### 6.1 Problem 6.1

### 6.1.1

Substituting $f\left(\vec{x}^{\prime}, t^{\prime}\right)=\delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \delta\left(t^{\prime}\right)$ into equation 6.47 in Jackson:

$$
\begin{aligned}
\Psi(\vec{x}, t) & =\int \frac{\left[f\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\mathrm{ret}}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =\int \frac{\left[\delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \delta\left(t^{\prime}\right)\right]_{\mathrm{ret}}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d x^{\prime} d y^{\prime} d z^{\prime}
\end{aligned}
$$

Noting that $\left[t^{\prime}\right]_{\text {ret }}=t-\left|\vec{x}-\vec{x}^{\prime}\right| / c$,

$$
\begin{aligned}
\Psi(\vec{x}, t) & =\iiint \frac{\delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \delta\left(t-\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} / c\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} d x^{\prime} d y^{\prime} d z^{\prime} \\
& =\int \frac{\delta\left(t-\sqrt{x^{2}+y^{2}+\left(z-z^{\prime}\right)^{2}} / c\right)}{\sqrt{x^{2}+y^{2}+\left(z-z^{\prime}\right)^{2}}} d z^{\prime}
\end{aligned}
$$

Letting $\rho=\sqrt{x^{2}+y^{2}}$ and $\tilde{z}=z-z^{\prime}$ :

$$
\Psi(\vec{x}, t)=\int \frac{\delta\left(t-\sqrt{\rho^{2}+\tilde{z}^{2}} / c\right)}{\sqrt{\rho^{2}+\tilde{z}^{2}}} d \tilde{z}
$$

We will use the following identity:

$$
\begin{equation*}
\delta(f(z))=\sum_{i} \frac{1}{\left|f^{\prime}(z)\right|} \delta\left(z-z_{i}\right) \tag{6.1}
\end{equation*}
$$

where $z_{i}$ are the zeroes of $f(z): z_{i}= \pm \sqrt{c^{2} t^{2}-\rho^{2}}$. Hence, the delta function our expression for $\Psi(\vec{x}, t)$ is equal to:

$$
\begin{aligned}
& \delta\left(t-\sqrt{\rho^{2}+z^{2}} / c\right)=\sum_{i} \frac{c \sqrt{\rho^{2}+z^{2}}}{|z|} \delta\left(z-z_{i}\right) \\
\Psi(\vec{x}, t)= & \int \frac{1}{\sqrt{\rho^{2}+\tilde{z}^{2}}}\left[\frac{c \sqrt{\rho^{2}+\tilde{z}^{2}}}{|\tilde{z}|} \delta\left(\tilde{z}-\sqrt{c^{2} t^{2}-\rho^{2}}\right)+\frac{c \sqrt{\rho^{2}+\tilde{z}^{2}}}{|\tilde{z}|} \delta\left(\tilde{z}+\sqrt{c^{2} t^{2}-\rho^{2}}\right)\right] d \tilde{z} \\
= & \frac{1}{\sqrt{\rho^{2}+\left(\sqrt{c^{2} t^{2}-\rho^{2}}\right)^{2}}}\left[\frac{c \sqrt{\rho^{2}+\left(\sqrt{c^{2} t^{2}-\rho^{2}}\right)^{2}}}{\left|\sqrt{c^{2} t^{2}-\rho^{2}}\right|}+\frac{c \sqrt{\rho^{2}+\left(-\sqrt{c^{2} t^{2}-\rho^{2}}\right)^{2}}}{\left|-\sqrt{c^{2} t^{2}-\rho^{2}}\right|}\right] \\
= & \frac{1}{|\angle t|} 2 \frac{c|\ell t|}{\sqrt{c^{2} t^{2}-\rho^{2}}}
\end{aligned}
$$

Note that this solution is imaginary for $c t<\rho$ as a result of the delta function we're using. However, it is important to note that we're integrating over the real number line- therefore, the imaginary solutions are forbidden. Hence, $\Psi(\vec{x}, t)$ is zero for $c t<\rho$. We will multiply it by the unit step function:

$$
\Psi(\vec{x}, t)=\frac{2 c \Theta(c t-\rho)}{\sqrt{c^{2} t^{2}-\rho^{2}}}
$$

## 6.1 .2

Substituting $f\left(\vec{x}^{\prime}, t^{\prime}\right)=\delta\left(x^{\prime}\right) \delta\left(t^{\prime}\right)$ into equation 6.47 in Jackson:

$$
\begin{aligned}
\Psi(\vec{x}, t) & =\int \frac{\left[f\left(\vec{x}^{\prime}, t^{\prime}\right)\right]_{\mathrm{ret}}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =\int \frac{\left[\delta\left(x^{\prime}\right) \delta\left(t^{\prime}\right)\right]_{\mathrm{ret}}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d x^{\prime} d y^{\prime} d z^{\prime}
\end{aligned}
$$

