
Physics 506 Winter 2008

Homework Assignment #5 — Solutions

Textbook problems: Ch. 9: 9.22, 9.23, 9.24
Ch. 10: 10.1

9.22 A spherical hole of radius a in a conducting medium can serve as an electromagnetic
resonant cavity.

a) Assuming infinite conductivity, determine the transcendental equations for the
characteristic frequencies ωlm of the cavity for TE and TM modes.

Because of the spherical symmetry, it is natural to describe the modes of the
spherical cavity in terms of a vector spherical wave expansion. These waves fall
into either TE or TM modes, depending on whether ~r · ~E = 0 or ~r · ~H = 0,
respectively. The TE (or magnetic multipole) modes are given by

~H = − i
k
~∇× [jl(kr) ~Xlm], ~E = Z0jl(kr) ~Xlm (1)

where we have chosen the spherical Bessel function jl(kr) since it is regular at
r = 0. FOr a perfect conductor, we impose the boundary conditions H⊥ = 0 and
E‖ = 0 at r = a. More precisely, we demand

r̂ · ~H
∣∣∣
r=a

= 0, r̂ × ~E
∣∣∣
r=a

= 0

These are equivalent to the condition jl(ka) = 0, and leads to the quantization
knlm = xln/a where xln is the n-th zero of the spherical Bessel function jl. The
TEnlm frequencies are thus

ωnlm =
xlnc

a
, jl(xln) = 0, l ≥ 1, |m| ≤ l

Each frequency specified by l and n is (2l + 1)-fold degenerate, with azimuthal
quantum number labeled by m.

The TM (or electric multipole) modes are similar, although the boundary condi-
tions are somewhat more involved. The modes themselves are given by

~H = jl(kr) ~Xlm, ~E = Z0
i

k
~∇× [jl(kr) ~Xlm] (2)

This time, the H⊥ = 0 boundary condition is automatic, while the E‖ = 0
condition gives

~r × (~∇× [jl(kr) ~Xlm])
∣∣∣
r=a

= 0



This vector quantity may be simplified using

~r×(~∇× ~V ) = ~∇(~r · ~V )− ~V −(~r · ~∇)~V = ~∇(~r · ~V )−
(

1 + r
∂

∂r

)
~V = ~∇(~r · ~V )− ∂

∂r
r~V

Using ~V = jl(kr) ~Xlm with ~r · ~Xlm = 0 gives

~r × (∇× [jl(kr) ~Xlm]) = − ∂

∂r
(rjl(kr)) ~Xlm (3)

Hence the E‖ = 0 boundary condition leads to the TMnlm frequencies

ωnlm =
ylnc

a
,

d

dx
[xjl(x)]

∣∣∣∣
z=yln

= 0, l ≥ 1, |m| ≤ l

The yln correspond to zeros of [xjl(x)]′ or equivalently jl(x) + xj′l(x).

b) Calculate numerical values for the wavelength λlm in units of the radius a for the
four lowest modes for TE and TM waves.

The numerical values for the wavelengths are obtained from the zeros xln and
yln. For TEnlm modes, the first four zeros of jl(x) are

x11 = 4.4934, x21 = 5.7635, x31 = 6.9879, x12 = 7.7253

Since knlm = xln/a and λnlm = 2π/knlm, we end up with λnlm/a = 2π/xln or

λ11m

a
= 1.398,

λ12m

a
= 1.090,

λ13m

a
= 0.899,

λ21m

a
= 0.813

All these modes are (2l + 1)-fold degenerate.

For TMnlm modes, the first four zeros of [xjl(x)]′ are

y11 = 2.7437, y21 = 3.8702, y31 = 4.9734, y41 = 6.0619

with corresponding wavelengths

λ11m

a
= 2.290,

λ12m

a
= 1.623,

λ13m

a
= 1.263,

λ14m

a
= 1.036

Note that the next mode, given by y12 = 6.1168 is nearly degenerate with y41.

c) Calculate explicitly the electric and magnetic fields inside the cavity for the lowest
TE and lowest TM mode.

