
6.1 Problem 6.1

6.1.1

Substituting f(~x0; t0) = �(x0)�(y0)�(t0) into equation 6.47 in Jackson:

	(~x; t) =

Z
[f(~x0; t0)]ret
j~x� ~x0j d3x0

=

Z
[�(x0)�(y0)�(t0)]ret

j~x� ~x0j dx0dy0dz0

Noting that [t0]ret = t� j~x� ~x0j =c,

	(~x; t) =

ZZZ �(x0)�(y0)�
�
t�p(x� x0)2 + (y � y0)2 + (z � z0)2=c

�
p
(x� x0)2 + (y � y0)2 + (z � z0)2

dx0dy0dz0

=

Z �
�
t�px2 + y2 + (z � z0)2=c

�
p
x2 + y2 + (z � z0)2

dz0

Letting � =
p
x2 + y2 and ~z = z � z0:

	(~x; t) =

Z �
�
t�
p
�2 + ~z2=c

�
p
�2 + ~z2

d~z

We will use the following identity:

� (f(z)) =
X
i

1

jf 0(z)j�(z � zi) (6.1)

where zi are the zeroes of f(z): zi = �
p
c2t2 � �2. Hence, the delta function our expression

for 	(~x; t) is equal to:

�
�
t�
p
�2 + z2=c

�
=
X
i

c
p
�2 + z2

jzj �(z � zi)

	(~x; t) =

Z
1p

�2 + ~z2

"
c
p
�2 + ~z2

j~zj �
�
~z �

p
c2t2 � �2

�
+
c
p
�2 + ~z2

j~zj �
�
~z +

p
c2t2 � �2

�#
d~z

=
1r

�2 +
�p

c2t2 � �2
�2
2
664c
r
�2 +

�p
c2t2 � �2

�2
���pc2t2 � �2

��� +
c

r
�2 +

�
�
p
c2t2 � �2

�2
����pc2t2 � �2

���
3
775

=
1

�
�jctj2

c��jctjp
c2t2 � �2

1



Note that this solution is imaginary for ct < � as a result of the delta function we're using.
However, it is important to note that we're integrating over the real number line{ therefore,
the imaginary solutions are forbidden. Hence, 	(~x; t) is zero for ct < �. We will multiply it
by the unit step function:

	(~x; t) =
2c�(ct� �)p

c2t2 � �2

6.1.2

Substituting f(~x0; t0) = �(x0)�(t0) into equation 6.47 in Jackson:

	(~x; t) =

Z
[f(~x0; t0)]ret
j~x� ~x0j d3x0

=

Z
[�(x0)�(t0)]ret
j~x� ~x0j dx0dy0dz0

Noting that [t0]ret = t� j~x� ~x0j =c,

	(~x; t) =

ZZZ �(x0)�
�
t�p(x� x0)2 + (y � y0)2 + (z � z0)2=c

�
p
(x� x0)2 + (y � y0)2 + (z � z0)2

dx0dy0dz0

=

ZZ �
�
t�px2 + (y � y0)2 + (z � z0)2=c

�
p
x2 + (y � y0)2 + (z � z0)2

dy0dz0

Letting ~y = y � y0 and ~z = z � z0:

	(~x; t) =

ZZ �
�
t�
p
x2 + ~y2 + ~z2=c

�
p
x2 + ~y2 + ~z2

d~yd~z

Converting to polar coordinates in the ~y-~z plane:

	(~x; t) =

ZZ �
�
t�
p
x2 + �2=c

�
p
x2 + �2

�d�d'

= 2�

Z �
�
t�
p
x2 + �2=c

�
p
x2 + �2

d�

Again, we will use the identity in equation (6.1) to determine that the delta function in the
above equation is equal to:

�
�
t�
p
x2 + �2=c

�
=
X
i

c
p
x2 + �2

j�j �(�� �i)
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Noting that the zero of the argument of the our delta function is �i =
p
c2t2 � x2 (there is

only one root since � is strictly nonnegative) and plugging this identity into our expression
for 	(~x; t):

	(~x; t) = 2�

Z
1

���
���

p
x2 + �2

�
c���

���
p
x2 + �2

��
�
�
��

p
c2t2 � x2

��
��d�

= 2�

Z
c�
�
��

p
c2t2 � x2

�
d�

= 2�

Z
c

Again, we have imaginary roots for ct < jxj. For this reason, we again multiply 	(~x; t) by
the unit step function:

	(~x; t) = 2�c�(ct� jxj)

6.4 Problem 6.4

6.4.1

We are given that the sphere is uniformly magnetized with ~m = (4�=3) ~MR3 (equation 5.107
in Jackson). We will pick a coordinate system such that the sphere is rotating about the

z-axis. Hence, ~m = mẑ. Solving for ~M and plugging into equation 5.105 in Jackson yields:

~B =
2�0

3
~M

=
2�0

3

�
3mẑ

4�R3

�
=

�0m

2�R3
ẑ

Equation 5.142 in Jackson states that ~E 0 = ~E+~v� ~B. Assuming there is no external electric
�eld, ~E 0 = 0 and hence:

~E = �~v � ~B

= �
�
!ẑ � ~R

�
� ẑ

�0m

2�R3

= ��0m!