Noting that $\left[t^{\prime}\right]_{\mathrm{ret}}=t-|\vec{x}-\vec{x}| / c$,

$$
\begin{aligned}
\Psi(\vec{x}, t) & =\iiint \frac{\delta\left(x^{\prime}\right) \delta\left(t-\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} / c\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} d x^{\prime} d y^{\prime} d z^{\prime} \\
& =\iint \frac{\delta\left(t-\sqrt{x^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} / c\right)}{\sqrt{x^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} d y^{\prime} d z^{\prime}
\end{aligned}
$$

Letting $\tilde{y}=y-y^{\prime}$ and $\tilde{z}=z-z^{\prime}$ :

$$
\Psi(\vec{x}, t)=\iint \frac{\delta\left(t-\sqrt{x^{2}+\tilde{y}^{2}+\tilde{z}^{2}} / c\right)}{\sqrt{x^{2}+\tilde{y}^{2}+\tilde{z}^{2}}} d \tilde{y} d \tilde{z}
$$

Converting to polar coordinates in the $\tilde{y}-\tilde{z}$ plane:

$$
\begin{aligned}
\Psi(\vec{x}, t) & =\iint \frac{\delta\left(t-\sqrt{x^{2}+\rho^{2}} / c\right)}{\sqrt{x^{2}+\rho^{2}}} \rho d \rho d \varphi \\
& =2 \pi \int \frac{\delta\left(t-\sqrt{x^{2}+\rho^{2}} / c\right)}{\sqrt{x^{2}+\rho^{2}}} d \rho
\end{aligned}
$$

Again, we will use the identity in equation (6.1) to determine that the delta function in the above equation is equal to:

$$
\delta\left(t-\sqrt{x^{2}+\rho^{2}} / c\right)=\sum_{i} \frac{c \sqrt{x^{2}+\rho^{2}}}{|\rho|} \delta\left(\rho-\rho_{i}\right)
$$

Noting that the zero of the argument of the our delta function is $\rho_{i}=\sqrt{c^{2} t^{2}-x^{2}}$ (there is only one root since $\rho$ is strictly nonnegative) and plugging this identity into our expression for $\Psi(\vec{x}, t)$ :

$$
\begin{aligned}
\Psi(\vec{x}, t) & =2 \pi \int \frac{1}{\sqrt{x^{2}+\rho^{2}}}\left[\frac{c \sqrt{x^{2}+\rho^{2}}}{\not \rho} \delta\left(\rho-\sqrt{c^{2} t^{2}-x^{2}}\right)\right] \not \rho d \rho \\
& =2 \pi \int c \delta\left(\rho-\sqrt{c^{2} t^{2}-x^{2}}\right) d \rho \\
& =2 \pi \int c
\end{aligned}
$$

Again, we have imaginary roots for $c t<|x|$. For this reason, we again multiply $\Psi(\vec{x}, t)$ by the unit step function:

$$
\Psi(\vec{x}, t)=2 \pi c \Theta(c t-|x|)
$$

### 6.4 Problem 6.4

### 6.4.1

We are given that the sphere is uniformly magnetized with $\vec{m}=(4 \pi / 3) \vec{M} R^{3}$ (equation 5.107 in Jackson). We will pick a coordinate system such that the sphere is rotating about the $z$-axis. Hence, $\vec{m}=m \hat{z}$. Solving for $\vec{M}$ and plugging into equation 5.105 in Jackson yields:

$$
\begin{aligned}
\vec{B} & =\frac{2 \mu_{0}}{3} \vec{M} \\
& =\frac{2 \mu_{0}}{3}\left(\frac{3 m \hat{z}}{4 \pi R^{3}}\right) \\
& =\frac{\mu_{0} m}{2 \pi R^{3}} \hat{z}
\end{aligned}
$$

