
7.3 Problem 7.3

We have two semi-in�nite slabs of dielectric material with � = �0 and equal indices of
refraction n > 1, with an air gap (n = 1) of thickness d between them. Let the surfaces be
in the x; y plane, with the gap being z 2 [0; d] and the incident wave coming from z < 0. In
the �rst material we have an incident wave

~E(~x) = ~E0e
i~k�~x�i!t

~B(~x) = ~k � ~E(~x)=!

but we also have a reected wave

~ER(~x) = ~ERe
i~kR�~x�i!t

~BR(~x) = ~kR � ~ER(~x)=!

In the air gap, we may have two waves with oscillatory behavior or exponential behavior in
z. We may write either case as

~E(~x) = ~Eg1e
i~kg1�~x�i!t + ~Eg2e

i~kg2�~x � i!t

~B(~x) = ~kg1 � ~Eg1(~x)=! + ~kg2 � ~Eg2(~x)=!

but remembering that the z components of the wavenumbers may be imaginary.

The second slab has only an outgoing wave

~E(~x) = ~E2e
i~k2�~x�i!t

~B(~x) = ~k2 � ~E2(~x)=!

The squares of the wavenumbers are determined by the indices of refraction and !:

k = kR = k2 = n!=c

k2g1 = k2g2 = !2=c2

but we must keep in mind that
�
~kg1

�
z
may be imaginary, in which case k2g1 = k2g1 x+k

2
g1 y�

jkg1 zj2.
As for the single interface discussion, we may chose x so that the incident wave is in the x; z
plane. As the wave equations and the boundary conditions are invariant under translations
in the x and y directions, we can Fourier transform in those directions and see that the
equations involve only the same values for the kx's and for the ky's, so

kx = kR x = kg1 x = kg2 x = k2 x

ky = kR y = kg1 y = kg2 y = k2 y = 0
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From the equality of the kx's and the relations among the k2'2 we have kz = �kR z = k2 z =

k cos i, and kg1 z = �kg2 z =
q
k2g1 � k2x = k

p
n�2 = sin2 i = k cos r=n, with the angle of

reection for ~kR and the angle of ~k2 equal to the angle of incidence i, and the angle of
reection, r given by Snell's law n sin i = sin r. Note kgi x will be imaginary if n sin i > 1,
and r will then be complex.

Finally, we can divide the problem into a part (E?) for which ~E0 is perpendicular to the plane

of incidence ( ~E k �êy) and part (E ) in which it lies in the plane of incidence (E0 y = 0), in

which case ~B k �êy in the �rst material.

As the problem is invariant under reection in the y = 0 plane, in the (E?) case all �elds

are reversed, so all of the ~E's are in the �y direction, and all the ~Bs are in the x; z plane. In
the (Ek) case reection in the y = 0 plane changes none of the incident �elds, and therefore

none of the others, so all the ~Ey's vanish, and all the ~B's are perpendicular to the plane of
incidence. The boundary conditions are continuity of Dz, Bz, Ex, Ey, Hx, and Hy at each
of the two boundaries.

The ~Ek case:

We will now consider the case where all the ~E �elds lie in the plane of incidence. See below
for a picture with all of the Ex's positive if the corresponding amplitudes E are positive.
This is di�erent from what Jackson did.

From the continuity of Ex,

(E0 + ER) cos i = (Eg1 + Eg2) cos r�
Eg1e

ikd(cos r)=n + Eg2e
�ikd(cos r)=n

�
cos r = E2e

ikd cos i cos i

and continuity of Hy gives

n(E0 � ER) = Eg1 � Eg2

nE2e
ikd cos i = Eg1e

ikd(cos r)=n � Eg2e
�ikd(cos r)=n
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To simplify our algebra, let A = eikd(cos r)=n and B = eikd cos i, so the second and fourth
equations become

E2B cos i =
�
Eg1A+ Eg2A

�1
�
cos r

E2Bn = Eg1A� Eg2A
�1

giving

Eg1A cos i� Eg2A
�1 cos i = Eg1An cos r � Eg2A

�1n cos r

=) Eg2 = �A2Eg1
n cos r � cos i

n cos r + cos i
= �A2Eg1

1� �

1 + �

with:

� =
cos i

n cos r

Plugging back into the �rst interface forms,

(ER + E0) =

�
�A21� �

1 + �
+ 1

�
Eg1

np
=

(1� A2) + �(1 + A2)

n�(1 + �)
Eg1

n (E0 � ER) = Eg1 � Eg2 =

�
A21� �

1 + �
+ 1

�
Eg1

so
E0 + ER

E0 � ER
=

1

�

1� A2 + �(1 + A2)