The lowest TE and TM modes both have l = 1. Thus we begin with an overview
of l = 1 vector spherical harmonics

~X1m =
1√
2
~LY1m



It is natural to write the angular momentum operator ~L in terms of raising and
lowering components

L+ = Lx + iLy, L− = Lx − iLy, Lz

Using
L+Ylm =

√
l(l + 1)−m(m+ 1)Yl,m+1

L−Ylm =
√
l(l + 1)−m(m− 1)Yl,m−1

LzYlm = mYlm

for l = 1 gives

X+
11 = 0, Xz

11 =
1√
2
Y11, X−11 = Y10

X+
10 = Y11, Xz

10 = 0, X−10 = Y1,−1

X+
1,−1 = Y10, Xz

1,−1 = − 1√
2
Y1,−1, X−1,−1 = 0

(4)

A vector with components (V+, V−, Vz) can be converted to spherical coordinates
(Vr, Vθ, Vφ) according to

Vr =
1
2

(V+e
−iφ + V−e

iφ) sin θ + Vz cos θ

Vθ =
1
2

(V+e
−iφ + V−e

iφ) cos θ − Vz sin θ

Vφ = − i
2

(V+e
−iφ − V−eiφ)

Using the explicit form of the spherical harmonics then gives

Xr
11 = 0, Xθ

11 =

√
3

16π
eiφ, Xφ

11 = i

√
3

16π
cos θeiφ

Xr
10 = 0, Xθ

10 = 0, Xφ
10 = i

√
3

8π
sin θ

Xr
1,−1 = 0, Xθ

1,−1 =

√
3

16π
e−iφ, Xφ

1,−1 = −i
√

3
16π

cos θe−iφ

We are now ready to examine the explicit electric and magnetic fields. From the
expression (1) for TEnlm modes, we have

~E11m = Z0j1(kr) ~X1m, ~H11m = − i

Z0k
~∇× ~E11m

The m = 0 mode is the most straightforward to write down

~E110 = iZ0

√
3

8π
j1(kr) sin θφ̂

~H110 =
1
kr

√
3

8π

(
2j1(kr) cos θr̂ − [krj0(kr)− j1(kr)] sin θθ̂

) (5)



Note that we have used the spherical Bessel function identity

j′l(ζ) = jl−1(ζ)− l + 1
ζ

jl(ζ)

Even more explicitly, we have

j1(ζ) =
sin ζ
ζ2
− cos ζ

ζ

[ζj1(ζ)]′ = ζj0(ζ)− j1(ζ) = −
(

1
ζ2
− 1
)

sin ζ +
cos ζ
ζ

The m = 1 mode is given by

~E111 = Z0

√
3

16π
j1(kr)eiφ(θ̂ + i cos θφ̂)

~H111 =
1
kr

√
3

16π
eiφ
(
−2j1(kr) sin θr̂ − [krj0(kr)− j1(kr)](cos θθ̂ + iφ̂)

) (6)

while the m = −1 mode is given by

~E11,−1 = Z0

√
3

16π
j1(kr)e−iφ(θ̂ − i cos θφ̂)

~H11,−1 =
1
kr

√
3

16π
e−iφ

(
2j1(kr) sin θr̂ + [krj0(kr)− j1(kr)](cos θθ̂ − iφ̂)

) (7)

We now turn to the lowest TM mode, which is the TM11m mode with fields given
by (2)

~H11m = j1(kr) ~X1m, ~E11m =
iZ0

k
~∇× ~H11m

It ought to be clear the the roles of ~E and ~H are interchanged between the TE
and TM modes. In particular, the TM11m fields may be obtained from the TE11m

fields of (5), (6) and (7) through the substitution

~E → Z0
~H, Z0

~H → − ~E

(This is essentially the action of electric-magnetic duality.) Explicitly, the TM11m



modes correspond to

~H110 = i

√
3

8π
j1(kr) sin θφ̂

~E110 =
Z0

kr

√
3

8π

(
2j1(kr) cos θr̂ − [krj0(kr)− j1(kr)] sin θθ̂

)

~H111 =

√
3

16π
j1(kr)eiφ(θ̂ + i cos θφ̂)

~E111 =
Z0

kr

√
3

16π
eiφ
(
−2j1(kr) sin θr̂ − [krj0(kr)− j1(kr)](cos θθ̂ + iφ̂)

)

~H11,−1 =

√
3

16π
j1(kr)e−iφ(θ̂ − i cos θφ̂)

~E11,−1 =
Z0

kr

√
3

16π
e−iφ

(
2j1(kr) sin θr̂ + [krj0(kr)− j1(kr)](cos θθ̂ − iφ̂)

)
Note, however, that the wavenumbers knlm are quantized differently for the TE
versus the TM modes.

