Homework Assignment \#12 - Solutions

Textbook problems: Ch. 14: 14.4, 14.5, 14.8, 14.11
14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per unit solid angle in nonrelativisic motion of a particle with charge e, moving
a) along the z axis with instantaneous position $z(t)=a \cos \omega_{0} t$.

In the non-relativisitic limit, the radiated power is given by

$$
\begin{equation*}
\frac{d P(t)}{d \Omega}=\frac{e^{2}}{4 \pi c}|\hat{n} \times \dot{\vec{\beta}}|^{2} \tag{1}
\end{equation*}
$$

In the case of harmonic motion along the z axis, we take

$$
\vec{r}=\hat{z} a \cos \omega_{0} t, \quad \vec{\beta}=-\hat{z} \frac{a \omega_{0}}{c} \sin \omega_{0} t, \quad \dot{\vec{\beta}}=-\hat{z} \frac{a \omega_{0}^{2}}{c} \cos \omega_{0} t
$$

By symmetry, we assume the observer is in the $x-z$ plane tilted with angle θ from the vertical. In other words, we take

$$
\hat{n}=\hat{x} \sin \theta+\hat{z} \cos \theta
$$

This provides enough information to simply substitute into the power expression

$$
\begin{equation*}
\hat{n} \times \dot{\vec{\beta}}=\hat{y} \frac{a \omega_{0}^{2}}{c} \sin \theta \cos \omega_{0} t \quad \Rightarrow \quad \frac{d P(t)}{d \Omega}=\frac{e^{2} a^{2} \omega_{0}^{4}}{4 \pi c^{3}} \sin ^{2} \theta \cos ^{2} \omega_{0} t \tag{1}
\end{equation*}
$$

Taking a time average $\left(\cos ^{2} \omega_{0} t \rightarrow 1 / 2\right)$ gives

$$
\frac{d P}{d \Omega}=\frac{e^{2} a^{2} \omega_{0}^{4}}{8 \pi c^{3}} \sin ^{2} \theta
$$

This is a familiar dipole power distribution, which looks like

Integrating over angles gives the total power

$$
P=\frac{e^{2} a^{2} \omega_{0}^{4}}{3 c^{3}}
$$

$b)$ in a circle of radius R in the $x-y$ plane with constant angular frequency ω_{0}.
Sketch the angular distribution of the radiation and determine the total power radiated in each case.

Here we take instead

$$
\begin{aligned}
\vec{r}=R\left(\hat{x} \cos \omega_{0} t+\hat{y} \sin \omega_{0} t\right) \quad \rightarrow \quad \vec{\beta} & =\frac{R \omega_{0}}{c}\left(-\hat{x} \sin \omega_{0} t+\hat{y} \cos \omega_{0} t\right) \\
\dot{\vec{\beta}} & =-\frac{R \omega_{0}^{2}}{c}\left(\hat{x} \cos \omega_{0} t+\hat{y} \sin \omega_{0} t\right)
\end{aligned}
$$

Then

$$
\hat{n} \times \dot{\vec{\beta}}=-\frac{R \omega_{0}^{2}}{c}\left[\hat{y} \cos \theta \cos \omega_{0} t+(\hat{z} \sin \theta-\hat{x} \cos \theta) \sin \omega_{0} t\right]
$$

which gives

$$
\frac{d P(t)}{d \Omega}=\frac{e^{2} R^{2} \omega_{0}^{4}}{4 \pi c^{3}}\left(\cos ^{2} \theta \cos ^{2} \omega_{0} t+\sin ^{2} \omega_{0} t\right)
$$

Taking a time average gives

$$
\frac{d P}{d \Omega}=\frac{e^{2} R^{2} \omega_{0}^{4}}{8 \pi c^{3}}\left(1+\cos ^{2} \theta\right)
$$

