Homework Assignment #12 — Solutions

Textbook problems: Ch. 14: 14.4, 14.5, 14.8, 14.11

- 14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per unit solid angle in nonrelativisic motion of a particle with charge e, moving
 - a) along the z axis with instantaneous position $z(t) = a \cos \omega_0 t$.

In the non-relativisitic limit, the radiated power is given by

$$\frac{dP(t)}{d\Omega} = \frac{e^2}{4\pi c} |\hat{n} \times \dot{\vec{\beta}}|^2 \tag{1}$$

In the case of harmonic motion along the z axis, we take

$$\vec{r} = \hat{z}a\cos\omega_0 t, \qquad \vec{\beta} = -\hat{z}\frac{a\omega_0}{c}\sin\omega_0 t, \qquad \dot{\vec{\beta}} = -\hat{z}\frac{a\omega_0^2}{c}\cos\omega_0 t$$

By symmetry, we assume the observer is in the x-z plane tilted with angle θ from the vertical. In other words, we take

$$\hat{n} = \hat{x}\sin\theta + \hat{z}\cos\theta$$

This provides enough information to simply substitute into the power expression (1)

$$\hat{n} \times \dot{\vec{\beta}} = \hat{y} \frac{a\omega_0^2}{c} \sin\theta \cos\omega_0 t \qquad \Rightarrow \qquad \frac{dP(t)}{d\Omega} = \frac{e^2 a^2 \omega_0^4}{4\pi c^3} \sin^2\theta \cos^2\omega_0 t$$

Taking a time average $(\cos^2 \omega_0 t \to 1/2)$ gives

$$\frac{dP}{d\Omega} = \frac{e^2 a^2 \omega_0^4}{8\pi c^3} \sin^2 \theta$$

This is a familiar dipole power distribution, which looks like

Integrating over angles gives the total power

$$P=\frac{e^2a^2\omega_0^4}{3c^3}$$

b) in a circle of radius R in the x-y plane with constant angular frequency ω_0 . Sketch the angular distribution of the radiation and determine the total power radiated in each case.

Here we take instead

$$\vec{r} = R(\hat{x}\cos\omega_0 t + \hat{y}\sin\omega_0 t) \qquad \rightarrow \qquad \vec{\beta} = \frac{R\omega_0}{c}(-\hat{x}\sin\omega_0 t + \hat{y}\cos\omega_0 t)$$
$$\dot{\vec{\beta}} = -\frac{R\omega_0^2}{c}(\hat{x}\cos\omega_0 t + \hat{y}\sin\omega_0 t)$$

Then

$$\hat{n} \times \dot{\vec{\beta}} = -\frac{R\omega_0^2}{c} [\hat{y}\cos\theta\cos\omega_0 t + (\hat{z}\sin\theta - \hat{x}\cos\theta)\sin\omega_0 t]$$

which gives

$$\frac{dP(t)}{d\Omega} = \frac{e^2 R^2 \omega_0^4}{4\pi c^3} (\cos^2\theta \cos^2\omega_0 t + \sin^2\omega_0 t)$$

Taking a time average gives

$$\frac{dP}{d\Omega} = \frac{e^2 R^2 \omega_0^4}{8\pi c^3} (1 + \cos^2 \theta)$$

This distribution looks like

The total power is given by integration over angles. The result is

$$P = \frac{2e^2R^2\omega_0^4}{3c^3}$$

- 14.5 A nonrelativistic particle of charge ze, mass m, and kinetic energy E makes a head-on collision with a fixed central force field of finite range. The interaction is repulsive and described by a potential V(r), which becomes greater than E at close distances.
 - a) Show that the total energy radiated is given by

$$\Delta W = \frac{4}{3} \frac{z^2 e^2}{m^2 c^3} \sqrt{\frac{m}{2}} \int_{r_{\min}}^{\infty} \left| \frac{dV}{dr} \right|^2 \frac{dr}{\sqrt{V(r_{\min}) - V(r)}}$$

where r_{\min} is the closest distance of approach in the collision.

