column (or, just using Jackson's equation 11.138 also works):

$$
\boldsymbol{F}_{\boldsymbol{\alpha} \boldsymbol{\beta}}=\left[\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right]
$$

Plugging these matrices into equation (4) yields:

$$
\begin{aligned}
F^{\alpha \beta} F_{\alpha \beta} & =-\operatorname{trace}\left(\left[\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right]\right) \\
& =2 B_{x}^{2}+2 B_{y}^{2}+2 B_{z}^{2}-2 E_{x}^{2}-2 E_{y}^{2}-2 E_{z}^{2} \\
& =2\left(|\mathbf{B}|^{2}-|\mathbf{E}|^{2}\right)
\end{aligned}
$$

3.1.2 $\quad \mathcal{F}^{\alpha \beta} F_{\alpha \beta}$

Next, we solve for the Lorentz scalar $\mathcal{F}^{\alpha \beta} F_{\alpha \beta}$:

$$
\begin{aligned}
\mathcal{F}^{\alpha \beta} F_{\alpha \beta} & =-\mathcal{F}^{\alpha \beta} F_{\beta \alpha} \\
& =-\mathcal{F}^{\alpha \beta} F_{\beta \gamma} \delta_{\gamma}^{\alpha}
\end{aligned}
$$

$$
\begin{equation*}
\mathcal{F}^{\alpha \beta} F_{\alpha \beta}=-\operatorname{trace}\left(\mathcal{F}^{\alpha \beta} \boldsymbol{F}_{\boldsymbol{\beta} \boldsymbol{\alpha}}\right) \tag{5}
\end{equation*}
$$

where $\mathcal{F}^{\alpha \beta}$ is defined in equation 11.140:

$$
\mathcal{F}^{\boldsymbol{\alpha} \beta}=\left[\begin{array}{cccc}
0 & -B_{x} & -B_{y} & -B_{z} \\
B_{x} & 0 & E_{z} & -E_{y} \\
B_{y} & -E_{z} & 0 & E_{x} \\
B_{z} & E_{y} & -E_{x} & 0
\end{array}\right]
$$

To find $\boldsymbol{F}_{\boldsymbol{\alpha} \boldsymbol{\beta}}$, we invert the signs on only the first row and first column:

$$
\mathbf{F}_{\alpha \beta}=\left[\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & E_{z} & -E_{y} \\
-B_{y} & -E_{z} & 0 & E_{x} \\
-B_{z} & E_{y} & -E_{x} & 0
\end{array}\right]
$$

Plugging the matrices $\mathcal{F}^{\boldsymbol{\alpha} \beta}$ and $\boldsymbol{F}_{\boldsymbol{\alpha} \boldsymbol{\beta}}$ into equation (5) yields:

$$
\begin{aligned}
F^{\alpha \beta} F_{\alpha \beta} & =-\operatorname{trace}\left(\left[\begin{array}{cccc}
0 & -B_{x} & -B_{y} & -B_{z} \\
B_{x} & 0 & E_{z} & -E_{y} \\
B_{y} & -E_{z} & 0 & E_{x} \\
B_{z} & E_{y} & -E_{x} & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right]\right) \\
& =-4 B_{x} E_{x}-4 B_{y} E_{y}-4 B_{z} E_{z} \\
& =-4 \mathbf{E} \cdot \mathbf{B}
\end{aligned}
$$

3.1.3 $\quad \mathcal{F}^{\alpha \beta} \mathcal{F}_{\alpha \beta}$

Finally, we solve for the Lorentz scalar $\mathcal{F}^{\alpha \beta} \mathcal{F}_{\alpha \beta}$:

$$
\begin{align*}
\mathcal{F}^{\alpha \beta} \mathcal{F}_{\alpha \beta} & =-\mathcal{F}^{\alpha \beta} \mathcal{F}_{\beta \alpha} \\
& =-\mathcal{F}^{\alpha \beta} \mathcal{F}_{\beta \gamma} \delta_{\gamma}^{\alpha} \\
\mathcal{F}^{\alpha \beta} \mathcal{F}_{\alpha \beta}= & -\operatorname{trace}\left(\mathcal{F}^{\alpha \beta} \mathcal{F}_{\beta \alpha}\right) \tag{6}
\end{align*}
$$

Plugging the matrices $\mathcal{F}^{\boldsymbol{\alpha} \beta}$ and $\boldsymbol{F}_{\boldsymbol{\alpha} \boldsymbol{\beta}}$ into equation (6) (defined above) yields:

$$
\begin{aligned}
F^{\alpha \beta} F_{\alpha \beta} & =-\operatorname{trace}\left(\left[\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & E_{z} & -E_{y} \\
-B_{y} & -E_{z} & 0 & E_{x} \\
-B_{z} & E_{y} & -E_{x} & 0
\end{array}\right]\right) \\
& =2 E_{x}^{2}+2 E_{y}^{2}+2 E_{z}^{2}-2 B_{x}^{2}-2 B_{y}^{2}-2 B_{z}^{2} \\
& =2\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right)
\end{aligned}
$$

Because $|\mathbf{B}|^{2}-|\mathbf{E}|^{2},|\mathbf{E}|^{2}-|\mathbf{B}|^{2}$, and $\mathbf{E} \cdot \mathbf{B}$ are the only three possible ways we can combine vectors \mathbf{E} and \mathbf{B} to produce scalars which are quadratic in \mathbf{E} and \mathbf{B}, there are not any other invariants quadratic in the field strengths \mathbf{E} and \mathbf{B}.

3.2 Part b

No. Proof by contradiction:
Assume that there exists one reference frame in which we see a purely electric field (i.e., $|\mathbf{B}|=0$) and another frame where we see a purely magnetic field (i.e., $|\mathbf{E}|=0$), disregarding the trivial case where $|\mathbf{E}|=|\mathrm{B}|=0$.
We have just shown that $|\mathbf{E}|^{2}-|\mathbf{B}|^{2}$ is an invariant- that is, it must remain constant across all inertial frames. This invariant is equal to $|\mathbf{E}|^{2}$ in the frame where $|\mathbf{B}|=0$ and it's equal to $-|\mathbf{B}|^{2}$ in the frame where $|\mathbf{E}|=0$. Hence:

$$
|\mathbf{E}|^{2}=-|\mathbf{B}|^{2}
$$

which is impossible since the square of a magnitude of a vector cannot be negative. So, no, it is not possible to have an electromagnetic field which appears as a purely electric field in one inertial frame and appears as a purely magnetic field in another inertial frame.

Let S be a reference frame where there exists a nonzero electric field and let S^{\prime} be a reference frame where the electric field vanishes. Equating the invariants between these two fields yields:

$$
\begin{aligned}
|\mathbf{B}|^{2}-|\mathbf{E}|^{2} & =\left|\mathbf{B}^{\prime}\right|^{2} \Longrightarrow|\mathbf{E}|^{2}=|\mathbf{B}|^{2}-\left|\mathbf{B}^{\prime}\right|^{2} \\
\mathbf{E} \cdot \mathbf{B} & =0
\end{aligned}
$$

$$
\Longrightarrow\left\{\begin{array}{l}
|\mathbf{E}|^{2}<|\mathbf{B}|^{2} \\
\mathbf{E} \cdot \mathbf{B}=0
\end{array}\right.
$$

