
Physics 506 Winter 2008

Homework Assignment #10 — Solutions

Textbook problems: Ch. 12: 12.10, 12.13, 12.16, 12.19

12.10 A charged particle finds itself instantaneously in the equatorial plane of the earth’s
magnetic field (assumed to be a dipole field) at a distance R from the center of the
earth. Its velocity vector at that instant makes an angle α with the equatorial plane
(v‖/v⊥ = tanα). Assuming that the particle spirals along the lines of force with
a gyration radius a � R, and that the flux linked by the orbit is a constant of
the motion, find an equation for the maximum magnetic latitude λ reached by the
particle as a function of the angle α. Plot a graph (not a sketch) of λ versus α. Mark
parametrically along the curve the values of α for which a particle at radius R in the
equatorial plane will hit the earth (radius R0) for R/R0 = 1.2, 1.5, 2.0, 2.5, 3, 4, 5.

Since the particle spirals along the lines of force (ie magnetic field lines), we first
set out to calculate what these lines are. For a dipole field with a magnetic dipole
moment ~m = −Mẑ, the magnetic field is

~B =
3r̂(r̂ · ~m)− ~m

r3
=
M

r3
(ẑ − 3 cos θr̂)

where θ is the standard polar angle in spherical coordinates. This expression may
be transformed entirely into spherical coordinates by writing ẑ = r̂ cos θ− θ̂ sin θ.
The result is

~B = −M
r3

(2 cos θr̂ + sin θθ̂) (1)

Because of azimuthal symmetry, we can think of this as a vector field in the r and
θ directions. What we want to do now is to come up with a parametric equation
r = r(λ), θ = θ(λ) describing the field lines. Here λ is a parameter along the
curve. The key to relating this parametric equation to the magnetic field is to
realize that the tangent to the curve should be identified with the magnetic field
vector ~B. Since the tangent to the curve is given by

∂

∂λ
=
dr

dλ
r̂ + r

dθ

dλ
θ̂ (2)

we may take ratios of r̂ and θ̂ components of (1) and (2) to obtain

2 cos θ
sin θ

=
dr/dλ

rdθ/dλ
=

1
r

dr

dθ

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated
to yield

r(θ) = R sin2 θ (3)



Note that we have chosen the initial condition that r(π/2) = R, since θ = π/2
corresponds to the equatorial plane.

In addition to the equation for a magnetic field line, we also need the magnitude
of the magnetic field. This may be computed from (1)

B =
M
√

1 + 3 cos2 θ
r3

Along the line r = R sin2 θ, this becomes

B(θ) =
M

R3

√
1 + 3 cos2 θ

sin6 θ
(4)

Since the flux linked by the orbit is a constant of motion (an adiabatic invariant),
we end up with the velocity relation

v‖(θ)2 = v2
0 − v2

⊥,0
B(θ)
B0

= v2
‖,0 + v2

⊥,0

(
1− B(θ)

B0

)

where we have used v2
0 = v2

‖,0 + v2
⊥,0. The particle starts at an angle θ0 = π/2.

From (4), the initial magnetic field is B0 = M/R3. hence

v‖(θ)2 = v2
‖,0 + v2

⊥,0

(
1−
√

1 + 3 cos2 θ
sin6 θ

)

The minimum value of θ is reached at the turning point when v‖(θ) = 0. This
corresponds to

v2
‖,0 + v2

⊥,0

(
1−
√

1 + 3 cos2 θ
sin6 θ

)
= 0 ⇒

√
1 + 3 cos2 θ

sin6 θ
= 1 +

v2
‖,0

v2
⊥,0

Setting θ = π/2−λ where λ is the magnetic latitude, and using v‖,0/v⊥,0 = tanα
then gives

1 + tan2 α =

√
1 + 3 sin2 λ

cos6 λ
or

α = tan−1

(√1 + 3 sin2 λ

cos6 λ
− 1

)1/2


We may plot λ versus α as
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Since the magnetic field line is given by (3), the particle will hit the earth when
R0 = R sin2 θ = R cos2 λ, or λ = cos−1

√
R0/R. These values are indicated on

the plot.

12.13 a) Specialize the Darwin Lagrangian (12.82) to the interaction of two charged par-
ticles (m1, q1) and (m2, q2). Introduce reduced particle coordinates, ~r = ~x1 − ~x2,
~v = ~v1−~v2 and also center of mass coordinates. Write out the Lagrangian in the
reference frame in which the velocity of the center of mass vanishes and evaluate
the canonical momentum components, px = ∂L/∂vx, etc.

