
Physics 506 Winter 2008

Homework Assignment #11 — Solutions

Textbook problems: Ch. 13: 13.1, 13.2, 13.3, 13.5

13.1 If the light particle (electron) in the Coulomb scattering of Section 13.1 is treated clas-
sically, scattering through an angle θ is correlated uniquely to an incident trajectory
of impact parameter b according to

b =
ze2

pv
cot

θ

2

where p = γmv and the differential scattering cross section is dσ
dΩ = b

sin θ

∣∣ db
dθ

∣∣.
a) Express the invariant momentum transfer squared in terms of impact parameter

and show that the energy transfer T (b) is

T (b) =
2z2e4

mv2

1

b2 + b
(c) 2
min

where b(c)min = ze2/pv and T (0) = Tmax = 2γ2β2mc2.

The invariant momentum transfer squared is defined as Q2 = −(p − p′)2 where
pµ and pµ ′ are the initial and final 4-momenta of the electron. Expanding this
out, and using p2 = p′2 = m2c2 gives

Q2 = 2(pµp′µ −m2c2) = 2(EE′/c2 −m2c2 − ~p · ~p ′) (1)

Now consider the center of mass frame, where the heavy particle is essentially sta-
tionary and the electron undergoes scattering by an angle θ. Since this is an elas-
tic scattering, we use conservation of energy to write E = E′ =

√
m2c4 + |~p |2c2.

In addition the scattering angle is related to 3-momentum transfer according to
~p · ~p ′ = |~p |2 cos θ. Inserting this into (1) for the Q2 invariant gives

Q2 = 2|~p |2(1− cos θ) = 4|~p |2 sin2 θ

2
= 4p2 sin2 θ

2

where in the final expression we simply use p to denote the magnitude of the
3-momentum ~p. Rewriting sin2(θ/2) in terms of cot2(θ/2) according to

sin2 θ

2
=

1
1 + cot2 θ

2

and inserting the relation between b and θ given above results in

Q2 =
(

2ze2

v

)2 1

b2 + b
(c) 2
min

(2)



with b
(c)
min = ze2/pv.

We now examine the kinetic energy transfer in the lab frame. In this frame, the
electron is initially at rest. Hence E = mc2 and ~p = 0. Inserting this into (1)
gives

Q2 = 2m(E′ −mc2) = 2mT

where T ≡ E′ −mc2 is the kinetic energy transfer. Finally, using this relation
Q2 = 2mT in (2) gives

T =
2z2e4

mv2

1

b2 + b
(c) 2
min

(3)

b) Calculate the small transverse impulse ∆p given to the (nearly stationary) light
particle by the transverse electric field (11.152) of the heavy particle q = ze as it
passes by at large impact parameter b in a (nearly) straight line path at speed v.
Find the energy transfer T ≈ (∆p)2/2m in terms of b. Compare with the exact
classical result of part a. Comment.

The transverse electric field of (11.152) is given by

E⊥ =
qγb

(b2 + γ2v2t2)3/2

We now calculate the impulse according to

∆p⊥ =
∫
F⊥ dt = e

∫
E⊥ dt = ze2γb

∫
dt

(b2 + γ2v2t2)3/2

where we used q = ze for the charge of the heavy particle. This integral can be
performed by trig substitution t = (b/γv) tan θ with the result

∆p⊥ =
ze2

bv

∫ π/2

−π/2
cos θ dθ =

2ze2

bv

As a result, the energy transfer is approximately

T ≈ (∆p⊥)2

2m
=

2z2e4

mv2

1
b2

(4)

This is similar to the exact classical result (3), with the exception that the b(c) 2
min

term is missing. That this term is missing is actually not surprising, because we
have assumed the particle passes by at large impact parameter. This is essentially
the limit b � b

(c)
min, and it corresponds to having almost no deflection from the

straight line path. When the impact parameter gets too small, the electron suffers
a large deflection, and the straight line approximation breaks down. Thus instead
of going to infinity as this approximate result does, the exact result (3) remains
finite as b→ 0.