2�R3

2
64~R (ẑ � ẑ)| {z }

1

�ẑ
�
ẑ � ~R

�
| {z }
R cos �

3
75

= ��0m!

2�R3

h
~R� ẑR cos �

i
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In cylindrical coordinates:

Ez = E' = 0

Er = ��0m!r

2�R3

Using the di�erential form of Gauss' Law:

�

"0
= r � ~E

=
1

r

@

@r
(rEr) +

1

r�
�
��7
0

@E'

@'
+
�
�
���
0

@Ez

@z

= �1

r

�
2�R3�0m!2r � �0m!r22�R3

4�2R6

�
= ��0m!

�R3
+
�0m!r

2�R3

� = � m!

�c2R3
+

m!r

2�R3

6.4.2

As has already been given, the monopole moments (l = 0) vanish because the sphere is
electrically neutral. In addition, because the electric �eld found in the previous part is odd
(E(r) = �E(�r)), we note that the l = 1 terms will also vanish (in fact, all the odd l terms
will vanish). Because the quadrupole moment (l = 2) is nonvanishing (as will be shown
next), the lowest nonvanishing moments are quadrupole.

We begin by �nd the electrostatic potential in cylindrical coordinates:

�(~x) = �
Z

~E � d~̀= �
�
��0m!r2

2�R3

�
Converting to spherical coordinates:

�(~x) =
�0m!r2 sin2 �

2�R3

Noting that sin2 � = 1
3
[P0(cos �)� P2(cos �)]:

�(~x) =
�0m!r2

2�R3

1

3
[P0(cos �)� P2(cos �)]

We're particularly interested in the ` = 2 term:

�`=2(r = R) = ��0m!

6�R
P2(cos �)
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Comparing this with the ` = 2;m = 0 term of equation 4.1 in Jackson yields:

q2;0 =
"05R

3

Y1;0(�; ')

�
��0m!

6�R
P2(cos �)

�
= �5m!R2

6�c2
P2(cos �)

Y1;0(�; ')

= � 5m!r3

6�c2R3

1
2
(3 cos2 � � 1)

1
4

q
5
�
(3 cos2 � � 1)

= �5m!R2

3c2�

r
�

5

From equation 4.6 in Jackson, we can see that Q3;3 = 2
q

4�
5
q2;0:

Q3;3 = 2

r
4�

5

�
�5m!R2

3c2�

r
�

5

�

Q3;3 = �4m!R2

3c2

Because the quadrupole moment tensor is traceless, Q1;1 + Q2;2 + Q3;3. By x-y symmetry,
Q1;1 = Q2;2. Hence, Q1;1 = Q1;1 = �1

2
Q3;3.

6.4.3

The electrostatic potential inside the sphere is as found in the previous part:

�in(~x) =
�0m!r2

2�R3

1

3
[P0(cos �)� P2(cos �)]

) ~Er
in = �

�0m!r

�R3

1

3
[P0(cos �)� P2(cos �)]

Because everything lower than ` = 2 vanishes outside the sphere, the electrostatic potential
outside the sphere is:

�out(~x) = ��0m!R2

2�r3
1

3
P2(cos �)

) ~Er
out = �

�0m!R2

2�r4
P2(cos �)

�(�) = "0 [E
r
out � Er

in]r=R

= "0

�
��0m!R2

2�r4
P2(cos �)�

�
��0m!r

�R3

1

3
[1� P2(cos �)]

��
r=R

=
m!

�c2R2

�
�1

2
P2(cos �) +

1

3
[1� P2(cos �)]

�

5



�(�) =
m!

3�c2R2

�
1� 5

2
P2(cos �)

�

6.4.4

E =

Z 0

�=�=2

~E � d~̀= [��out]
0
�=�=2

���
r=R

=

2
66664
�0m!R2

2�r3
1

3
P2(���

�:1
cos(0))| {z }
1

�

0
BBBB@�

�0m!R2

2�r3
1

3
P2

 
��

��
�*0

cos
��
2

�!
| {z }

�1=2

1
CCCCA

3
77775
r=R

=
�0m!