This distribution looks like

The total power is given by integration over angles. The result is

$$
P=\frac{2 e^{2} R^{2} \omega_{0}^{4}}{3 c^{3}}
$$

14.5 A nonrelativistic particle of charge $z e$, mass m, and kinetic energy E makes a head-on collision with a fixed central force field of finite range. The interaction is repulsive and described by a potential $V(r)$, which becomes greater than E at close distances.
a) Show that the total energy radiated is given by

$$
\Delta W=\frac{4}{3} \frac{z^{2} e^{2}}{m^{2} c^{3}} \sqrt{\frac{m}{2}} \int_{r_{\min }}^{\infty}\left|\frac{d V}{d r}\right|^{2} \frac{d r}{\sqrt{V\left(r_{\min }\right)-V(r)}}
$$

where $r_{\text {min }}$ is the closest distance of approach in the collision.
In the non-relativistic limit, we may use Lamour's formula written in terms of $\dot{\vec{p}}$

$$
\begin{equation*}
P(t)=\frac{2(z e)^{2}}{3 m^{2} c^{3}}\left|\frac{d \vec{p}}{d t}\right|^{2}=\frac{2(z e)^{2}}{3 m^{2} c^{3}}\left(\frac{d V(r)}{d r}\right)^{2} \tag{2}
\end{equation*}
$$

where we have used Newton's second law to write

$$
\frac{d \vec{p}}{d t}=\vec{F}=-\hat{r} \frac{d V(r)}{d r}
$$

The radiated energy is given by integrating power over time

$$
\Delta W=\int_{-\infty}^{\infty} P(t) d t
$$

However, this can be converted to an integral over the trajectory of the particle. By symmetry, we double the value of the integral from closest approach to infinity

$$
\begin{equation*}
\Delta W=2 \int_{r_{\min }}^{\infty} \frac{P}{d r / d t} d r \tag{3}
\end{equation*}
$$

The velocity $d r / d t$ can be obtained from energy conservation. For a head-on collision, we have simply

$$
E=\frac{1}{2} m \dot{r}^{2}+V(r) \quad \Rightarrow \quad \frac{d r}{d t}=\sqrt{\frac{2(E-V(r))}{m}}
$$

Substituting $P(t)$ from (2) as well as $d r / d t$ into (3) then yields

$$
\Delta W=\frac{4 z^{2} e^{2}}{3 m^{2} c^{3}} \sqrt{\frac{m}{2}} \int_{r_{\min }}^{\infty}\left(\frac{d V}{d r}\right)^{2} \frac{d r}{\sqrt{E-V(r)}}
$$

Since the velocity (and hence kinetic energy) vanishes at closest approach, the total energy E is the same as the potential energy at closest approach, $E=$ $V\left(r_{\text {min }}\right)$. Using this finally gives

$$
\begin{equation*}
\Delta W=\frac{4 z^{2} e^{2}}{3 m^{2} c^{3}} \sqrt{\frac{m}{2}} \int_{r_{\min }}^{\infty}\left(\frac{d V}{d r}\right)^{2} \frac{d r}{\sqrt{V\left(r_{\min }\right)-V(r)}} \tag{4}
\end{equation*}
$$

b) If the interaction is a Coulomb potential $V(r)=z Z e^{2} / r$, show that the total energy radiated is

$$
\Delta W=\frac{8}{45} \frac{z m v_{0}^{5}}{Z c^{3}}
$$

where v_{0} is the velocity of the charge at infinity.

Substituting

$$
V(r)=\frac{z Z e^{2}}{r}, \quad \frac{d V}{d r}=-\frac{z Z e^{2}}{r^{2}}
$$

into (4) gives

$$
\begin{aligned}
\Delta W & =\frac{4 z^{3} Z e^{5}}{3 m^{2} c^{3}} \sqrt{\frac{z Z m r_{\min }}{2}} \int_{r_{\min }}^{\infty} \frac{1}{r^{7 / 2}} \frac{d r}{\sqrt{r-r_{\min }}} \\
& =\frac{4 z^{3} Z e^{5}}{3 m^{2} c^{3} r_{\min }^{3}} \sqrt{\frac{z Z m r_{\min }}{2}} \int_{1}^{\infty} \frac{1}{r^{7 / 2}} \frac{d r}{\sqrt{r-1}} \\
& =\frac{4 z^{3} Z e^{5}}{3 m^{2} c^{3} r_{\min }^{3}} \sqrt{\frac{z Z m r_{\min }}{2}} \times \frac{16}{15} \\
& =\frac{32 z^{3} Z e^{5}}{45 m^{2} c^{3} r_{\min }^{3}} \sqrt{2 z Z m r_{\min }}
\end{aligned}
$$