In the non-relativistic limit, we may use Lamour's formula written in terms of $\dot{\vec{p}}$

$$P(t) = \frac{2(ze)^2}{3m^2c^3} \left| \frac{d\vec{p}}{dt} \right|^2 = \frac{2(ze)^2}{3m^2c^3} \left(\frac{dV(r)}{dr} \right)^2$$
(2)

where we have used Newton's second law to write

$$\frac{d\vec{p}}{dt} = \vec{F} = -\hat{r}\frac{dV(r)}{dr}$$

The radiated energy is given by integrating power over time

$$\Delta W = \int_{-\infty}^{\infty} P(t) \, dt$$

However, this can be converted to an integral over the trajectory of the particle. By symmetry, we double the value of the integral from closest approach to infinity

$$\Delta W = 2 \int_{r_{\rm min}}^{\infty} \frac{P}{dr/dt} dr \tag{3}$$

The velocity dr/dt can be obtained from energy conservation. For a head-on collision, we have simply

$$E = \frac{1}{2}m\dot{r}^2 + V(r) \qquad \Rightarrow \qquad \frac{dr}{dt} = \sqrt{\frac{2(E - V(r))}{m}}$$

Substituting P(t) from (2) as well as dr/dt into (3) then yields

$$\Delta W = \frac{4z^2 e^2}{3m^2 c^3} \sqrt{\frac{m}{2}} \int_{r_{\min}}^{\infty} \left(\frac{dV}{dr}\right)^2 \frac{dr}{\sqrt{E - V(r)}}$$

Since the velocity (and hence kinetic energy) vanishes at closest approach, the total energy E is the same as the potential energy at closest approach, $E = V(r_{\min})$. Using this finally gives

$$\Delta W = \frac{4z^2 e^2}{3m^2 c^3} \sqrt{\frac{m}{2}} \int_{r_{\min}}^{\infty} \left(\frac{dV}{dr}\right)^2 \frac{dr}{\sqrt{V(r_{\min}) - V(r)}} \tag{4}$$

b) If the interaction is a Coulomb potential $V(r) = zZe^2/r$, show that the total energy radiated is

$$\Delta W = \frac{8}{45} \frac{zmv_0^5}{Zc^3}$$

where v_0 is the velocity of the charge at infinity.

Substituting

$$V(r) = \frac{zZe^2}{r}, \qquad \frac{dV}{dr} = -\frac{zZe^2}{r^2}$$

into (4) gives

$$\begin{split} \Delta W &= \frac{4z^3 Z e^5}{3m^2 c^3} \sqrt{\frac{z Z m r_{\min}}{2}} \int_{r_{\min}}^{\infty} \frac{1}{r^{7/2}} \frac{dr}{\sqrt{r - r_{\min}}} \\ &= \frac{4z^3 Z e^5}{3m^2 c^3 r_{\min}^3} \sqrt{\frac{z Z m r_{\min}}{2}} \int_{1}^{\infty} \frac{1}{r^{7/2}} \frac{dr}{\sqrt{r - 1}} \\ &= \frac{4z^3 Z e^5}{3m^2 c^3 r_{\min}^3} \sqrt{\frac{z Z m r_{\min}}{2}} \times \frac{16}{15} \\ &= \frac{32z^3 Z e^5}{45m^2 c^3 r_{\min}^3} \sqrt{2z Z m r_{\min}} \end{split}$$

We may relate r_{\min} to the velocity v_0 at infinity using energy conservation

$$\frac{zZe^2}{r_{\min}} = \frac{1}{2}mv_0^2 \qquad \Rightarrow \qquad r_{\min} = \frac{2zZe^2}{mv_0^2}$$

Substituting this in the above radiated energy expression gives

$$\Delta W = \frac{8zmv_0^5}{45Zc^3}$$

14.8 A swiftly moving particle of charge ze and mass m passes a fixed point charge Ze in an approximately straight-line path at impact parameter b and nearly constant speed v. Show that the total energy radiated in the encounter is

$$\Delta W = \frac{\pi z^4 Z^2 e^6}{4m^2 c^4 \beta} \left(\gamma^2 + \frac{1}{3}\right) \frac{1}{b^3}$$

This is the relativistic generalization of the result of Problem 14.7.

We start with the Liénard result for the radiated power of a relativistic accelerated charge

$$P = \frac{2}{3} \frac{(ze)^2}{c} \gamma^6 [(\dot{\vec{\beta}})^2 - (\vec{\beta} \times \dot{\vec{\beta}})^2]$$

We may remove the cross-product by rewriting the second term using the identity $(\vec{\beta} \times \dot{\vec{\beta}})^2 = \beta^2 (\vec{\beta})^2 - (\vec{\beta} \cdot \dot{\vec{\beta}})^2$. The result is

$$P = \frac{2}{3} \frac{(ze)^2}{c} \gamma^4 [(\vec{\beta})^2 + \gamma^2 (\vec{\beta} \cdot \vec{\beta})^2]$$
(5)

We now compute the acceleration $\bar{\vec{\beta}}$ for a particle obeying Newton's second law. Starting with