1 + A2 + �(1� A2)

Note as A = ei' with ' = kd(cos r)=n, 1+A2

1�A2 =
1+e2i'

1�e2i'
= i cot', we get:

ER

E0
=

(1� �2)(1� A2)

1� A2 + 2�(1 + A2) + �2(1� A2)
=

1� �2

1 + 2i� cos'+ �2

Provided the angle of incidence is less than the angle of total reection, � and cot' are real,
and the reection coe�cient is����ER

E0

����2 = (1� �2)2

(1 + �2)2 + r�2 cot2 '

This will have maxima and minima according to the phase �, maxima when it is a multiple of

� and minima halfway between those. On the other hand, if n sin i > 1, � = in
p
n2 sin2 i� 1

and cot� is imaginary and goes to i, without oscillations, Of course in either case the
transmission coe�cient is 1 the reection coe�cient.

Below is a plot of the transmission coe�cient with n = 1:5 and \i = 1 rad, for kd 2 [0; 3].
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7.16 Problem 7.16

7.16.1 Part a

Starting with equations 7.1 and assuming that ~B and ~E have solutions with harmonic time
dependence:

r� ~E +
@ ~B

@t
= 0 =) r� ~E � i! ~B = 0

1

�0
r� ~B � "0

@ ~E

@t
= 0 =) 1

�0
r� ~B + i! ~D = 0

Fourier transforming the above two equations, noting that r , i~k:

i~k � ~E � i! ~B = 0

i~k � ~B + i!�0 ~D = 0

Solving the �rst equation for ~B and plugging it into the second equation yields:

i~k �
 
~k � ~E

!

!
+ i!�0 ~D = 0

~k �
�
~k � ~E

�
+ !2�0 ~D = 0
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7.16.2 Part b

We start by expanding the result from the previous problem using the BAC-CAB rule:

k2n̂
�
n̂� ~E

�
+ !2�0 ~D = 0

k2
�
n̂
�
n̂ � ~E�� ~E (n̂ � n̂)| {z }

1

�
+ !2�0 ~D = 0

ni(njEj)� Ei +
!2

k2|{z}
v2

�0 Di|{z}
"iEi

= 0

ninjEj � Ei + v2 �0"i|{z}
1=v2i

Ei = 0

ninjEj � Ei +
v2Ei

v2i
= 0

We now �nd the three components of both sides of the above equation, remembering that
we're implicitly summing over j in the above equation.2

4n1 (n1E1 + n2E2 + n3E3)� E1

n2 (n1E1 + n2E2 + n3E3)� E2

n3 (n1E1 + n2E2 + n3E3)� E3

3
5+ v2

2
4E1=v

2
1

E2=v
2
2

E3=v
2
3

3
5 = 0

2
4(n1n1 � 1)E1 + n1n2E2 + n1n3E3

n2n1E1 + (n2n2 � 1)E2 + n2n3E3

n3n1E1 + n3n2E2 + (n3n3 � 1)E3

3
5+ v2

2
4E1=v

2
1

E2=v
2
2

E3=v
2
3

3
5 = 0

0
BBBB@
2
4n21 � 1 n1n2 n1n3
n2n1 n22 � 1 n2n3
n3n1 n3n2 n23 � 1

3
5

| {z }
A

+v2

2
41=v21 0 0

0 1=v22 0
0 0 1=v23

3
5

| {z }
B

1
CCCCA
2
4E1

E2

E3

3
5 = 0

Hence, solutions to v2 are eigenvalues of A. We can solve for v2 using the characteristic
equation, det(A + v2B) = 0. Taking the determinant of A + v2B in Maple yields the
following (where we have rearranged some terms for reasons which will become immediately
apparent), and using the fact that n21 + n22 + n23 = 1:

v2

v1v2v3

�
v4 + v22v

2
3 � n22v

2
2v

2
3 � n23v

2
2v

2
3| {z }

n2
1
v2
2
v2
3

+n22v
2v22 � v2v22| {z }

�v2v2
2
(n2

1
+n2

3
)

+n23v
2v23 � v2v23| {z }

v2v2
3
(n2

1
+n2

2
)

+ v21v
2
3 � n21v

2
1v

2
3 � n23v

2
1v

2
3| {z }

n2
2
v2
1
v2
3

+ n21v
2v21 � v2v21| {z }

v2v2
1
(n2

2
+n2

3
)