Equation 5.142 in Jackson states that $\vec{E}^{\prime}=\vec{E}+\vec{v} \times \vec{B}$. Assuming there is no external electric field, $\vec{E}^{\prime}=0$ and hence:

$$
\begin{aligned}
\vec{E} & =-\vec{v} \times \vec{B} \\
& =-(\omega \hat{z} \times \vec{R}) \times \hat{z} \frac{\mu_{0} m}{2 \pi R^{3}} \\
& =-\frac{\mu_{0} m \omega}{2 \pi R^{3}}[\vec{R}(\underbrace{\hat{z} \cdot \hat{z}}_{1})-\hat{z} \underbrace{(\hat{z} \cdot \vec{R})}_{R \cos \theta}] \\
& =-\frac{\mu_{0} m \omega}{2 \pi R^{3}}[\vec{R}-\hat{z} R \cos \theta]
\end{aligned}
$$

In cylindrical coordinates:

$$
\begin{aligned}
& E_{z}=E_{\varphi}=0 \\
& E_{r}=-\frac{\mu_{0} m \omega r}{2 \pi R^{3}}
\end{aligned}
$$

Using the differential form of Gauss' Law:

$$
\begin{aligned}
\frac{\rho}{\varepsilon_{0}} & =\nabla \cdot \vec{E} \\
& =\frac{1}{r} \frac{\partial}{\partial r}\left(r E_{r}\right)+\frac{1}{r} \frac{\partial E / \varphi}{\partial \varphi}+\frac{\partial E / z}{\partial z} \\
& =-\frac{1}{r}\left(\frac{2 \pi R^{3} \mu_{0} m \omega 2 r-\mu_{0} m \omega r^{2} 2 \pi R^{3}}{4 \pi^{2} R^{6}}\right) \\
& =-\frac{\mu_{0} m \omega}{\pi R^{3}}+\frac{\mu_{0} m \omega r}{2 \pi R^{3}} \\
& \rho=-\frac{m \omega}{\pi c^{2} R^{3}}+\frac{m \omega r}{2 \pi R^{3}}
\end{aligned}
$$

## 6.4 .2

As has already been given, the monopole moments $(l=0)$ vanish because the sphere is electrically neutral. In addition, because the electric field found in the previous part is odd $(E(r)=-E(-r))$, we note that the $l=1$ terms will also vanish (in fact, all the odd $l$ terms will vanish). Because the quadrupole moment $(l=2)$ is nonvanishing (as will be shown next), the lowest nonvanishing moments are quadrupole.
We begin by find the electrostatic potential in cylindrical coordinates:

$$
\Phi(\vec{x})=-\int \vec{E} \cdot d \vec{\ell}=-\left(-\frac{\mu_{0} m \omega r^{2}}{2 \pi R^{3}}\right)
$$

Converting to spherical coordinates:

$$
\Phi(\vec{x})=\frac{\mu_{0} m \omega r^{2} \sin ^{2} \theta}{2 \pi R^{3}}
$$

Noting that $\sin ^{2} \theta=\frac{1}{3}\left[P_{0}(\cos \theta)-P_{2}(\cos \theta)\right]$ :

$$
\Phi(\vec{x})=\frac{\mu_{0} m \omega r^{2}}{2 \pi R^{3}} \frac{1}{3}\left[P_{0}(\cos \theta)-P_{2}(\cos \theta)\right]
$$

We're particularly interested in the $\ell=2$ term:

$$
\Phi_{\ell=2}(r=R)=-\frac{\mu_{0} m \omega}{6 \pi R} P_{2}(\cos \theta)
$$

Comparing this with the $\ell=2, m=0$ term of equation 4.1 in Jackson yields:

$$
\begin{aligned}
q_{2,0} & =\frac{\varepsilon_{0} 5 R^{3}}{Y_{1,0}(\theta, \varphi)}\left(-\frac{\mu_{0} m \omega}{6 \pi R} P_{2}(\cos \theta)\right) \\
& =-\frac{5 m \omega R^{2}}{6 \pi c^{2}} \frac{P_{2}(\cos \theta)}{Y_{1,0}(\theta, \varphi)} \\
& =-\frac{5 m \omega r^{3}}{6 \pi c^{2} R^{3}} \frac{\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)}{\frac{1}{4} \sqrt{\frac{5}{\pi}}\left(3 \cos ^{2} \theta-1\right)} \\
& =-\frac{5 m \omega R^{2}}{3 c^{2} \pi} \sqrt{\frac{\pi}{5}}
\end{aligned}
$$