9.23 The spherical resonant cavity of Problem 9.22 has nonpermeable walls of large, but
finite, conductivity. In the approximation that the skin depth δ is small compared to
the cavity radius a, show that the Q of the cavity, defined by equation (8.86), is given
by

Q =
a

δ
for all TE modes

Q =
a

δ

(
1− l(l + 1)

x2
lm

)
for TM modes

where xlm = (a/c)ωlm for TM modes.

In order to calculate the Q factor, we need to obtain both the stored energy and
the power loss at the walls. We start with the simpler case of TE modes, given
by (1). The energy density for harmonic fields is

u =
ε0
4
| ~E|2 +

µ0

4
| ~H|2

However, the energy is equally distributed between ~E and ~H. Thus for TE modes
we may immediately write down

u =
ε0
2
| ~E|2 =

µ0

2
jl(kr)2| ~Xlm|2

The stored energy is given by integrating this over the volume of the sphere

U =
µ0

2

∫
jl(kr)2| ~Xlm|2 r2drdΩ =

µ0

2

∫ a

0

jl(kr)2r2dr



Note that we have used orthonormality of the vector spherical harmonics to sim-
plify the integral. We now use the normalization integral for spherical Bessel
functions ∫ a

0

jl(xlmρ/a)jl(xlnρ/a)ρ2dρ = 1
2a

3[j′l(xln)]2δmn

to obtain

Ulmn =
µ0a

3

4
j′l(xln)2 (8)

The power loss is given in terms of the tangential magnetic field at the conducting
surface

P =
1

2σδ

∫
|r̂ × ~H|2da

Using ~H = −(i/k)~∇× jl(kr) ~Xlm from (1) as well as the vector identity (3) gives

Plmn =
1

2σδ

∫
r=a

(
1
kr

d

dr
rjl(kr)

)2

| ~Xlm|2r2dΩ

=
1

2σδk2
([rjl(kr)]′)2

∣∣∣∣
r=a

=
1

2σδk2
(jl(ka) + kaj′l(ka))2 =

a2

2σδ
j′l(xln)2

(9)

where in the last line we made use of the fact that ka = xln and that jl(xln) = 0.
Combining (8) and (9) then gives the Q factor for TE modes

Qlmn = ω
Ulmn
Plmn

=
µ0σωδa

2
=
a

δ

where we made use of the definition of the skin depth δ =
√

2/µ0σω.

The calculation for TM modes is similar. However, the appropriate spherical
Bessel function normalization integral needs to be modified for integrating to zeros
of [xjl(x)]′. Here we simply state that the appropriate normalization integral may
be written as∫ a

0

jl(αmρ/a)jl(αnρ/a)ρ2dρ = 1
2a

3

(
1 +

p(p− 1)− l(l + 1)
α2
n

)
[jl(αn)]2δmn

where αn is the n-th positive zero of

[xpjl(x)]′ = 0

The fields for the TM modes are given in (2), while the characteristic frequencies
are given in terms of zeros of [xjl(x)]′. We thus set p = 1 in the above normal-
ization integral and use the notation yln to denote the n-th zero of [xjl(x)]′ = 0.
The expression for the TM stored energy then becomes

Ulmn =
µ0

2

∫ a

0

jl(kr)2r2dr =
µ0a

3

4

(
1− l(l + 1)

y2
ln

)
jl(yln)2



The power loss is

Plmn =
1

2σδ

∫
|r̂ × ~H|2da =

1
2σδ

∫
r=a

jl(kr)2|r̂ × ~X2
lm|r2dΩ =

a2

2σδ
jl(ymn)2

As a result, the Q factor for a TMlmn mode is

Qlmn = ω
Ulmn
Plmn

=
µ0σωδa

2

(
1− l(l + 1)

y2
ln

)
=
a

δ

(
1− l(l + 1)

y2
ln

)

9.24 Discuss the normal modes of oscillation of a perfectly conducting solid sphere of radius
a in free space.

a) Determine the characteristic equations for the eigenfrequencies for TE and TM
modes of oscilation. Show that the roots for ω always have a negative imaginary
part, assuming a time dependence of e−iωt.

