Homework Assignment \#10 - Due Thursday, March 27

Textbook problems: Ch. 12: 12.10, 12.13, 12.16, 12.19
12.10 A charged particle finds itself instantaneously in the equatorial plane of the earth's magnetic field (assumed to be a dipole field) at a distance R from the center of the earth. Its velocity vector at that instant makes an angle α with the equatorial plane $\left(v_{\|} / v_{\perp}=\tan \alpha\right)$. Assuming that the particle spirals along the lines of force with a gyration radius $a \ll R$, and that the flux linked by the orbit is a constant of the motion, find an equation for the maximum magnetic latitude λ reached by the particle as a function of the angle α. Plot a graph (not a sketch) of λ versus α. Mark parametrically along the curve the values of α for which a particle at radius R in the equatorial plane will hit the earth (radius R_{0}) for $R / R_{0}=1.2,1.5,2.0,2.5,3,4,5$.
12.13 a) Specialize the Darwin Lagrangian (12.82) to the interaction of two charged particles $\left(m_{1}, q_{1}\right)$ and $\left(m_{2}, q_{2}\right)$. Introduce reduced particle coordinates, $\vec{r}=\vec{x}_{1}-\vec{x}_{2}$, $\vec{v}=\vec{v}_{1}-\vec{v}_{2}$ and also center of mass coordinates. Write out the Lagrangian in the reference frame in which the velocity of the center of mass vanishes and evaluate the canonical momentum components, $p_{x}=\partial L / \partial v_{x}$, etc.
b) Calculate the Hamiltonian to first order in $1 / c^{2}$ and show that it is

$$
H=\frac{p^{2}}{2}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)+\frac{q_{1} q_{2}}{r}-\frac{p^{4}}{8 c^{2}}\left(\frac{1}{m_{1}^{3}}+\frac{1}{m_{2}^{3}}\right)+\frac{q_{1} q_{2}}{2 m_{1} m_{2} c^{2}}\left(\frac{p^{2}+(\vec{p} \cdot \hat{r})^{2}}{r}\right)
$$

[You may disregard the comparison with Bethe and Salpeter.]
12.16 a) Starting with the Proca Lagrangian density (12.91) and following the same procedure as for the electromagnetic fields, show that the symmetric stress-energymomentum tensor for the Proca fields is

$$
\Theta^{\alpha \beta}=\frac{1}{4 \pi}\left[g^{\alpha \gamma} F_{\gamma \lambda} F^{\lambda \beta}+\frac{1}{4} g^{\alpha \beta} F_{\lambda \nu} F^{\lambda \nu}+\mu^{2}\left(A^{\alpha} A^{\beta}-\frac{1}{2} g^{\alpha \beta} A_{\lambda} A^{\lambda}\right)\right]
$$

b) For these fields in interaction with the external source J^{β}, as in (12.91), show that the differential conservation laws take the same form as for the electromagnetic fields, namely

$$
\partial_{\alpha} \Theta^{\alpha \beta}=\frac{J_{\lambda} F^{\lambda \beta}}{c}
$$

c) Show explicitly that the time-time and space-time components of $\Theta^{\alpha \beta}$ are

$$
\begin{aligned}
\Theta^{00} & =\frac{1}{8 \pi}\left[E^{2}+B^{2}+\mu^{2}\left(A^{0} A^{0}+\vec{A} \cdot \vec{A}\right)\right] \\
\Theta^{i 0} & =\frac{1}{4 \pi}\left[(\vec{E} \times \vec{B})_{i}+\mu^{2} A^{i} A^{0}\right]
\end{aligned}
$$

12.19 Source-free electromagnetic fields exist in a localized region of space. Consider the various conservation laws that are contained in the integral of $\partial_{\alpha} M^{\alpha \beta \gamma}=0$ over all space, where $M^{\alpha \beta \gamma}$ is defined by (12.117).
a) Show that when β and γ are both space indices conservation of the total field angular momentum follows.
b) Show that when $\beta=0$ the conservation law is

$$
\frac{d \vec{X}}{d t}=\frac{c^{2} \vec{P}_{\mathrm{em}}}{E_{\mathrm{em}}}
$$

where \vec{X} is the coordinate of the center of mass of the electromagnetic fields, defined by

$$
\vec{X} \int u d^{3} x=\int \vec{x} u d^{3} x
$$

where u is the electromagnetic energy density and $E_{\text {em }}$ and \vec{P}_{em} are the total energy and momentum of the fields.