From equation 4.6 in Jackson, we can see that $Q_{3,3}=2 \sqrt{\frac{4 \pi}{5}} q_{2,0}$ :

$$
\begin{gathered}
Q_{3,3}=2 \sqrt{\frac{4 \pi}{5}}\left(-\frac{5 m \omega R^{2}}{3 c^{2} \pi} \sqrt{\frac{\pi}{5}}\right) \\
Q_{3,3}=-\frac{4 m \omega R^{2}}{3 c^{2}}
\end{gathered}
$$

Because the quadrupole moment tensor is traceless, $Q_{1,1}+Q_{2,2}+Q_{3,3}$. By x-y symmetry, $Q_{1,1}=Q_{2,2}$. Hence, $Q_{1,1}=Q_{1,1}=-\frac{1}{2} Q_{3,3}$.

### 6.4.3

The electrostatic potential inside the sphere is as found in the previous part:

$$
\begin{aligned}
\Phi_{\text {in }}(\vec{x}) & =\frac{\mu_{0} m \omega r^{2}}{2 \pi R^{3}} \frac{1}{3}\left[P_{0}(\cos \theta)-P_{2}(\cos \theta)\right] \\
\therefore \vec{E}_{\text {in }}^{r} & =-\frac{\mu_{0} m \omega r}{\pi R^{3}} \frac{1}{3}\left[P_{0}(\cos \theta)-P_{2}(\cos \theta)\right]
\end{aligned}
$$

Because everything lower than $\ell=2$ vanishes outside the sphere, the electrostatic potential outside the sphere is:

$$
\begin{gathered}
\Phi_{\text {out }}(\vec{x})=-\frac{\mu_{0} m \omega R^{2}}{2 \pi r^{3}} \frac{1}{3} P_{2}(\cos \theta) \\
\therefore \vec{E}_{\text {out }}^{r}=-\frac{\mu_{0} m \omega R^{2}}{2 \pi r^{4}} P_{2}(\cos \theta) \\
\sigma(\theta)=\varepsilon_{0}\left[E_{\text {out }}^{r}-E_{\text {in }}^{r}\right]_{r=R} \\
=\varepsilon_{0}\left[-\frac{\mu_{0} m \omega R^{2}}{2 \pi r^{4}} P_{2}(\cos \theta)-\left(-\frac{\mu_{0} m \omega r}{\pi R^{3}} \frac{1}{3}\left[1-P_{2}(\cos \theta)\right]\right)\right]_{r=R} \\
=\frac{m \omega}{\pi c^{2} R^{2}}\left(-\frac{1}{2} P_{2}(\cos \theta)+\frac{1}{3}\left[1-P_{2}(\cos \theta)\right]\right)
\end{gathered}
$$

$$
\sigma(\theta)=\frac{m \omega}{3 \pi c^{2} R^{2}}\left(1-\frac{5}{2} P_{2}(\cos \theta)\right)
$$

### 6.4.4

$$
\begin{aligned}
\mathcal{E} & =\int_{\theta=\pi / 2}^{0} \vec{E} \cdot d \vec{\ell}=\left.\left[-\Phi_{\text {out }}\right]_{\theta=\pi / 2}^{0}\right|_{r=R} \\
& =[\frac{\mu_{0} m \omega R^{2}}{2 \pi r^{3}} \frac{1}{3} \underbrace{P_{2}(\underbrace{\cos (\theta) \pi}}_{1} \frac{1}{-}(-\frac{\mu_{0} m \omega R^{2}}{2 \pi r^{3}} \frac{1}{3} \underbrace{P_{2}\left(\frac{\cos \left(\frac{\pi}{2}\right)}{2}\right)}_{-1 / 2})]_{r=R} \\
& =\frac{\mu_{0} m \omega}{6 \pi R}+\frac{\mu_{0} m \omega}{12 \pi R}
\end{aligned}
$$

$$
\mathcal{E}=\frac{\mu_{0} m \omega}{4 \pi R}
$$

### 6.5 Problem 6.5

### 6.5.1

Starting with equation 6.117 in Jackson:

$$
\begin{aligned}
\vec{P}_{\text {field }} & =\frac{1}{c^{2}} \int_{V} \vec{E} \times \vec{H} d^{3} x \\
& =\frac{1}{c^{2}} \int_{V}(-\nabla \Phi) \times \vec{H} d^{3} x \\
P_{\text {field }}^{i} & =-\frac{1}{c^{2}} \sum_{i, j} \varepsilon_{i j k} \int_{V} \frac{\partial \Phi}{\partial x_{i}} H_{j} d^{3} x
\end{aligned}
$$