Setting up this perfectly conducting sphere problem is similar to what we did
for the spherical hole problem. However, an important feature of the sphere in
free space is that the volume of the ‘resonant cavity’ is unbounded (ie it is all of
space outside of the radius a). An important physical consequence of this is that
oscillating electromagnetic fields will radiate out to infinity. Since power is ‘lost’
to infinity, these so-called normal modes are actually unstable in the sense that
they decay away after a while. Such modes are generally denoted ‘quasi-normal
modes’, and are described by a complex frequency ω. For

ω = ω0 −
i

2
γ (10)

the electric and magnetic fields behave as

~E ∼ e−iωt = e−γt/2e−iω0t

Hence the imaginary part of the quasi-normal mode frequency governs the decay
of the fields. Since energy is proportional to the square of the fields, the energy
decays as e−γt. Note that γ ≥ 0 is essential for this to make sense. If γ were
negative, then the mode would grow exponentially with time. Clearly this would
violate energy considerations. In fact, so long as radiation is emitted and reaches
infinity, the mode must necessarily decay. In this case, we may argue that γ is
strictly positive. In terms of the frequency ω in (10), energy conservation then
demands that ω always has a negative imaginary part.

In order to actually work out the quasi-normal mode frequencies, we note that
TE modes are given by the analog of (1) for the exterior problem with outgoing
radiation

~H = − i
k
~∇× h(1)

l (kr) ~Xlm, ~E = Z0h
(1)
l (kr) ~Xlm



Here we have used physical outgoing radiation boundary conditions to select the
first spherical Hankel function h(1)

l . The TE boundary conditions are identical to
what we found above, namely

r̂ · ~H
∣∣∣
r=a

= 0, r̂ × ~E
∣∣∣
r=a

= 0

This corresponds to the equation

h
(1)
l (ka) = 0 (TE modes)

Unlike in the case of the spherical Bessel functions jl(ζ) and nl(ζ), the spherical
Hankel functions do not admit any real zeros. One way to see this is to note that
h

(1)
l (ζ) is defined as the complex combination

h
(1)
l (ζ) = jl(ζ) + inl(ζ)

If ζ were real, then the only way for h(1)
l (ζ) to vanish is if both real and imaginary

parts [ie jl(ζ) and nl(ζ)] were to simultaneously vanish for the same ζ. However,
it is easy to see that the zeros of jl and nl never coincide. Therefore, the zeros of
h

(1)
l are always complex. In fact, h(1)

l has precisely l zeros in the complex plane.
To show this, we note that h(1)

l (ζ) may be written as a complex polynomial in
1/ζ times the outgoing spherical wave factor eiζ/ζ. In particular

h
(1)
l (ζ) = (−i)l+1 e

iζ

ζ

l∑
s=0

(l + s)!
s!(l − s)!

(
i

2ζ

)s
Ignoring the irregular point at infinity, the zeros of h(1)

l then correspond to the
zeros of the polynomial

Pl(ζ) =
l∑

s=0

(2l − s)!
(l − s)!s!

(−2iζ)s

Since this is a polynomial of degree l, it admits precisely l complex zeros. In
fact, it can be shown that all these zeros have negative imaginary part, and
approximately lie along an arc in the lower half complex ζ plane. The zeros of
h

(1)
l (ζ) are plotted for small values of l as

-6 -4 -2 2 4 6

-4

-2

2

4

l=1 l=2 l=3 l=4 l=5

ζ



The TEnlm frequencies are thus

ωnlm =
xlnc

a
, h

(1)
l (xln) = 0, l ≥ 1, |m| ≤ l, n = 1, 2, . . . , l

where xln denotes the n-th zero of the spherical Hankel function h
(1)
l .

The TM modes may also be worked out in a similar fashion. In particular, the
analog of (2) for the exterior problem is

~H = h
(1)
l (kr) ~Xlm, ~E = Z0

i

k
~∇× [h(1)

l (kr) ~Xlm]

This time, the conducting sphere boundary conditions lead to

d

dx
[xh(1)

l (x)]
∣∣∣
x=ka

= 0 (TM modes)

This time, there are l + 1 zeros, which also approximately lie along arcs in the
lower half complex ζ plane

-6 -4 -2 2 4 6

-4

-2

2

4

l=1 l=2 l=3 l=4 l=5

ζ

Hence the TMnlm frequencies are

ωnlm =
ylnc

a
,

d

dx
[xh(1)

l (x)]
∣∣∣
x=yln

= 0, l ≥ 1, |m| ≤ l, n = 1, 2, . . . , l+1

b) Calculate the eigenfrequencies for the l = 1 and l = 2 TE and TM modes.
Tabulate the wavelength (defined in terms of the real part of the frequency) in
units of the radius a and the decay time (defined as the time taken for the energy
to fall to e−1 of its initial value) in units of the transit time (a/c) for each of the
modes.