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d}{dt}(\gamma m\vec{v}) = mc\frac{d}{dt}\frac{\vec{\beta}}{\sqrt{1-\beta^2}} = mc\frac{(1-\beta^2)\dot{\vec{\beta}} + \vec{\beta}(\vec{\beta}\cdot\dot{\vec{\beta}})}{(1-\beta^2)^{3/2}}$$

we write

$$(1 - \beta^2)\dot{\vec{\beta}} + \vec{\beta}(\vec{\beta} \cdot \dot{\vec{\beta}}) = \frac{1}{mc\gamma^3}\vec{F}$$
(6)

In order to solve this expression for $\vec{\beta}$ we may first take the dot product of both sides with the velocity $\vec{\beta}$ to obtain

$$\vec{\beta} \cdot \dot{\vec{\beta}} = \frac{1}{mc\gamma^3} \vec{\beta} \cdot \vec{F}$$

Note that, physically, this gives the parallel component of the acceleration in terms of the parallel component of the force. Substituting this back into (6) gives the desired expression

$$\dot{\vec{\beta}} = \frac{1}{mc\gamma} [\vec{F} - \vec{\beta} (\vec{\beta} \cdot \vec{F})]$$

We now insert this into the Liénard result, (5), to get

$$P = \frac{2}{3} \frac{(ze)^2 \gamma^2}{m^2 c^3} [(\vec{F} - \vec{\beta} (\vec{\beta} \cdot \vec{F}))^2 + \gamma^{-2} (\vec{\beta} \cdot \vec{F})^2]$$

$$= \frac{2}{3} \frac{(ze)^2 \gamma^2}{m^2 c^3} [F^2 - (\vec{\beta} \cdot \vec{F})^2]$$
(7)

If desired, we can break this up into force components parallel and perpendicular to the velocity

$$F^2 = F_{\perp}^2 + F_{\parallel}^2, \qquad \vec{\beta} \cdot \vec{F} = \beta F_{\parallel}$$

to arrive at

$$P = \frac{2}{3} \frac{(ze)^2}{m^2 c^3} [\gamma^2 F_{\perp}^2 + F_{\parallel}^2]$$
(8)

For the Coulomb potential V = (ze)(Ze)/r, the force is radially directed

$$\vec{F} = -\hat{r}\frac{dF}{dr} = \hat{r}\frac{zZe^2}{r^2}$$

Assuming the particle moves in an approximately straight-line path with impact parameter \boldsymbol{b}

the parallel and perpendicular components of the force are

$$F_\perp = \frac{zZe^2}{r^2}\frac{b}{r}, \qquad F_\parallel = \frac{zZe^2}{r^2}\frac{\sqrt{r^2-b^2}}{r}$$

Inserting this into (8) gives

$$P = \frac{2}{3} \frac{z^4 Z^2 e^6}{m^2 c^3} \frac{b^2 \gamma^2 + (r^2 - b^2)}{r^6} = \frac{2}{3} \frac{z^4 Z^2 e^6}{m^2 c^3} \left(\frac{b^2 (\gamma^2 - 1)}{r^6} + \frac{1}{r^4}\right)$$

The total radiated energy is given by integrating

$$\Delta W = \int_{-\infty}^{\infty} P \, dt = 2 \int_{b}^{\infty} \frac{P}{dr/dt} dr = 2 \int_{b}^{\infty} P \frac{r}{v} \frac{dr}{\sqrt{r^2 - b^2}}$$

where we have used the relation $r^2 = x^2 + b^2 = (vt)^2 + b^2$ to change from time to radial integration. Substituting in the explicit formula for the power gives

$$\begin{split} \Delta W &= \frac{4}{3} \frac{z^4 Z^2 e^6}{m^2 c^3 v} \int_b^\infty \left(\frac{b^2 (\gamma^2 - 1)}{r^5} + \frac{1}{r^3} \right) \frac{dr}{\sqrt{r^2 - b^2}} \\ &= \frac{4}{3} \frac{z^4 Z^2 e^6}{m^2 c^4 \beta b^3} \int_1^\infty \left(\frac{(\gamma^2 - 1)}{u^5} + \frac{1}{u^3} \right) \frac{du}{\sqrt{u^2 - 1}} \end{split}$$

where we have changed to a dimensionless variable u by letting r = bu. The integral can now be performed by trig substitution $u = \sec \theta$, $\sqrt{u^2 - 1} = \tan \theta$ and $du = \tan \theta \sec \theta d\theta$

$$\begin{split} \Delta W &= \frac{4}{3} \frac{z^4 Z^2 e^6}{m^2 c^4 \beta b^3} \int_0^{\pi/2} [(\gamma^2 - 1) \cos^4 \theta + \cos^2 \theta] d\theta \\ &= \frac{4}{3} \frac{z^4 Z^2 e^6}{m^2 c^4 \beta b^3} \left((\gamma^2 - 1) \frac{3\pi}{16} + \frac{\pi}{4} \right) \\ &= \frac{\pi z^4 Z^2 e^6}{4m^2 c^4 \beta b^3} \left((\gamma^2 - 1) + \frac{4}{3} \right) = \frac{\pi z^4 Z^2 e^6}{4m^2 c^4 \beta b^3} \left(\gamma^2 + \frac{1}{3} \right) \end{split}$$