Integrating by parts:

$$
\begin{aligned}
P_{\text {field }}^{i} & =\frac{1}{c^{2}} \sum_{i, j}\left[-\varepsilon_{i j k} \int_{S} \Phi H_{j} d S_{i}+\varepsilon_{i j k} \int_{V} \Phi \frac{\partial H_{j}}{\partial x_{i}} d^{3} x\right] \\
\vec{P}_{\text {field }} & =-\frac{1}{c^{2}} \int_{S} \Phi d \vec{S} \times \vec{H}+\frac{1}{c^{2}} \int_{V} \Phi \underbrace{\nabla \times \vec{H}}_{\vec{J}} d^{3} x \\
& =-\frac{1}{c^{2}} \int_{S} \Phi d \vec{S} \times \vec{H}+\frac{1}{c^{2}} \int_{V} \Phi \vec{J} d^{3} x
\end{aligned}
$$

The surface integral vanishes if $\Phi d \vec{S} \times \vec{H} \rightarrow 0$ as $r \rightarrow \infty$. Since $d S \propto r^{2}$, the surface integral vanishes if $r^{2} \Phi \vec{H} \rightarrow 0$ as $r \rightarrow \infty$.

### 6.5.2

We start by Taylor expanding $\Phi$ :

$$
\Phi=\Phi(\overrightarrow{0})^{0}+\vec{x} \cdot \underbrace{\nabla \Phi(\overrightarrow{0})}_{-\vec{E}(\overrightarrow{0})}+\ldots
$$

Plugging this into our solution for $\vec{P}_{\text {field }}$ from the previous part yields:

$$
\begin{aligned}
\vec{P}_{\text {field }} & =\frac{1}{c^{2}} \int(-\vec{x} \cdot \vec{E}) \vec{J} d^{3} x \\
P_{\text {field }}^{i} & =-\frac{1}{c^{2}} \sum_{j} \int J_{i} x_{j} E_{j}(0) d^{3} x \\
& =-\frac{1}{c^{2}} \sum_{j} E_{j}(0) \int x_{j} J_{i} d^{3} x
\end{aligned}
$$

Using the equation two equations below 5.52 in Jackson:

$$
\begin{gathered}
\int x_{j} J_{i} d^{3} x=-\int x_{i} J_{j} d^{3} x \\
\Longrightarrow \int x_{j} J_{i} d^{3} x=\frac{1}{2}\left(\int x_{j} J_{i} d^{3} x-\int x_{i} J_{j} d^{3} x\right)
\end{gathered}
$$

Plugging this into our expression for $P_{\text {field }}^{i}$ :

$$
\begin{aligned}
& P_{\text {field }}^{i}=-\frac{1}{c^{2}} \sum_{j} E_{j}(0) \int \frac{1}{2}\left(x_{j} J_{i}-x_{i} J_{j}\right) d^{3} x \\
&=-\frac{1}{c^{2}} \sum_{j, k} \varepsilon_{i j k} E_{j}(0) \frac{1}{2} \int(-\vec{x} \times \vec{J})_{k} d^{3} x \\
& \vec{P}_{\text {field }}=\frac{1}{c^{2}} \vec{E}(\overrightarrow{0}) \times \underbrace{\frac{1}{2} \int(\vec{x} \times \vec{J}) d^{3} x}_{\vec{m}} \\
& \vec{P}_{\text {field }}=\frac{1}{c^{2}} \vec{E}(\overrightarrow{0}) \times \vec{m}
\end{aligned}
$$

### 6.5.3

We start by dividing both sides of equation 5.56 in Jackson by $\mu_{0}$ :

$$
\vec{H}(\vec{x})=\frac{1}{4 \pi}\left[\frac{3 \hat{r}(\hat{r} \cdot \vec{m})-\vec{m}}{|\vec{r}|^{3}}\right]
$$