For l = 1 and l = 2, the spherical Hankel functions are explicitly

h
(1)
1 (ζ) = −e

iζ

ζ

(
1 +

i

ζ

)
, h

(1)
2 (ζ) =

ieiζ

ζ

(
1 +

3i
ζ
− 3
ζ2

)



The zeros of h(1)
l (l = 1, 2) are then

x11 = −i

x21 =
√

3
2
− 3i

2
, x22 = −

√
3

2
− 3i

2

while the zeros of [ζh(1)
l (ζ)]′ (l = 1, 2) are

y11 =
√

3
2
− i

2
, y12 = −

√
3

2
− i

2
y21 ≈ −1.596i, y22 ≈ 1.807− 0.702i, y23 ≈ −1.807− 0.702i

Since the complex frequencies are given by these zeros multiplied by c/a, we end
up with

Modenlm λ/a τ/(a/c)
TE11m ∞ 1/2
TE12m 4π/

√
3 1/3

TM11m 4π/
√

3 1
TM12m ∞ 0.313
TM22m 3.476 0.712

where the wavelength λ and the energy decay time τ is given by

ω =
2πc
λ
− i

2τ

10.1 a) Show that for arbitrary initial polarization, the scattering cross section of a per-
fectly conducting sphere of radius a, summed over outgoing polarizations, is given
in the long-wavelength limit by

dσ

dΩ
(~ε0, n̂0, n̂) = k4a6

[
5
4
− |~ε0 · n̂|2 −

1
4
|n̂ · (n̂0 × ~ε0)|2 − n̂0 · n̂

]
where n̂0 and n̂ are the directions of the incident and scattered radiations, respec-
tively, while ~ε0 is the (perhaps complex) unit polarization vector of the incident
radiation (~ε0∗ · ~ε0 = 1; n̂0 · ~ε0 = 0).

If all polarizations are specified, the conducting sphere scattering cross section is
given by

dσ

dΩ
(n̂,~ε; n̂0,~ε0) = k4a6|~ε ∗ · ~ε0 − 1

2 (n̂× ~ε ∗) · (n̂0 × ~ε0)|2 (11)

What we would like to do is to sum this over both orthogonal outgoing polariza-
tions. One way to do this is to introduce a linear polarization basis transverse
to the outgoing direction n̂. To do so, we first assume the scattering is not in



the forward direction. Then the incoming direction n̂0 may be used to define
orthogonal polarizations

~ε 1 =
n̂× n̂0

sin θ
, ~ε 2 = n̂× ~ε 1 =

n̂(n̂ · n̂0)− n̂0

sin θ

where θ is the angle between n̂ and n̂0. In particular, we may write sin2 θ =
1− (n̂ · n̂0)2. In this case, the cross section summed over outgoing polarizations
becomes

dσ

dΩ
(n̂; n̂0,~ε0) =

k4a6

1− (n̂ · n̂0)2
[
|(n̂× n̂0) · ~ε0 − 1

2 (n̂× (n̂× n̂0)) · (n̂0 × ~ε0)|2

+ |(n̂(n̂ · n̂0)− n̂0) · ~ε0 − 1
2 (n̂× (n̂(n̂ · n̂0)− n̂0)) · (n̂0 × ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|(n̂× n̂0) · ~ε0 − 1

2 (n̂(n̂ · n̂0)− n̂0) · (n̂0 × ~ε0)|2

+ |(n̂ · n̂0)(n̂ · ~ε0)− 1
2 (n̂0 × n̂) · (n̂0 × ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|n̂ · (n̂0 × ~ε0)− 1

