
Physics 506 Winter 2008

Homework Assignment #3 — Solutions

Textbook problems: Ch. 8: 8.18, 8.20
Ch. 9: 9.1, 9.3

8.18 a) From the use of Green’s theorem in two dimensions show that the TM and TE
modes in a waveguide defined by the boundary-value problems (8.34) and (8.36)
are orthogonal in the sense that∫

A

Ez λEz µda = 0 for λ 6= µ

for TM modes, and a corresponding relation for Hz for TE modes.

Orthogonality is a general property of the eigenfunctions of the wave equation.
The general two-dimensional equation is given by

[∇2
t + γ2

λ]ψλ = 0

where either
ψλ|S = 0 TM modes

or
∂ψλ
∂n

∣∣∣∣
S

= 0 TE modes

To prove orthogonality, note that ψλ and ψµ satisfy the equations

[∇2
t + γ2

λ]ψλ = 0, [∇2
t + γ2

µ]ψµ = 0

Multiplying the first by ψµ and the second by ψλ and subtracting gives

(γ2
µ − γ2

λ)ψµψλ = ψµ∇2
tψλ − ψλ∇2

tψµ

Integrating this over the cross-sectional area, and using Green’s theorem yields

(γ2
µ − γ2

λ)
∫
A

ψµψλ da =
∫
A

[ψµ∇2
tψλ − ψλ∇2

tψµ] da

= −
∮
C

[
ψµ

∂ψλ
∂n
− ψλ

∂ψµ
∂n

]
dl

where we have used an inward pointing normal direction. We now note that
the right hand side vanishes for either TM or TE boundary conditions. Thus,
provided γ2

µ 6= γ2
λ, we end up with∫

A

ψµψλ da = 0 (γ2
µ 6= γ2

λ)



For non-degenerate eigenvalues, we conclude that∫
A

ψµψλ da = 0 for µ 6= λ

so long as ψµ and ψλ are both TM modes (or are both TE modes). Note that
ψµ = Ez,µ for TM modes, while ψµ = Hz,µ for TE modes.

For degenerate eigenvalues, linearity of the wave equation guarantees that we may
find an orthogonal basis using, e.g., a Gram-Schmidt orthogonalization process.

b) Prove that the relations (8.131)–(8.134) form a consistent set of normalization
conditions for the fields, including the circumstances when λ is a TM mode and
µ is a TE mode.

We start with relation (8.131), which states∫
A

~Et,λ · ~Et,µ da = δλ,µ

where ~Et,λ may be either a TM or a TE mode. To handle this expression, we
note that the transverse fields for TM and TE modes are given by

TM: ~Et =
ik

γ2
~∇tEz, ~Ht =

1
Z
ẑ × ~Et Z =

k

εω

TE: ~Et = − iµω
γ2

ẑ × ~∇tHz, ~Ht =
1
Z
ẑ × ~Et Z =

µω

k

(1)

Hence for two TM modes, we end up with∫
A

~Et,λ · ~Et,µ da = − k2

γ2
µγ

2
λ

∫
A

~∇tEz,λ · ~∇tEz,µ da

= − k2

γ2
µγ

2
λ

[
−
∮
S

Ez,λ
∂Ez,µ
∂n

dl −
∫
A

Ez,λ∇2
tEz,µ da

]
The surface term vanishes because of Dirichlet boundary conditions, while the
area term may be simplified using ∇2

tEz,µ = −γ2
µEz,µ. Hence we arrive at∫

A

~Et,λ · ~Et,µ da = −k
2

γ2
λ

∫
A

Ez,λEz,µ da = 0 for λ 6= µ (2)

When properly normalized for λ = µ, this gives (8.131) for two TM modes. The
case of two TE modes is similar. We have∫