We may relate $r_{\text {min }}$ to the velocity v_{0} at infinity using energy conservation

$$
\frac{z Z e^{2}}{r_{\min }}=\frac{1}{2} m v_{0}^{2} \quad \Rightarrow \quad r_{\min }=\frac{2 z Z e^{2}}{m v_{0}^{2}}
$$

Substituting this in the above radiated energy expression gives

$$
\Delta W=\frac{8 z m v_{0}^{5}}{45 Z c^{3}}
$$

14.8 A swiftly moving particle of charge $z e$ and mass m passes a fixed point charge $Z e$ in an approximately straight-line path at impact parameter b and nearly constant speed v. Show that the total energy radiated in the encounter is

$$
\Delta W=\frac{\pi z^{4} Z^{2} e^{6}}{4 m^{2} c^{4} \beta}\left(\gamma^{2}+\frac{1}{3}\right) \frac{1}{b^{3}}
$$

This is the relativistic generalization of the result of Problem 14.7.
We start with the Liénard result for the radiated power of a relativistic accelerated charge

$$
P=\frac{2}{3} \frac{(z e)^{2}}{c} \gamma^{6}\left[(\dot{\vec{\beta}})^{2}-(\vec{\beta} \times \dot{\vec{\beta}})^{2}\right]
$$

We may remove the cross-product by rewriting the second term using the identity $(\vec{\beta} \times \dot{\vec{\beta}})^{2}=\beta^{2}(\dot{\vec{\beta}})^{2}-(\vec{\beta} \cdot \dot{\vec{\beta}})^{2}$. The result is

$$
\begin{equation*}
P=\frac{2}{3} \frac{(z e)^{2}}{c} \gamma^{4}\left[(\dot{\vec{\beta}})^{2}+\gamma^{2}(\vec{\beta} \cdot \dot{\vec{\beta}})^{2}\right] \tag{5}
\end{equation*}
$$

We now compute the acceleration $\dot{\vec{\beta}}$ for a particle obeying Newton's second law. Starting with

$$
\vec{F}=\frac{d \vec{p}}{d t}=\frac{d}{d t}(\gamma m \vec{v})=m c \frac{d}{d t} \frac{\vec{\beta}}{\sqrt{1-\beta^{2}}}=m c \frac{\left(1-\beta^{2}\right) \dot{\vec{\beta}}+\vec{\beta}(\vec{\beta} \cdot \dot{\vec{\beta}})}{\left(1-\beta^{2}\right)^{3 / 2}}
$$

we write

$$
\begin{equation*}
\left(1-\beta^{2}\right) \dot{\vec{\beta}}+\vec{\beta}(\vec{\beta} \cdot \dot{\vec{\beta}})=\frac{1}{m c \gamma^{3}} \vec{F} \tag{6}
\end{equation*}
$$

In order to solve this expression for $\dot{\vec{\beta}}$ we may first take the dot product of both sides with the velocity $\vec{\beta}$ to obtain

$$
\vec{\beta} \cdot \dot{\vec{\beta}}=\frac{1}{m c \gamma^{3}} \vec{\beta} \cdot \vec{F}
$$

Note that, physically, this gives the parallel component of the acceleration in terms of the parallel component of the force. Substituting this back into (6) gives the desired expression

$$
\dot{\vec{\beta}}=\frac{1}{m c \gamma}[\vec{F}-\vec{\beta}(\vec{\beta} \cdot \vec{F})]
$$

We now insert this into the Liénard result, (5), to get

$$
\begin{align*}
P & =\frac{2}{3} \frac{(z e)^{2} \gamma^{2}}{m^{2} c^{3}}\left[(\vec{F}-\vec{\beta}(\vec{\beta} \cdot \vec{F}))^{2}+\gamma^{-2}(\vec{\beta} \cdot \vec{F})^{2}\right] \tag{7}\\
& =\frac{2}{3} \frac{(z e)^{2} \gamma^{2}}{m^{2} c^{3}}\left[F^{2}-(\vec{\beta} \cdot \vec{F})^{2}\right]
\end{align*}
$$

If desired, we can break this up into force components parallel and perpendicular to the velocity

$$
F^{2}=F_{\perp}^{2}+F_{\|}^{2}, \quad \vec{\beta} \cdot \vec{F}=\beta F_{\|}
$$

to arrive at

$$
\begin{equation*}
P=\frac{2}{3} \frac{(z e)^{2}}{m^{2} c^{3}}\left[\gamma^{2} F_{\perp}^{2}+F_{\|}^{2}\right] \tag{8}
\end{equation*}
$$