+ v21v
2
2 � n21v

2
1v

2
2 � n22v

2
1v

2
2| {z }

n2
3
v2
1
v2
2

�
+ n21 + n22 + n23 � 1| {z }

0

= 0
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v2

v1v2v3

�
n21(v

4 + v22v
2
3 � v2v22 � v2v23)

+n22(v
4 + v2v23 + v21v

2
3 � v2v21)

+n23(v
4 + v2v22 � v2v21 + v21v

2
2)
�
= 0

v2

v1v2v3

�
n21(v

2 � v22)(v
2 � v23) + n22(v

2 � v21)(v
2 � v23) + n23(v

2 � v21)(v
2 � v22)

�
= 0

Dividing both sides of this equation by (v2 � v21)(v
2 � v22)(v

2 � v23) yields:

v2

v1v2v3

�
n21

v2 � v21
+

n22
v2 � v22

+
n23

v2 � v21

�
= 0

v2

v1v2v3

"
3X

i=1

n2i
v2 � v2i

#
= 0

There are three solutions for v: 0, v+, and v� (where the last two solutions can be found using
the quadratic equation, which yields two solutions). The two nontrivial solutions satisfy the
Fresnel equation, which is when the term in brackets in the above equation is zero. That is:

3X
i=1

n2i
v2� � v2i

= 0

7.16.3 Part c

From our solution to part a, we obtain, for a wave in mode a:

�
~n � ~Ea

�
~n� ~Ea = ��0!

2

k2
" � ~Ea = �v2a ~Da

where ~n = ~k=k is a unit vector in the ~k direction, and v2a = �0!
2=k2, which may be di�erent

for the di�erent modes, as the phase velocity may depend on the polarization.

Dot this into ~Db for another mode with the same ~n, giving:

~Db � ~Dav
2
a = ~Db �

�
~Ea �

�
~n � ~Ea~n

��
= ~Db � ~Ea

because ~n � ~E = 0. Of course, the same applies with a$ b, so:

~Db � ~Da

�
v2a � v2b

�
= ~Db � ~Ea � ~D � ~Eb

But:
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~Db � ~Ea =
X
i

"iE
a
i E

b
i = ~Da � ~Eb

so,

~Db � ~Da

�
v2a � v2b

�
= 0

and if the two modes have di�erent phase velocities (va 6= vb), then:

~Db � ~Da = 0

8.5 Problem 8.5

8.5.1 Part a

For the simply-connected triangular region the modes will be either TE or TM, with the
longitudinal Bz or Ez given by a solution  of the Helmholtz equation (r2

t + 2) = 0 with
boundary conditions @ =@njS = 0 or  jS = 0 respectively.

Any such solution on the triangle 0 � x � a, y � x � a can be extended to a solution on
the square 0 � x � a, 0 � y � a by de�ning  (x; y)jy>x = � (y; x), with the plus sign for
the Neumann (TE) case and the minus sign for the Dirichlet (TM) case. The vanishing on
x = y in the TM case insures continuity, which is automatic with the plus sign in the TE
case. The normal derivative is is zero and continuous due to the plus sign in the TE case,
but is automatic with the minus sign for the TM case.

So the solutions for the triangle must be combinations of solutions for the square, but with
symmetry or antisymmetry under x $ y for TE and TM modes respectively. In terms of
the functions in 8.135 and 8.136, this means

TM : Ezmn = E0

h
sin
�m�x

a

�
sin
�n�y

a

�
� sin

�m�y
a

sin
�n�x

a

��i
TE : Hzmn = H0

h
cos
�m�x

a

�
cos
�n�y

a

�
� cos

�m�y
a

cos
�n�x

a

��i
as mn = �

a

p
m2 + n2. For our purposes we do not need to calculate the normalization

constants E0 and H0.

Thus all the modes are the same as for the square of side a, except that m = n is forbidden
for the TM mode, and for each pair m = n, there is only one mode rather than two. As
for the rectangle, m = n = 0 is forbidden as it leads to zero transverse �elds. The cuto�
frequencies are

!mn =
�

a

s
m2 + n2

�0"0
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8.5.2 Part b

The lowest modes are TM1;2 and TE0;1. The attenuation coe�cients depend on �� and ��,
which involve the ratio of integrals over the boundary to those over the area.

