Physics 506

Homework Assignment #10 — Due Thursday, March 27

Textbook problems: Ch. 12: 12.10, 12.13, 12.16, 12.19

- 12.10 A charged particle finds itself instantaneously in the equatorial plane of the earth's magnetic field (assumed to be a dipole field) at a distance R from the center of the earth. Its velocity vector at that instant makes an angle α with the equatorial plane $(v_{\parallel}/v_{\perp} = \tan \alpha)$. Assuming that the particle spirals along the lines of force with a gyration radius $a \ll R$, and that the flux linked by the orbit is a constant of the motion, find an equation for the maximum magnetic latitude λ reached by the particle as a function of the angle α . Plot a graph (not a sketch) of λ versus α . Mark parametrically along the curve the values of α for which a particle at radius R in the equatorial plane will hit the earth (radius R_0) for $R/R_0 = 1.2, 1.5, 2.0, 2.5, 3, 4, 5$.
- 12.13 a) Specialize the Darwin Lagrangian (12.82) to the interaction of two charged particles (m_1, q_1) and (m_2, q_2) . Introduce reduced particle coordinates, $\vec{r} = \vec{x}_1 - \vec{x}_2$, $\vec{v} = \vec{v}_1 - \vec{v}_2$ and also center of mass coordinates. Write out the Lagrangian in the reference frame in which the velocity of the center of mass vanishes and evaluate the canonical momentum components, $p_x = \partial L / \partial v_x$, etc.
 - b) Calculate the Hamiltonian to first order in $1/c^2$ and show that it is

$$H = \frac{p^2}{2} \left(\frac{1}{m_1} + \frac{1}{m_2} \right) + \frac{q_1 q_2}{r} - \frac{p^4}{8c^2} \left(\frac{1}{m_1^3} + \frac{1}{m_2^3} \right) + \frac{q_1 q_2}{2m_1 m_2 c^2} \left(\frac{p^2 + (\vec{p} \cdot \hat{r})^2}{r} \right)$$

[You may disregard the comparison with Bethe and Salpeter.]

12.16 a) Starting with the Proca Lagrangian density (12.91) and following the same procedure as for the electromagnetic fields, show that the symmetric stress-energymomentum tensor for the Proca fields is

$$\Theta^{\alpha\beta} = \frac{1}{4\pi} \left[g^{\alpha\gamma} F_{\gamma\lambda} F^{\lambda\beta} + \frac{1}{4} g^{\alpha\beta} F_{\lambda\nu} F^{\lambda\nu} + \mu^2 \left(A^{\alpha} A^{\beta} - \frac{1}{2} g^{\alpha\beta} A_{\lambda} A^{\lambda} \right) \right]$$

b) For these fields in interaction with the external source J^{β} , as in (12.91), show that the differential conservation laws take the same form as for the electromagnetic fields, namely

$$\partial_{\alpha}\Theta^{\alpha\beta} = \frac{J_{\lambda}F^{\lambda\beta}}{c}$$

c) Show explicitly that the time-time and space-time components of $\Theta^{\alpha\beta}$ are

$$\Theta^{00} = \frac{1}{8\pi} [E^2 + B^2 + \mu^2 (A^0 A^0 + \vec{A} \cdot \vec{A})]$$

$$\Theta^{i0} = \frac{1}{4\pi} [(\vec{E} \times \vec{B})_i + \mu^2 A^i A^0]$$

- 12.19 Source-free electromagnetic fields exist in a localized region of space. Consider the various conservation laws that are contained in the integral of $\partial_{\alpha} M^{\alpha\beta\gamma} = 0$ over all space, where $M^{\alpha\beta\gamma}$ is defined by (12.117).
 - a) Show that when β and γ are both space indices conservation of the total field angular momentum follows.
 - b) Show that when $\beta = 0$ the conservation law is

$$\frac{d\vec{X}}{dt} = \frac{c^2 \vec{P}_{\rm em}}{E_{\rm em}}$$

where \vec{X} is the coordinate of the center of mass of the electromagnetic fields, defined by

$$\vec{X} \int u \, d^3x = \int \vec{x} u \, d^3x$$

where u is the electromagnetic energy density and $E_{\rm em}$ and $\vec{P}_{\rm em}$ are the total energy and momentum of the fields.