For the Coulomb potential $V=(z e)(Z e) / r$, the force is radially directed

$$
\vec{F}=-\hat{r} \frac{d F}{d r}=\hat{r} \frac{z Z e^{2}}{r^{2}}
$$

Assuming the particle moves in an approximately straight-line path with impact parameter b

the parallel and perpendicular components of the force are

$$
F_{\perp}=\frac{z Z e^{2}}{r^{2}} \frac{b}{r}, \quad F_{\|}=\frac{z Z e^{2}}{r^{2}} \frac{\sqrt{r^{2}-b^{2}}}{r}
$$

Inserting this into (8) gives

$$
P=\frac{2}{3} \frac{z^{4} Z^{2} e^{6}}{m^{2} c^{3}} \frac{b^{2} \gamma^{2}+\left(r^{2}-b^{2}\right)}{r^{6}}=\frac{2}{3} \frac{z^{4} Z^{2} e^{6}}{m^{2} c^{3}}\left(\frac{b^{2}\left(\gamma^{2}-1\right)}{r^{6}}+\frac{1}{r^{4}}\right)
$$

The total radiated energy is given by integrating

$$
\Delta W=\int_{-\infty}^{\infty} P d t=2 \int_{b}^{\infty} \frac{P}{d r / d t} d r=2 \int_{b}^{\infty} P \frac{r}{v} \frac{d r}{\sqrt{r^{2}-b^{2}}}
$$

where we have used the relation $r^{2}=x^{2}+b^{2}=(v t)^{2}+b^{2}$ to change from time to radial integration. Substituting in the explicit formula for the power gives

$$
\begin{aligned}
\Delta W & =\frac{4}{3} \frac{z^{4} Z^{2} e^{6}}{m^{2} c^{3} v} \int_{b}^{\infty}\left(\frac{b^{2}\left(\gamma^{2}-1\right)}{r^{5}}+\frac{1}{r^{3}}\right) \frac{d r}{\sqrt{r^{2}-b^{2}}} \\
& =\frac{4}{3} \frac{z^{4} Z^{2} e^{6}}{m^{2} c^{4} \beta b^{3}} \int_{1}^{\infty}\left(\frac{\left(\gamma^{2}-1\right)}{u^{5}}+\frac{1}{u^{3}}\right) \frac{d u}{\sqrt{u^{2}-1}}
\end{aligned}
$$

where we have changed to a dimensionless variable u by letting $r=b u$. The integral can now be performed by trig substitution $u=\sec \theta, \sqrt{u^{2}-1}=\tan \theta$ and $d u=\tan \theta \sec \theta d \theta$

$$
\begin{aligned}
\Delta W & =\frac{4}{3} \frac{z^{4} Z^{2} e^{6}}{m^{2} c^{4} \beta b^{3}} \int_{0}^{\pi / 2}\left[\left(\gamma^{2}-1\right) \cos ^{4} \theta+\cos ^{2} \theta\right] d \theta \\
& =\frac{4}{3} \frac{z^{4} Z^{2} e^{6}}{m^{2} c^{4} \beta b^{3}}\left(\left(\gamma^{2}-1\right) \frac{3 \pi}{16}+\frac{\pi}{4}\right) \\
& =\frac{\pi z^{4} Z^{2} e^{6}}{4 m^{2} c^{4} \beta b^{3}}\left(\left(\gamma^{2}-1\right)+\frac{4}{3}\right)=\frac{\pi z^{4} Z^{2} e^{6}}{4 m^{2} c^{4} \beta b^{3}}\left(\gamma^{2}+\frac{1}{3}\right)
\end{aligned}
$$

14.11 A particle of charge $z e$ and mass m moves in external electric and magnetic fields \vec{E} and \vec{B}.
a) Show that the classical relativistic result for the instantaneous energy radiated per unit time can be written

$$
P=\frac{2}{3} \frac{z^{4} e^{4}}{m^{2} c^{3}} \gamma^{2}\left[(\vec{E}+\vec{\beta} \times \vec{B})^{2}-(\vec{\beta} \cdot \vec{E})^{2}\right]
$$

where \vec{E} and \vec{B} are evaluated at the position of the particle and γ is the particle's instantaneous Lorentz factor.