14.11 A particle of charge ze and mass m moves in external electric and magnetic fields \vec{E} and \vec{B} .

a) Show that the classical relativistic result for the instantaneous energy radiated per unit time can be written

$$P = \frac{2}{3} \frac{z^4 e^4}{m^2 c^3} \gamma^2 [(\vec{E} + \vec{\beta} \times \vec{B})^2 - (\vec{\beta} \cdot \vec{E})^2]$$

where \vec{E} and \vec{B} are evaluated at the position of the particle and γ is the particle's instantaneous Lorentz factor.

We start with the Liénard result, written in terms of the force, which was obtained above in (7)

$$P = \frac{2}{3} \frac{(ze)^2 \gamma^2}{m^2 c^3} [F^2 - (\vec{\beta} \cdot \vec{F})^2]$$

The Lorentz force for a particle of charge ze is given by

$$\vec{F} = ze(\vec{E} + \vec{\beta} \times \vec{B})$$

so that

$$F^2 = (ze)^2 (\vec{E} + \vec{\beta} \times \vec{B})^2, \qquad (\vec{\beta} \cdot \vec{F})^2 = (ze)^2 (\vec{\beta} \cdot \vec{E})^2$$

Substituting this into the expression for the radiated power immediately yields the desired result

$$P = \frac{2}{3} \frac{(ze)^4 \gamma^2}{m^2 c^3} [(\vec{E} + \vec{\beta} \times \vec{B})^2 - (\vec{\beta} \cdot \vec{E})^2]$$
(9)

b) Show that the expression in part a can be put into the manifestly Lorentzinvariant form

$$P = \frac{2z^4 r_0^2}{3m^2 c} F^{\mu\nu} p_\nu p^\lambda F_{\lambda\mu}$$

where $r_0 = e^2/mc^2$ is the classical charged particle radius.

We can perform an explicit calculation with

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}, \qquad p^{\mu} = \gamma mc(1, \beta_x, \beta_y, \beta_z)$$

to obtain

$$F^{\mu\nu}p_{\nu} = \gamma mc \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -\beta_x \\ -\beta_y \\ -\beta_z \end{pmatrix} = \gamma mc \begin{pmatrix} -\beta \cdot \vec{E} \\ [\vec{E} + \vec{\beta} \times \vec{B}]_x \\ [\vec{E} + \vec{\beta} \times \vec{B}]_y \\ [\vec{E} + \vec{\beta} \times \vec{B}]_z \end{pmatrix}$$

For $p^{\lambda}F_{\lambda\mu}$, we may use antisymmetry of the Maxwell tensor along with a lowering of the μ index to deduce that

$$p^{\lambda}F_{\lambda\mu} = \gamma mc \begin{pmatrix} \vec{\beta} \cdot \vec{E} \\ [\vec{E} + \vec{\beta} \times \vec{B}]_x \\ [\vec{E} + \vec{\beta} \times \vec{B}]_y \\ [\vec{E} + \vec{\beta} \times \vec{B}]_z \end{pmatrix}$$

As a result, we see that

$$F^{\mu\nu}p_{\nu}p^{\lambda}F_{\lambda\mu} = \gamma^2 m^2 c^2 [(\vec{E} + \vec{\beta} \times \vec{B})^2 - (\vec{\beta} \cdot \vec{E})^2]$$

This allows us to rewrite (9) in the manifestly Lorentz-invariant form

$$P = \frac{2}{3} \frac{(ze)^4}{m^4 c^5} F^{\mu\nu} p_{\nu} p^{\lambda} F_{\lambda\mu} = \frac{2}{3} \frac{z^4 r_0^2}{m^2 c} F^{\mu\nu} p_{\nu} p^{\lambda} F_{\lambda\mu}$$
(10)

where we have introduced $r_0 = e^2/mc^2$.

Alternatively, note that the relativistic generalization of Larmor's formula is given by

$$P = -\frac{2}{3} \frac{(ze)^2}{m^2 c^3} \left(\frac{dp_\mu}{d\tau} \frac{dp^\mu}{d\tau} \right)$$

Using the manifestly Lorentz covariant form of the Lorentz force law

$$\frac{dp^{\mu}}{d\tau} = \frac{ze}{c} F^{\mu\nu} U_{\nu} = \frac{ze}{mc} F^{\mu\nu} p_{\nu}$$

then directly gives (10).