13.2 Time-varying electromagnetic fields ~E(~x, t) and ~B(~x, t) of finite duration act on a
charged particle of charge e and mass m bound harmonically to the origin with natural
frequency ω0 and small damping constant Γ. The fields may be caused by a passing
charged particle or some other external source. The charge’s motion in response to
the fields is nonrelativistic and small in amplitude compared to the scale of spatial
variation of the fields (dipole approximation). Show that the energy transferred to
the oscillator in the limit of very small damping is

∆E =
πe2

m
| ~E(ω0)|2

where ~E(ω) is the symmetric Fourier transform of ~E(0, t):

~E(0, t) =
1√
2π

∫ ∞
−∞

~E(ω)e−iωtdω, ~E(ω) =
1√
2π

∫ ∞
−∞

~E(0, t)eiωtdt

The classical dynamics of the charged particle is given by ~F = m~a

m~̈x = −mω2
0~x−mΓ~̇x+ e ~E(~x, t) +

e

c
~̇x× ~B(~x, t)

In general, the Lorentz force terms are non-linear in displacement ~x(t). However
for small amplitudes we may replace ~E(~x, t) ≈ ~E(0, t) and ~B(~x, t) ≈ ~B(0, t) on
the right hand side. This gives the equation

~̈x+ Γ~̇x+ ω2
0~x =

e

m
~E(t) +

e

mc
~̇x× ~B(t)

Note that this equation is still rather awkward to solve because of the magnetic
field coupling. Fortunately, this ~̇x × ~B term can also be dropped at the same
linearized level of approximation. This is because it can be treated as a pertur-
bation: if ~x is first order in the external fields, then ~̇x × ~B will be second order.
As a result, we have the familiar damped driven harmonic oscillator

~̈x+ Γ~̇x+ ω2
0~x =

e

m
~E(t)

with frequency domain solution

~x(ω) =
e/m

ω2
0 − ω2 − iωΓ

~E(ω) (5)

The energy transfer is then obtained by integrating the power

∆E =
∫ ∞
−∞

~F (t) · ~̇x(t) dt = e

∫ ∞
−∞

~E(t) · ~̇x(t) dt



This may be converted into the frequency domain using Parseval’s relation (or
the convolution theorem)

∆E = e

∫ ∞
−∞

~̇x(ω) · ~E∗(ω) dω

Substituting in (5) and expressing d/dt in frequency space then gives

∆E =
e2

m

∫ ∞
−∞

−iω
ω2

0 − ω2 − iωΓ
| ~E(ω)|2dω

=
e2

m
2<
∫ ∞

0

−iω
ω2

0 − ω2 − iωΓ
| ~E(ω)|2dω

=
2e2

m

∫ ∞
0

ω2Γ
(ω2 − ω2

0)2 + ω2Γ2
| ~E(ω)|2dω

This general expression simplifies in the limit Γ → 0 where the fraction in the
integrand becomes a delta function

lim
Γ→0

ω2Γ
(ω2 − ω2

0)2 + ω2Γ2
=
π

2
[δ(ω − ω0) + δ(ω + ω0)]

This gives

lim
Γ→0

∆E =
πe2

m
| ~E(ω0)|2 (6)

13.3 The external fields of Problem 13.2 are caused by a charge ze passing the origin in a
straight-line path at speed v and impact parameter b. The fields are given by (11.152).

a) Evaluate the Fourier transforms for the perpendicular and parallel components
of the electric field at the origin and show that

E⊥(ω) =
ze

bv

(
2
π

)1/2

ξK1(ξ), E‖(ω) = −i ze
γbv

(
2
π

)1/2

ξK0(ξ)

where ξ = ωb/γv, and Kν(ξ) is the modified Bessel function of the second kind
and order ν. [See references to tables of Fourier transforms in Section 13.3]

The external fields for a charge ze are given by

E‖ =
−zeγvt

(b2 + γ2v2t2)3/2
, E⊥ =

zeγb

(b2 + γ2v2t2)3/2
(7)

Before evaluating the Fourier transforms, we recall that the modified Bessel func-
tions K0 and K1 may be defined by

K0(x) =
∫ ∞

0

cos(xt)
(t2 + 1)1/2

dt, K1(x) =
∫ ∞

0

t sin(xt)
(t2 + 1)1/2

dt



Based on symmetry/antisymmetry, these may be extended to the entire real line

K0(x) =
1
2

∫ ∞
−∞

eixt

(t2 + 1)1/2
dt, K1(x) =

1
2i

∫ ∞
−∞

teixt

(t2 + 1)1/2
dt

Comparing these expressions to (7), we see some similarities. However, the de-
nominators in (7) are raised to the 3/2 power. This suggests that we integrate
by parts to obtain the transform expressions∫ ∞