Substituting this into the surface integral from the first part of this problem yields:

$$
\begin{aligned}
-\frac{1}{c^{2}} \int_{S} \underbrace{\Phi}_{\approx \vec{r} \cdot \vec{E}_{0}} d \vec{S} \times \vec{H} & =-\frac{1}{c^{2}} \int_{S}\left(-\vec{r} \cdot \vec{E}_{0}\right)\left(d S \hat{r} \times \frac{1}{4 \pi}\left[\frac{3 \hat{r}(\hat{r} \cdot \vec{m})-\vec{m}}{|\vec{r}|^{3}}\right]\right) \\
& =\frac{1}{4 \pi c^{2}} \int_{S}\left(\vec{r} \cdot \vec{E}_{0}\right)\left[-\frac{\vec{r} \times \vec{m}}{|\vec{r}|^{4}}\right] d S \\
& =-\frac{1}{4 \pi c^{2}} \int_{S}\left(\vec{r} \cdot \vec{E}_{0}\right)\left[\frac{\vec{r} \times \vec{m}}{\mid \overrightarrow{m^{1}} r^{2}}\right] \ddot{y}^{2} d(\cos \theta) d \varphi \\
& =-\frac{1}{4 \pi c^{2}} \int_{S}\left(\vec{r} \cdot \vec{E}_{0}\right)\left[\frac{\vec{r} \times \vec{m}}{|\vec{r}|^{2}}\right] d(\cos \theta) d \varphi \\
& \Leftrightarrow-\frac{1}{4 \pi} \int_{S} \frac{1}{r^{2}} r_{\ell} \vec{E}_{0, \ell} \varepsilon_{i j k} r_{j} m_{k} d(\cos \theta) d \varphi \\
& =-\frac{1}{4 \pi c^{2}} \varepsilon_{i j k} E_{0, \ell} m_{k} \int_{S} \frac{r_{\ell} r_{j}}{r^{2}} d(\cos \theta) d \varphi \\
& =-\frac{1}{4 \pi c^{2}} \varepsilon_{i j k} E_{0, \ell} m_{k} \int_{S} \frac{r_{\ell} r_{j}}{r^{2}} d(\cos \theta) d \varphi
\end{aligned}
$$

The integral is zero unless $\ell=j$. Hence:

$$
\begin{aligned}
& =-\frac{1}{4 \pi c^{2}} \varepsilon_{i j k} E_{0, j} m_{k} \int_{S} \frac{r_{j}^{2}}{r^{2}} d(\cos \theta) d \varphi \\
& =-\frac{1}{4 \pi c^{2}} \varepsilon_{i j k} E_{0, j} m_{k}[\frac{1}{3} \underbrace{\int_{S} \frac{y^{2}}{y^{2}} d(\cos \theta) d \varphi}_{4 \pi}] \\
& =-\frac{1}{4 \pi c^{2}} \varepsilon_{i j k} E_{0, j} m_{k} \frac{1}{3} 4 \pi \\
& =-\frac{1}{3 c^{2}} \varepsilon_{i j k} E_{0, j} m_{k} \\
& \Leftrightarrow-\frac{1}{3 c^{2}} \vec{E}_{0} \times \vec{m}
\end{aligned}
$$

Adding this to the volume integral (which is equal to the solution found in the second part to this problem) yields the final answer:

$$
\begin{gathered}
\vec{P}_{\text {field }}=\left(-\frac{1}{3 c^{2}} \vec{E}_{0} \times \vec{m}\right)+\left(\frac{1}{c^{2}} \vec{E}_{0} \times \vec{m}\right) \\
\vec{P}_{\text {field }}=\frac{2}{3 c^{2}} \vec{E}_{0} \times \vec{m}
\end{gathered}
$$

The same result can be obtained by plugging equation equation $5.62\left(\int_{V} \vec{H} d^{3} x=\frac{2}{3} \vec{m}\right)$ into equation 6.117:

$$
\begin{aligned}
\vec{P}_{\text {field }} & =\frac{1}{c^{2}} \vec{E}_{0} \times \int_{V} \vec{H} d^{3} x \\
& =\frac{1}{c^{2}} \vec{E}_{0} \times\left(\frac{2}{3 c^{2}} \vec{m}\right) \\
& =\frac{2}{3 c^{2}} \vec{E}_{0} \times \vec{m}
\end{aligned}
$$