The two particle Darwin Lagrangian reads

L =
1
2
m1v

2
1+

1
2
m2v

2
2+

1
8c2

(m1v
4
1+m2v

4
2)−q1

q2
r12+

q1q2
2r12c2

[~v1·~v2+(~v1·r̂)(~v2·r̂)] (5)

We take a standard (non-relativistic) transformation to center of mass coordinates

~r = ~x1 − ~x2, ~R =
m1~x1 +m2~x2

M

where M = m1 +m2. Inverting this gives

~x1 = ~R+
m2

M
~r, ~x2 = ~R− m1

M
~r

As a result, the individual terms in the Lagrangian (5) become

1
2
m1v

2
1 +

1
2
m2v

2
2 =

1
2
MV 2 +

1
2
µv2

(m1v
4
1 +m2v

4
2)

8c2
=

1
8c2

(
MV 4+ 6µV 2v2+ 4µ

m2 −m1

M
(~V · ~v)v2+ µ

m3
1 +m3

2

M3
v4

)
~v1 · ~v2 = V 2 +

m2 −m1

M
~V · ~v − µ

M
v2

(~v1 · r̂)(~v2 · r̂) = (~V · r̂)2 +
m2 −m1

M
(~V · r̂)(~v · r̂)− µ

M
(~v · r̂)2



where µ = m1m2/M is the reduced mass. For vanishing center of mass velocity
(~V = 0) the Lagrangian becomes

L =
1
2
µv2 +

1
8c2

µ
m3

1 +m3
2

M3
v4 − q1q2

r
− µq1q2

2Mrc2
[v2 + (~v · r̂)2] (6)

The canonical momentum is pi = ∂L/∂vi, which gives

~p = µ~v +
1

2c2
µ
m3

1 +m3
2

M3
v2~v − µq1q2

2Mrc2
[~v + (~v · r̂)r̂] (7)

b) Calculate the Hamiltonian to first order in 1/c2 and show that it is

H =
p2

2

(
1
m1

+
1
m2

)
+
q1q2
r
− p4

8c2

(
1
m3

1

+
1
m3

2

)
+

q1q2
2m1m2c2

(
p2 + (~p · r̂)2

r

)
[You may disregard the comparison with Bethe and Salpeter.]

The Hamiltonian is obtained from the Lagrangian (6) by the transformation H =
~p ·~v−L. Note, however, that we must invert the relation (7) to write the resulting
H as a function of ~p and ~r. We start with

H = ~p · ~v − 1
2
µv2 − 1

8c2
µ
m3

1 +m3
2

M3
v4 +

q1q2
r

+
µq1q2
2Mrc2

[v2 + (~v · r̂)2]

=
p2

2µ
− 1

2µ
(~p− µ~v)2 − 1

8c2
µ
m3

1 +m3
2

M3
v4 +

q1q2
r

+
µq1q2
2Mrc2

[v2 + (~v · r̂)2]
(8)

Since we only work to first order in 1/c2, we do not need to completely solve (7)
for ~v in terms of ~p. Instead, it is sufficient to note that

~v =
1
µ
~p+O

(
1
c2

)
Inserting this into (8) gives (to order 1/c2)

H =
p2

2µ
− 1

8c2
m3

1 +m3
2

M3µ3
p4 +

q1q2
r

+
q1q2

2Mµrc2
[p2 + (~p · r̂)2]

=
p2

2

(
1
m1

+
1
m2

)
− p4

8c2

(
1
m3

1

+
1
m3

2

)
+
q1q2
r

+
q1q2

2m1m2rc2
[p2 + (~p · r̂)2]

12.16 a) Starting with the Proca Lagrangian density (12.91) and following the same pro-
cedure as for the electromagnetic fields, show that the symmetric stress-energy-
momentum tensor for the Proca fields is

Θαβ =
1

4π

[
gαγFγλF

λβ +
1
4
gαβFλνF

λν + µ2

(
AαAβ − 1

2
gαβAλA

λ

)]



The Proca Lagrangian density is

L = − 1
16π

FµνF
µν +

1
8π
µ2AµA

µ

Since
Tµν =

∂L
∂∂µAλ

∂νAλ − ηµνL

we find
Tµν = − 1

4π
Fµλ∂νAλ +

1
16π

ηµνF 2 − 1
8π
µ2ηµνA2

where we have used a shorthand notation F 2 ≡ FµνF
µν and A2 ≡ AµA

µ. In
order to convert this canonical stress tensor to the symmetric stress tensor, we
write ∂νAλ = F νλ + ∂λA

ν . Then

Tµν = − 1
4π

[FµλF νλ − 1
4η
µνF 2 + 1

2µ
2ηµνA2]− 1

4π
Fµλ∂λA

ν

= − 1
4π

[FµλF νλ − 1
4η
µνF 2 + 1

2µ
2ηµνA2 − (∂λFµλ)Aν ]− 1

4π
∂λ(FµλAν)

Using the Proca equation of motion ∂λF
λµ + µ2Aµ = 0 then gives

Tµν = Θµν + ∂λS
λµν

where
Θµν = − 1

4π
[
FµλF νλ − 1

4η
µνF 2 − µ2(AµAν − 1

2η
µνA2)