For the TE0;1 mode,  = �=a. Take  (x; y) = cos(�x=a) = cos(�x=a) + cos(�y=a)Z
�

�� 2
�� = a

Z 1

0

du
�
j (au; 0)j2 + j (a; au)j2 +

p
2 j (au; au)j2

�
= a

Z 1

0

du
�
(1 + cos(�u))2 + (cos(�u)� 1)2 +

p
2[2 cos(�u)]2

�
= (3 + 2

p
2)aZ

A

�� 2
�� = 1

2

Z a

0

dx

Z a

0

dy
�� (x; y)2�� = 1

2

Z a

0

dx

Z a

0

dy[cos(�x=a) + cos(�y=a)]2 =
a2

2

C = 2 +
p
2a

A =
1

2
a2

�TE0;1 =
A

C

Z
�

�� 2
���Z

A

�� 2
��

=
a2=2

(2 +
p
2)a

(3 + 2
p
2)a

a2=2
=

3 + 2
p
2

2 +
p
2

=

p
2 + 1p
2

Z
�

jn̂�rt j2 =
Z a

0

����@ @x
����2 (x; 0)dx+

Z a

0

����@ @y
����2 (a; y)dy

+

Z a

0

dx
p
2

 
1p
2

"
@ 

@x @ 
@y

#
(x; x)

!2

=
�2

a

Z 1

0

sin2 (�u) du
h
1 + 1 + 2

p
2
i
= (
p
2 + 1)

�2

a

Also, of course,
R
A

���~rt 
���2 = 2

R
A
 2,  = �=a. So

� =
A

C

Z
�

���n̂� ~r 
���2�Z

A

���~r ���2
=

a2=2

(2 +
p
2)a

(
p
2 + 1)

�2

a

a2

�2
2

a2
=

1p
2
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�� = �� � �� = 1. Thus,

�TE01 =

r
"

�

1

���

2 +
p
2

a

p
!=!�p

1� !2�=!
2

�
1p
2
+
!2�
!2

�

For the full square of side a, the mode is the same, the area =
R
A
j 2j = a2, both twice as

big, C = 4a,
R
�
j 2j = 6a, and

Z
�

jn̂�rt j2 =
Z a

0

����@ @x
����2 (x; 0)dx+

Z a

0

����@ @y
����2 (a; y)dy

+

Z a

0

����@ @x
����2 (x; a)dx+

Z a

0

����@ @y
����2 (0; y)dy = 2�2=a

so

��TE01 =
A

C

2�2=a

(�2=a2)a2
=
a2

4a

2

a
=

1

2

��TE01 =
6a

a2
a2

4a
=

3

2

��TE01 = 1

��TE01 =

r
"

�

1

���a

p
!=!�p

1� !2�=!
2

�
1 + 2

!2�
!2

�

The ratio of attenuation of the triangle to the square is not frequency independent, but at
all frequencies it is greater than 1.

TM1;2 mode:

We can take  = sin(�x=a) sin(2�y=a)� sin(2�x=a) sin(�y=a), 1;2 =
p
5�=a,

Z
A

 2 =
1

2

Z
�

�
sin2(�x=a)

�
sin2(2�y=a) + sin2(2�x=a) sin2(xy=a)

� 2 sin(�x=a) sin(2�y=a) sin(2�x=a) sin(�y=a)

=
a2

2

�
1

4
+

1

4
+ 0

�
=
a2

4
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Z
�

����@ @n
����2 =

Z 1

0

adu

"�
@ 

@y

�2

(au; 0) +

�
@ 

@x

�2

(a; au)

+
1p
2

�
@ 

@x
� @ 

@y

�2

(au; au)

#

=
�2

a

Z 1

0

du
�
(2 sin(�u)� sin(2�u))2 + (� sin(2�u)� 2 sin(�u))2

+
1

2
(2 cos(�u) sin(2�u)� 4 sin(�u) cos(2�u))2

�

=
5�2p
2a

(1 +
p
2)

where it is useful to write the expression to be squared in the last term as 3 sin(�u) sin(3�u).
Thus

�TM12 =
"

�

1

2���

p
!=!�q
1� !2

�

!2

Z
�

����@ @n
����2
�
2
Z
A

j j2 =
4 + 2

p
2

a

r
"

�

1

2���

p
!=!�q
1� !2

�

!2

For the square
R
A
 2 = a2=2 and

Z
�

����@ @n
����2 = 4

Z 1

0

adu
��
a

�2
(2 sin(�u)� sin(2�u))2 = 10

�2

a

so

��TM12

a

4

10�2

a

2

a2
a2

5�2
= 1

�TM12 =

r
"

�

1

���

4a

2a2

p
!=!�q
1� !2

�

!2

�� =

r
"

�

2

a���

p
!=!�q
1� !2

�

!2

Thus the triangle attenuation is 1 + 1=
p
2 = 1:71 times that of the square.
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