1 Problem 11.8 (part a only)

Substituting $k_{0}=\omega / c$ into Jackson's equation 11.29:

$$
\begin{aligned}
k_{0}^{\prime} & =\gamma\left(k_{0}-\vec{\beta} \cdot \vec{k}\right) \\
\frac{\omega^{\prime}}{c} & =\gamma\left(\frac{\omega}{c}-\beta k\right)
\end{aligned}
$$

Note that since we're given that the light is either parallel or anti-parallel to the velocity of the fluid, $\vec{\beta} \cdot \vec{k}=\beta k$.
Approximating this to first-order, we realize that β is small while $\gamma \approx 1$:

$$
\begin{align*}
& \frac{\omega^{\prime}}{c} \approx \frac{\omega}{c}-\beta k \\
& \omega-\omega^{\prime} \approx-c \beta\left(\frac{\omega}{u}\right) \\
&=-c \beta \omega \frac{\omega}{(c / n)} \\
& \omega-\omega^{\prime}=-\beta \omega n \tag{1}
\end{align*}
$$

Solving for $n(\omega)$:

$$
n(\omega)=-\frac{\omega-\omega^{\prime}}{\beta \omega}
$$

Taylor expanding about $\omega=\omega^{\prime}$:

$$
n(\omega) \approx n\left(\omega^{\prime}\right)+\left.\frac{\omega-\omega^{\prime}}{1!} \frac{\partial n}{\partial \omega}\right|_{\omega=\omega^{\prime}}
$$

Substituting in equation (1):

$$
\begin{aligned}
n(\omega) & \approx n\left(\omega^{\prime}\right)+\left.(-\beta \omega n) \frac{\partial n}{\partial \omega}\right|_{\omega=\omega^{\prime}} \\
& \approx n(\omega)-\beta \omega n \frac{\partial n(\omega)}{\partial \omega}
\end{aligned}
$$

where we've let $\omega^{\prime} \approx \omega$.

$$
\begin{align*}
\frac{1}{n(\omega)} & \approx \frac{1}{n(\omega)}\left[1-\beta \omega \frac{\partial n(\omega)}{\partial \omega}\right]^{-1} \\
& \approx \frac{1}{n(\omega)}\left[1+\beta \omega \frac{\partial}{\partial \omega}\right] \tag{2}
\end{align*}
$$

where we've used a first-order binomial series approximation.

$$
\begin{align*}
\frac{1}{n^{2}(\omega)} & \approx \frac{1}{n^{2}(\omega)}\left[1-\beta \omega \frac{\partial n(\omega)}{\partial \omega}\right]^{-2} \\
& \approx \frac{1}{n^{2}(\omega)}\left[1+2 \beta \omega \frac{\partial n(\omega)}{\partial \omega}\right] \tag{3}
\end{align*}
$$

Now, we use the velocity addition formula, noting that the velocity of the fluid is either parallel or anti-parallel to the light:

$$
\begin{aligned}
u & =\frac{u^{\prime}+v}{1+u^{\prime} v / c^{2}} \\
& =\frac{\frac{c}{n^{\prime}}+v}{1+\beta / n^{\prime}}=\frac{c}{n^{\prime}} \frac{1+\beta n^{\prime}}{1+\beta / n^{\prime}} \\
& \approx \frac{c}{n^{\prime}}\left(1+\beta n^{\prime}\right)\left(1-\frac{\beta}{n^{\prime}}\right) \\
& =\frac{c}{n^{\prime}}\left(1+\beta n^{\prime}-\frac{\beta}{n^{\prime}}\right) \\
& \approx \frac{c}{n^{\prime}}+v-\frac{v}{n^{\prime 2}}
\end{aligned}
$$

Because $n^{\prime}=n\left(\omega^{\prime}\right)$ and $\omega \approx \omega^{\prime}$, we can substitute in equations (2) and (3):

$$
\begin{aligned}
u & \approx \frac{c}{n(\omega)}\left[1+\beta \omega \frac{\partial n(\omega)}{\partial \omega}\right]+v-\frac{v}{n^{2}(\omega)}\left[1+2 \beta \omega \frac{\partial n(\omega)}{\partial \omega}\right] \\
& =\frac{c}{n(\omega)}+\frac{v \omega}{n(\omega)} \frac{\partial n(\omega)}{\partial \omega}+v-\frac{v}{n^{2}(\omega)}+2 \frac{\beta v \omega}{n^{2}(\omega)} \frac{\partial n(\omega)}{\partial \omega} \\
& =\frac{c}{n(\omega)}+v\left[1-\frac{1}{n^{2}(\omega)}+\frac{\omega}{n(\omega)} \frac{\partial n(\omega)}{\partial \omega}+2 \frac{\beta \omega}{n^{2}(\omega)} \frac{\partial n(\omega)}{\partial \omega}\right]
\end{aligned}
$$

Dropping the last term (because β is small) yields:

$$
u \approx \frac{c}{n(\omega)}+v\left[1-\frac{1}{n^{2}(\omega)}+\frac{\omega}{n(\omega)} \frac{\partial n(\omega)}{\partial \omega}\right]
$$

recalling that v may be either parallel (in which case v is positive) or anti-parallel (in which case v is negative) to the light.