]
(9)

is the symmetric stress tensor and Sλµν = (1/4π)FλµAν is antisymmetric on the
first two indices.

b) For these fields in interaction with the external source Jβ , as in (12.91), show that
the differential conservation laws take the same form as for the electromagnetic
fields, namely

∂αΘαβ =
JλF

λβ

c

Taking a 4-divergence of the symmetric stress tensor (9) gives

∂µΘµν = − 1
4π
[
∂µF

µλF νλ + Fµλ∂µF
ν
λ − 1

2Fρλ∂
νF ρλ

− µ2(∂µAµAν +Aµ∂µA
ν −Aλ∂νAλ)

]
= − 1

4π
[
∂µF

µλF νλ + 1
2Fρλ(2∂ρF νλ − ∂νF ρλ) + µ2Aλ(∂νAλ − ∂λAν)

]
= − 1

4π
[
(∂µFµλ + µ2Aλ)F νλ + 1

2Fρλ(∂ρF νλ + ∂λF ρν + ∂νFλρ)
]

= −1
c
JλF νλ =

1
c
JλF

λν



Note that in the second line we have used the fact that ∂µAµ = 0, which is
automatic for the Proca equation. To obtain the last line, we used the Bianchi
identity 3∂[ρF νλ] = 0 as well as the Proca equation of motion.

c) Show explicitly that the time-time and space-time components of Θαβ are

Θ00 =
1

8π
[E2 +B2 + µ2(A0A0 + ~A · ~A)]

Θi0 =
1

4π
[( ~E × ~B)i + µ2AiA0]

Given the explicit form of the Maxwell tensor, it is straightforward to show that

F 2 ≡ FµνFµν = −2(E2 −B2), A2 ≡ AµAµ = (A0)2 − ~A 2

Thus

Θµν = − 1
4π

[
FµλF νλ + 1

2η
µν(E2 −B2)− µ2(AµAν − 1

2η
µν((A0)2 − ~A 2))

]
The time-time component of this is

Θ00 = − 1
4π

[
F 0iF 0

i + 1
2 (E2 −B2)− µ2((A0)2 − 1

2 ((A0)2 − ~A 2))
]

= − 1
4π

[
− 1

2 (E2 +B2)− 1
2µ

2((A0)2 + ~A 2)
]

=
1

8π

[
E2 +B2 + µ2((A0)2 + ~A 2)

]
Similarly, the time-space components are

Θ0i = − 1
4π
[
F 0

jF
ij − µ2A0Ai

]
= − 1

4π
[
Ej(−εijkBk)− µ2A0Ai

]
= − 1

4π
[
−εijkEjBk − µ2A0Ai

]
=

1
4π

[
( ~E × ~B)i + µ2A0Ai

]
12.19 Source-free electromagnetic fields exist in a localized region of space. Consider the

various conservation laws that are contained in the integral of ∂αMαβγ = 0 over all
space, where Mαβγ is defined by (12.117).

a) Show that when β and γ are both space indices conservation of the total field
angular momentum follows.

Note that
Mαβγ = Θαβxγ −Θαγxβ

Hence

M0ij = Θ0ixj −Θ0jxi = c(gixj − gjxi) = cεijk(~g × ~x )k = −cεijk(~x× ~g )k



where ~g is the linear momentum density of the electromagnetic field. Since ~x×~g
is the angular momentum density, integrating M0ij over 3-space gives the field
angular momentum

M ij ≡
∫
M0ijd3x = −cεijk

∫
(~x× ~g )k d3x = −cεijkLk

The conservation law ∂µM
µij = 0 then corresponds to the conservation of angular

momentum in the electromagnetic field.

b) Show that when β = 0 the conservation law is

d ~X

dt
=
c2 ~Pem

Eem

where ~X is the coordinate of the center of mass of the electromagnetic fields,
defined by

~X

∫
u d3x =

∫
~xu d3x

where u is the electromagnetic energy density and Eem and ~Pem are the total
energy and momentum of the fields.

In this case, we have

M0i ≡
∫
M00id3x =

∫
(Θ00xi −Θ0ix0) d3x

=
∫

(uxi − cgix0) d3x =
∫

(uxi − c2tgi) d3x

Making use of the definition
∫
uxid3x = EXi where E =

∫
u d3x is the total field

energy, we have simply
M0i = EXi − c2tP i

where ~P =
∫
~g d3x is the (linear) field momentum. Since M0i is a conserved

charge, its time derivative must vanish. This gives

0 =
d

dt
(E ~X)− c2 d

dt
(t ~P ) = E

d ~X

dt
− c2 ~P

(where we used the fact that energy and momentum are conserved, namely
dE/dt = 0 and d~P/dt = 0). The result d ~X/dt = c2 ~P/E then follows.


