6.1 Problem 6.1

6.1.1

Substituting f(Z',t") = §(z")d(y")d (') into equation 6.47 in Jackson:
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We will use the following identity:
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where z; are the zeroes of f(2): z; = ++/c*t2 — p?. Hence, the delta function our expression
for W(Z,t) is equal to:
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Note that this solution is imaginary for ¢t < p as a result of the delta function we’re using.
However, it is important to note that we’re integrating over the real number line— therefore,
the imaginary solutions are forbidden. Hence, W(Z, 1) is zero for ¢t < p. We will multiply it
by the unit step function:
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6.1.2

Substituting f(Z',t') = §(z')d(t') into equation 6.47 in Jackson:
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Noting that [t'],es =t — |Z — 2| /¢,
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Converting to polar coordinates in the y-2z plane:
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Again, we will use the identity in equation (6.1) to determine that the delta function in the
above equation is equal to:
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Noting that the zero of the argument of the our delta function is p; = /¢*t?> — 22 (there is

only one root since p is strictly nonnegative) and plugging this identity into our expression
for W(z,1):
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[ "5
:2ﬂ/06<p—m)dp

=27T/C

Again, we have imaginary roots for ¢t < |z|. For this reason, we again multiply ¥(Z,t) by
the unit step function:

U(Z,t) = 2mcO(ct — |z])

6.4 Problem 6.4

6.4.1

We are given that the sphere is uniformly magnetized with i = (4x/3) M R? (equation 5.107
in Jackson). We will pick a coordinate system such that the sphere is rotating about the
z-axis. Hence, m = mZ. Solving for M and plugging into equation 5.105 in Jackson yields:
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Equation 5.142 in Jackson states that E' = E+0xB. Assuming there is no external electric
field, £’ = 0 and hence:
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In cylindrical coordinates:
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Using the differential form of Gauss’ Law:
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6.4.2

As has already been given, the monopole moments (I = 0) vanish because the sphere is
electrically neutral. In addition, because the electric field found in the previous part is odd
(E(r) = —E(—r)), we note that the [ = 1 terms will also vanish (in fact, all the odd [ terms
will vanish). Because the quadrupole moment (I = 2) is nonvanishing (as will be shown
next), the lowest nonvanishing moments are quadrupole.

We begin by find the electrostatic potential in cylindrical coordinates:
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Converting to spherical coordinates:
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We're particularly interested in the £ = 2 term:
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Comparing this with the ¢ = 2, m = 0 term of equation 4.1 in Jackson yields:
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From equation 4.6 in Jackson, we can see that ()33 = 24/ 4?”(1270:
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Because the quadrupole moment tensor is traceless, Q11 + Q22 + (J33. By 2-y symmetry,
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6.4.3
The electrostatic potential inside the sphere is as found in the previous part:
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Because everything lower than ¢ = 2 vanishes outside the sphere, the electrostatic potential
outside the sphere is:
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6.4.4
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6.5 Problem 6.5

6.5.1

Starting with equation 6.117 in Jackson:
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The surface integral vanishes if ®dS x H — 0 as r — oc. Since dS o r2, the surface integral
vanishes if r2®H — 0 as r — oo.



6.5.2

We start by Taylor expanding ®:
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Plugging this into our solution for Pieiq from the previous part yields:
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6.5.3

We start by dividing both sides of equation 5.56 in Jackson by py:
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Substituting this into the surface integral from the first part of this problem yields
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Adding this to the volume integral (which is equal to the solution found in the second part
to this problem) yields the final answer:




The same result can be obtained by plugging equation equation 5.62 ([, Hd3z = 2m) into
equation 6.117:
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