−∞

teixt

(t2 + 1)3/2
dt = 2ixK0(x),

∫ ∞
−∞

eixt

(t2 + 1)3/2
dt = 2xK1(x)

We are now ready to evaluate the Fourier transforms. For E⊥, we have

E⊥(ω) =
1√
2π

∫ ∞
−∞

zeγb

(b2 + γ2v2t2)3/2
eiωtdt

=
zeγ

b2
√

2π

∫ ∞
−∞

eiωt

(1 + (γvt/b)2)3/2
dt

=
ze

bv
√

2π

∫ ∞
−∞

eiξt
′

(1 + t′2)3/2
dt′ =

ze

bv

√
2
π
ξK1(ξ)

(8)

where we made the change of variables t′ = γvt/b and introduced the parameter
ξ = ωb/γv. The transform for E‖ is similar

E‖(ω) = − 1√
2π

∫ ∞
−∞

zeγvt

(b2 + γ2v2t2)3/2
eiωtdt

= − zeγv

b3
√

2π

∫ ∞
−∞

teiωt

(1 + (γvt/b)2)3/2
dt

= − ze

γbv
√

2π

∫ ∞
−∞

t′eiξt
′

(1 + t′2)3/2
dt′ = −i ze

γbv

√
2
π
ξK0(ξ)

(9)

b) Using the result of Problem 13.2, write down the energy transfer ∆E to a har-
monically bound charged particle. From the limiting forms of the modified Bessel
functions for small and large argument, show that your result agrees with the ap-
propriate limit of T (b) in Problem 13.1 on the one hand and the arguments at
the end of Section 13.1 on the adiabatic behavior for b� γv/ω0 on the other.

The energy transfer ∆E is approximately given by (6)

∆E =
πe2

m
| ~E(ω0)|2

Substituting in E⊥ and E‖ from (8) and (9) gives

∆E =
2z2e4

mv2

ξ2
0 [K1(ξ0)2 + γ−2K0(ξ0)2]

b2



where ξ0 = ω0b/γv.

Note that the adiabatic regime is governed by the scale of b compared to b(c)max ≡
γv/ω0. In particular, since ξ0 = b/b

(c)
max, the two regimes of interest (small and

large impact parameter) correspond directly to small and large argument of the
modified Bessel functions. In the small impact parameter regime b � b

(c)
max we

expand

K0(ξ) = − ln
(
ξeγ

2

)
+ · · · , K1(ξ) =

1
ξ

+ · · ·

Thus

∆E ≈ 2z2e4

mv2

1 + (γ−1ξ ln(ξeγ/2))2

b2
≈ 2z2e4

mv2

1
b2

(ξ → 0)

This agrees with the large (but not so large as to be in the adiabatic regime)
impact parameter limit expression (4) of the previously computed energy transfer.
(Note that Problem 13.1 concerned a free electron, namely ω0 → 0 or b(c)max →∞.)
Of course this expression breaks down for zero impact parameter for the same
reason that (4) breaks down. Finally, for large impact parameters b � b

(c)
max, we

use the asymptotic expansion

Kν(ξ) ∼
√

π

2ξ
e−ξ

In this case, we obtain

∆E ∼ πz2e4

mv2

(1 + γ−2)e−2b/b(c)
max

b b
(c)
max

This vanishes exponentially as e−2b/b(c)
max , which agrees with the notion that there

is no significant energy transfer in the adiabatic limit (corresponding to b > b
(c)
max).

13.5 Consider the energy loss by close collisions of a fast, but nonrelativistic, heavy particle
of charge ze passing through an electronic plasma. Assume that the screened Coulomb
interaction V (r) = ze2 exp(−kDr)/r, where kD is the Debye screening parameter, acts
between the electrons and the incident particle.

a) Show that the energy transfer in a collision at impact parameter b is given ap-
proximately by

∆E(b) ≈ 2(ze2)2

mv2
k2
DK

2
1 (kDb)

where m is the electron mass and v is the velocity of the incident particle.

