Homework Assignment \#12 - Due Thursday, April 10

Textbook problems: Ch. 14: 14.4, 14.5, 14.8, 14.11
14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per unit solid angle in nonrelativisic motion of a particle with charge e, moving
a) along the z axis with instantaneous position $z(t)=a \cos \omega_{0} t$.
$b)$ in a circle of radius R in the $x-y$ plane with constant angular frequency ω_{0}.
Sketch the angular distribution of the radiation and determine the total power radiated in each case.
14.5 A nonrelativistic particle of charge $z e$, mass m, and kinetic energy E makes a head-on collision with a fixed central force field of finite range. The interaction is repulsive and described by a potential $V(r)$, which becomes greater than E at close distances.
a) Show that the total energy radiated is given by

$$
\Delta W=\frac{4}{3} \frac{z^{2} e^{2}}{m^{2} c^{3}} \sqrt{\frac{m}{2}} \int_{r_{\min }}^{\infty}\left|\frac{d V}{d r}\right|^{2} \frac{d r}{\sqrt{V\left(r_{\min }\right)-V(r)}}
$$

where $r_{\text {min }}$ is the closest distance of approach in the collision.
b) If the interaction is a Coulomb potential $V(r)=z Z e^{2} / r$, show that the total energy radiated is

$$
\Delta W=\frac{8}{45} \frac{z m v_{0}^{5}}{Z c^{3}}
$$

where v_{0} is the velocity of the charge at infinity.
14.8 A swiftly moving particle of charge $z e$ and mass m passes a fixed point charge $Z e$ in an approximately straight-line path at impact parameter b and nearly constant speed v. Show that the total energy radiated in the encounter is

$$
\Delta W=\frac{\pi z^{4} Z^{2} e^{6}}{4 m^{2} c^{4} \beta}\left(\gamma^{2}+\frac{1}{3}\right) \frac{1}{b^{3}}
$$

This is the relativistic generalization of the result of Problem 14.7.
14.11 A particle of charge $z e$ and mass m moves in external electric and magnetic fields \vec{E} and \vec{B}.
a) Show that the classical relativistic result for the instantaneous energy radiated per unit time can be written

$$
P=\frac{2}{3} \frac{z^{4} e^{4}}{m^{2} c^{3}} \gamma^{2}\left[(\vec{E}+\vec{\beta} \times \vec{B})^{2}-(\vec{\beta} \cdot \vec{E})^{2}\right]
$$

where \vec{E} and \vec{B} are evaluated at the position of the particle and γ is the particle's instantaneous Lorentz factor.
b) Show that the expression in part a can be put into the manifestly Lorentzinvariant form

$$
P=\frac{2 z^{4} r_{0}^{2}}{3 m^{2} c} F^{\mu \nu} p_{\nu} p^{\lambda} F_{\lambda \mu}
$$

where $r_{0}=e^{2} / m c^{2}$ is the classical charged particle radius.