We start with the Liénard result, written in terms of the force, which was obtained above in (7)

$$
P=\frac{2}{3} \frac{(z e)^{2} \gamma^{2}}{m^{2} c^{3}}\left[F^{2}-(\vec{\beta} \cdot \vec{F})^{2}\right]
$$

The Lorentz force for a particle of charge $z e$ is given by

$$
\vec{F}=z e(\vec{E}+\vec{\beta} \times \vec{B})
$$

so that

$$
F^{2}=(z e)^{2}(\vec{E}+\vec{\beta} \times \vec{B})^{2}, \quad(\vec{\beta} \cdot \vec{F})^{2}=(z e)^{2}(\vec{\beta} \cdot \vec{E})^{2}
$$

Substituting this into the expression for the radiated power immediately yields the desired result

$$
\begin{equation*}
P=\frac{2}{3} \frac{(z e)^{4} \gamma^{2}}{m^{2} c^{3}}\left[(\vec{E}+\vec{\beta} \times \vec{B})^{2}-(\vec{\beta} \cdot \vec{E})^{2}\right] \tag{9}
\end{equation*}
$$

b) Show that the expression in part a can be put into the manifestly Lorentzinvariant form

$$
P=\frac{2 z^{4} r_{0}^{2}}{3 m^{2} c} F^{\mu \nu} p_{\nu} p^{\lambda} F_{\lambda \mu}
$$

where $r_{0}=e^{2} / m c^{2}$ is the classical charged particle radius.
We can perform an explicit calculation with

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right), \quad p^{\mu}=\gamma m c\left(1, \beta_{x}, \beta_{y}, \beta_{z}\right)
$$

to obtain

$$
F^{\mu \nu} p_{\nu}=\gamma m c\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
-\beta_{x} \\
-\beta_{y} \\
-\beta_{z}
\end{array}\right)=\gamma m c\left(\begin{array}{c}
-\vec{\beta} \cdot \vec{E} \\
{[\vec{E}+\vec{\beta} \times \vec{B}]_{x}} \\
{[\vec{E}+\vec{\beta} \times \vec{B}]_{y}} \\
{[\vec{E}+\vec{\beta} \times \vec{B}]_{z}}
\end{array}\right)
$$

For $p^{\lambda} F_{\lambda \mu}$, we may use antisymmetry of the Maxwell tensor along with a lowering of the μ index to deduce that

$$
p^{\lambda} F_{\lambda \mu}=\gamma m c\left(\begin{array}{c}
\vec{\beta} \cdot \vec{E} \\
{[\vec{E}+\vec{\beta} \times \vec{B}]_{x}} \\
{[\vec{E}+\vec{\beta} \times \vec{B}]_{y}} \\
{[\vec{E}+\vec{\beta} \times \vec{B}]_{z}}
\end{array}\right)
$$

As a result, we see that

$$
F^{\mu \nu} p_{\nu} p^{\lambda} F_{\lambda \mu}=\gamma^{2} m^{2} c^{2}\left[(\vec{E}+\vec{\beta} \times \vec{B})^{2}-(\vec{\beta} \cdot \vec{E})^{2}\right]
$$

This allows us to rewrite (9) in the manifestly Lorentz-invariant form

$$
\begin{equation*}
P=\frac{2}{3} \frac{(z e)^{4}}{m^{4} c^{5}} F^{\mu \nu} p_{\nu} p^{\lambda} F_{\lambda \mu}=\frac{2}{3} \frac{z^{4} r_{0}^{2}}{m^{2} c} F^{\mu \nu} p_{\nu} p^{\lambda} F_{\lambda \mu} \tag{10}
\end{equation*}
$$

where we have introduced $r_{0}=e^{2} / m c^{2}$.
Alternatively, note that the relativistic generalization of Larmor's formula is given by

$$
P=-\frac{2}{3} \frac{(z e)^{2}}{m^{2} c^{3}}\left(\frac{d p_{\mu}}{d \tau} \frac{d p^{\mu}}{d \tau}\right)
$$

Using the manifestly Lorentz covariant form of the Lorentz force law

$$
\frac{d p^{\mu}}{d \tau}=\frac{z e}{c} F^{\mu \nu} U_{\nu}=\frac{z e}{m c} F^{\mu \nu} p_{\nu}
$$

then directly gives (10).