2 (n̂ · n̂0)n̂ · (n̂0 × ~ε0)|2

+ |(n̂ · n̂0)(n̂ · ~ε0)− 1
2 (n̂ · ~ε0)|2

]
=

k4a6

1− (n̂ · n̂0)2
[
|n̂ · (n̂0 × ~ε0)|2(1− 1

2 (n̂ · n̂0))2

+ |n̂ · ~ε0|2( 1
2 − (n̂ · n̂0))2

]
Note that we have used transversality of the initial polarization, n̂0 · ~ε0 = 0. To
proceed, we expand the squares and rewrite the above as

dσ

dΩ
(n̂; n̂0,~ε0) =

k4a6

1− (n̂ · n̂0)2
[
( 5
4 − (n̂ · n̂0))(|n̂ · (n̂0 × ~ε0)|2 + |n̂ · ~ε0|2)

− (1− (n̂ · n̂0)2)( 1
4 |n̂ · (n̂0 × ~ε0)|2 + |n̂ · ~ε0|2

]
(12)

The second line cancels the denominator. However the first line needs a bit of
work. We now use the fact that ε0 is a unit polarization vector orthogonal to n̂0.
As a result, the three vectors

n̂0, ~ε0, n̂0 × ~ε0 (13)

form a normalized right-handed coordinate basis spanning the three-dimensional
space. (There is a slight subtlety if ~ε0 is complex, although the end result is okay,
provided we are careful with magnitude squares.) The components of n̂ expanded
in this basis are

n̂ · n̂0, n̂ · ~ε0, n̂ · (n̂0 × ~ε0)

and since n̂ is a unit vector, the sum of the squares of these components must be
one. In other words

(n̂ · n̂0)2 + |n̂ · ~ε0|2 + |n̂ · (n̂0 × ~ε0)|2 = 1



where we have been careful about complex quantities. Using this result, we see
that the denominator in (12) can be completely eliminated, resulting in

dσ

dΩ
(n̂; n̂0,~ε0) = k4a6[ 54 − (n̂ · n̂0)− 1

4 |n̂ · (n̂0 × ~ε0)|2 − |n̂ · ~ε0|2] (14)

b) If the incident radiation is linearly polarized, show that the cross section is
dσ

dΩ
(~ε0, n̂0, n̂) = k4a6

[
5
8

(1 + cos2 θ)− cos θ − 3
8

sin2 θ cos 2φ
]

where n̂ · n̂0 = cos θ and the azimuthal angle φ is measured from the direction of
the linear polarization.

As stated, the scattering angle θ is given by n̂ · n̂0 = cos θ. The azimuthal angle
φ is the one between n̂ and ~ε0, measured in the plan perpendicular to n̂0. What
this means is that, using the basis vectors (13) with ~ε0 real, the components of n̂
can be written as

n̂ = n̂0 cos θ + ~ε0 sin θ cosφ+ (n̂0 × ~ε0) sin θ sinφ
or alternatively

n̂ · n̂0 = cos θ, n̂ · ~ε0 = sin θ cosφ, n̂ · (n̂0 × ~ε0) = sin θ sinφ
Substituting this into (14) gives

dσ

dΩ
(θ, φ) = k4a6[ 54 − cos θ − 1

4 sin2 θ sin2 φ− sin2 θ cos2 φ]

= k4a6[ 54 − cos θ − 1
8 sin2 θ(1− cos 2φ)− 1

2 sin2 θ(1 + cos 2φ)]

= k4a6[ 58 (1 + cos2 θ)− cos θ − 3
8 sin2 θ cos 2φ]

c) What is the ratio of scattered intensities at θ = π/2, φ = 0 and θ = π/2, φ = π/2?
Explain physically in terms of the induced multipoles and their radiation patterns.

At θ = π/2, we have
dσ

dΩ
(π/2, φ) = k4a6[ 58 −

3
8 cos 2φ]

Hence
dσ

dΩ
(π/2, 0) = 1

4k
4a6,

dσ

dΩ
(π/2, π/2) = k4a6

Scattering at 90◦ is fairly easy to understand physically. For φ = 0, the scattered
wave is lined up with the incident polarization ε0. Since the polarization is given
by the electric field vector, this indicates that the induced electric dipole of the
sphere is lined up with the direction of the scattered wave. Since the radiation
must be transverse, no dipole radiation can be emitted on axis, and in this case
the scattering must be purely magnetic dipole in nature. On the other hand, for
φ = π/2, the scattered wave is lined up with the incident magnetic field, and
hence the scattering must be purely electric dipole in nature. This demonstrates
that the maximum strength of magnetic dipole scattering is a quarter that of
electric dipole scattering. This is in fact evident by the factor of 1/2 in the
magnetic dipole term in the cross section expression (11).