6�R
+
�0m!

12�R

E =
�0m!

4�R

6.5 Problem 6.5

6.5.1

Starting with equation 6.117 in Jackson:

~P�eld =
1

c2

Z
V

~E � ~Hd3x

=
1

c2

Z
V

(�r�)� ~Hd3x

P i
�eld = �

1

c2

X
i;j

"ijk

Z
V

@�

@xi
Hjd

3x

Integrating by parts:

P i
�eld =

1

c2

X
i;j

�
�"ijk

Z
S

�HjdSi + "ijk

Z
V

�
@Hj

@xi
d3x

�

~P�eld = � 1

c2

Z
S

�d~S � ~H +
1

c2

Z
V

�r� ~H| {z }
~J

d3x

= � 1

c2

Z
S

�d~S � ~H +
1

c2

Z
V

� ~Jd3x

The surface integral vanishes if �d~S� ~H ! 0 as r !1. Since dS / r2, the surface integral
vanishes if r2� ~H ! 0 as r !1.
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6.5.2

We start by Taylor expanding �:

� =�
�
�>
0

�(~0) + ~x � r�(~0)| {z }
� ~E(~0)

+ : : :

Plugging this into our solution for ~P�eld from the previous part yields:

~P�eld =
1

c2

Z �
�~x � ~E

�
~Jd3x

P i
�eld = �

1

c2

X
j

Z
JixjEj(0)d

3x

= � 1

c2

X
j

Ej(0)

Z
xjJid

3x

Using the equation two equations below 5.52 in Jackson:Z
xjJid

3x = �
Z

xiJjd
3x

=)
Z

xjJid
3x =

1

2

�Z
xjJid

3x�
Z

xiJjd
3x

�
Plugging this into our expression for P i

�eld:

P i
�eld = �

1

c2

X
j

Ej(0)

Z
1

2
(xjJi � xiJj) d

3x

= � 1

c2

X
j;k

"ijkEj(0)
1

2

Z �
�~x� ~J

�
k
d3x

~P�eld =
1

c2
~E(~0)� 1

2

Z �
~x� ~J

�
d3x| {z }

~m

~P�eld =
1

c2
~E(~0)� ~m

6.5.3

We start by dividing both sides of equation 5.56 in Jackson by �0:

~H(~x) =
1

4�

�
3r̂ (r̂ � ~m)� ~m

j~rj3
�
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Substituting this into the surface integral from the �rst part of this problem yields:

� 1

c2

Z
S

�|{z}
��~r� ~E0

d~S � ~H = � 1

c2

Z
S

�
�~r � ~E0

��
dSr̂ � 1

4�

�
3r̂ (r̂ � ~m)� ~m

j~rj3
��

=
1

4�c2

Z
S

�
~r � ~E0

��
�~r � ~m

j~rj4
�
dS

= � 1

4�c2

Z
S

�
~r � ~E0

�264~r � ~m

�
���

r2

j~rj4

3
75��r2d(cos �)d'

= � 1

4�c2

Z
S

�
~r � ~E0

��~r � ~m

j~rj2
�
d(cos �)d'

, � 1

4�

Z
S

1

r2
r` ~E0;`"ijkrjmkd(cos �)d'

= � 1

4�c2
"ijkE0;`mk

Z
S

r`rj
r2

d(cos �)d'

= � 1

4�c2
"ijkE0;`mk

Z
S

r`rj
r2

d(cos �)d'

The integral is zero unless ` = j. Hence:

= � 1

4�c2
"ijkE0;jmk

Z
S

r2j
r2
d(cos �)d'

= � 1

4�c2
"ijkE0;jmk

2
66413
Z
S

��r2

��r2
d(cos �)d'| {z }
4�

3
775

= � 1

4�c2
"ijkE0;jmk

1

3
4�

= � 1

3c2
"ijkE0;jmk

, � 1

3c2
~E0 � ~m

Adding this to the volume integral (which is equal to the solution found in the second part
to this problem) yields the �nal answer:

~P�eld =

�
� 1

3c2
~E0 � ~m

�
+

�
1

c2
~E0 � ~m

�

~P�eld =
2

3c2
~E0 � ~m
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The same result can be obtained by plugging equation equation 5.62 (
R
V
~Hd3x = 2

3
~m) into

equation 6.117:

~P�eld =
1

c2
~E0 �

Z
V

~Hd3x

=
1

c2
~E0 �

�
2

3c2
~m

�
=

2

3c2
~E0 � ~m
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