As in Problem 13.1b, we may calculate the energy transfer from the impulse

∆E ≈ (∆p⊥)2

2m
(10)



where
∆p⊥ =

∫ ∞
−∞

F⊥dt

For a central potential V (r) = ze2 exp(−kDr)/r, the force is in the radial direction

~F = −~∇V = ze2 e
−kDr(1 + kDr)

r2
r̂

Setting up the collision as

r

x

y

b

x=vt v

θ

we see that the perpendicular component of the force is given by

F⊥ = Fr sin θ = Fr
b

r
= ze2b

e−kDr(1 + kDr)
r3

where r =
√
b2 + x2 =

√
b2 + v2t2. The momentum-impulse theorem then gives

∆p⊥ = ze2b

∫ ∞
−∞

e−kDr(1 + kDr)
r3

dt

Instead of expressing r in terms of t, we may substitute in t as a function of r

t =
1
v

√
r2 − b2 ⇒ dt =

r

v

dr√
r2 − b2

so that

∆p⊥ =
2ze2b

v

∫ ∞
b

e−kDr(1 + kDr)
r2

dr√
r2 − b2

The particle’s path from t = −∞ to t = ∞ corresponds to taking r = ∞ from
the left, to r = b at minimum approach, and back out to r = ∞ on the right.
Because of symmetry, we can simply double the integral for the particle to move
from r = b out to infinity. This integral can be simplified by hyperbolic trig
substitution r = b cosh t to give

∆p⊥ =
2ze2

vb

∫ ∞
0

e−ξ cosh t(1 + ξ cosh t)
cosh2 t

dt (11)

where ξ = kDb. The integral

f(ξ) =
∫ ∞

0

e−ξ cosh t(1 + ξ cosh t)
cosh2 t

dt (12)



is somewhat troublesome to evaluate. One approach is to note that this simplifies
upon taking a derivative

f ′(ξ) = −ξ
∫ ∞

0

e−ξ cosh tdt = −ξK0(ξ) = (ξK1(ξ))′

As a result, we have simply f(ξ) = ξK1(ξ) up to a possible constant of integration.
Direct examination of (12) indicates that f(∞) = 0, which fixes the constant to
be zero. Substituting this integral into (11) then gives

∆p⊥ =
2ze2

vb
ξK1(ξ)

This gives an energy transfer of

∆E ≈ (∆p⊥)2

2m
=

2(ze2)2

mv2b2
ξ2K2

1 (ξ) =
2(ze2)2

mv2
k2
DK

2
1 (kDb) (13)

Note that an alternate starting point would be to take the zero frequency limit
(ω0 → 0) of the energy transfer expression (6) of Problem 13.2

∆E =
πe2

m
| ~E(ω0)|2 =

π

m
|~F (ω0)|2

where the force is given by ~F = e ~E. At zero frequency, the Fourier transform is

~F (ω = 0) =
1√
2π

∫ ∞
−∞

~F (t)dt

so that

∆E =
1

2m

∣∣∣∣∫ ∞
−∞

~F (t)dt
∣∣∣∣2 =

|∆~p |2

2m

This is clearly equivalent to (10), up to dropping the parallel component of the
momentum transfer.

b) Determine the energy loss per unit distance traveled for collisions with impact
parameter greater than bmin. Assuming kDbmin � 1, show that(

dE

dx

)
kDb<1

≈ (ze)2

v2
ω2
P ln

(
1

1.47kDbmin

)
where bmin is given by the larger of the classical and quantum minimum impact
parameters [(13.16) and above].

We may use the expression

dE

dx
= 2πN

∫ ∞
bmin

∆E bdb



to compute the energy loss per unit distance. For ∆E given in (13), this becomes

dE

dx
=

4πN(ze2)2

mv2

∫ ∞
ξmin

ξK2
1 (ξ)dξ =

4πN(ze2)2

mv2

[
ξ2

2
(
K2

1 (ξ)−K0(ξ)K2(ξ)
)]∞
ξmin

Since the modified Bessel functions are exponentially suppressed at infinity, the
only contribution comes from the lower limit

dE

dx
=

(ze)2

v2
ω2
P

ξ2
min

(
K0(ξmin)K2(ξmin)−K2

1 (ξmin)
)

2

where we the plasma frequency (in Gaussian units) is given by

ω2
P =

4πNe2

m

Finally, using the small argument expansions of the modified Bessel functions

K0(ξ) ≈ log
2
ξ
− γ, K1(ξ) ≈ 1

ξ
, K2(ξ) ≈ 2

ξ2

gives

ξ2
min

(
K0(ξmin)K2(ξmin)−K2

1 (ξmin)
)

2
≈ log

2
ξmin

− γ − 1
2

= log
2e−γ−1/2

ξmin
≈ log

1
1.468ξmin

Putting everything together then yields the energy loss per unit distance

dE

dx
≈ (ze)2

v2
ω2
P log

1
1.468kDbmin