A

~Et,λ · ~Et,µ da = −µ
2ω2

γ2
µγ

2
λ

∫
A

(ẑ × ~∇tHz,λ) · (ẑ × ~∇tHz,µ) da

= −µ
2ω2

γ2
µγ

2
λ

∫
A

[
~∇tHz,λ · ~∇tHz,µ − (ẑ · ~∇tHz,λ)(ẑ · ~∇tHz,µ)

]
da

= −µ
2ω2

γ2
µγ

2
λ

∫
A

~∇tHz,λ · ~∇tHz,µ da

(3)



we we have noted that ẑ · ~∇t = 0 identically (since the transverse gradient is
orthogonal to ẑ). The proof of orthogonality of two TE modes then follows using
the same integration method that was used above for the TM modes (but with
Ez replaced by Hz, and with ∂Hz/∂n vanishing on the boundary). Finally, for
one TE mode and one TM mode, we have∫

A

~Et,λ · ~Et,µ da =
µωk

γ2
µγ

2
λ

∫
A

~∇tEz,λ · (ẑ × ~∇tHz,µ) da

= − µωk
γ2
µγ

2
λ

∫
A

[~∇tEz,λ × ~∇tHz,µ] · ẑ da

= − µωk
γ2
µγ

2
λ

∫
A

~∇t × (Ez,λ~∇tHz,µ) · ẑ da

= − µωk
γ2
µγ

2
λ

∮
S

Ez,λ~∇tHz,µ · d~l = 0

This integral vanishes because Ez,λ vanishes on the boundary. As a result, all
TE modes are orthogonal to all TM modes. Proper normalization then results in
(8.131).

We now turn to relation (8.132), which states∫
A

~Ht,λ · ~Ht,µ da =
1
Z2
λ

δλ,µ

The best way to prove this is to note from (1) that

~Ht,λ =
1
Zλ

ẑ × ~Et,λ

for either TM or TE modes, provided Zλ is chosen accordingly. In this case∫
A

~Ht,λ · ~Ht,µ da =
1

ZµZλ

∫
A

(ẑ × ~Et,λ)(ẑ × ~Et,µ) da

=
1

ZµZλ

∫
A

[
~Et,λ · ~Et,µ − (ẑ · ~Et,λ)(ẑ · ~Et,µ)

]
da

=
1

ZµZλ

∫
A

~Et,λ · ~Et,µ da =
1

ZµZλ
δλ,µ =

1
Z2
λ

δλ,µ

Here we have made use of the fact that ẑ · ~Et vanishes because ~Et is transverse
to the ẑ direction. The last line follows from applying (8.131), which we proved
above.

The power flow relation (8.133)

1
2

∫
A

( ~Et,λ × ~Ht,µ) · ẑ da =
1

2Zλ
δλ,µ



follows similarly. Specifically, we have

1
2

∫
A

( ~Et,λ × ~Ht,µ) · ẑ da =
1

2Zµ

∫
A

ẑ · [ ~Et,λ × (ẑ × ~Et,µ)] da

=
1

2Zµ

∫
A

[
~Et,λ · ~Et,µ − (ẑ · ~Et,λ)(ẑ · ~Et,µ)

]
da

=
1

2Zµ

∫
A

~Et,λ · ~Et,µ da =
1

2Zµ
δλ,µ =

1
2Zλ

δλ,µ

The relation (8.134) essentially normalizes the modes for the TM and TE case.
Examination of (2) for TM modes and (3) for TE modes indicates that the proper
normalization is

TM:
∫
A

Ez,λEz,µ da = −γ
2
λ

k2
λ

δλ,µ

TE:
∫
A

Ez,λEz,µ da = − γ2
λ

µ2ω2
δλ,µ = − γ2

λ

k2
λZ

2
λ

(4)

8.20 An infinitely long rectangular waveguide has a coaxial line terminating in the short
side of the guide with the thin central conductor forming a semicircular loop of radius
R whose center is a height h above the floor of the guide, as shown in the accompanying
cross-sectional view. The half-loop is in the plane z = 0 and its radius R is sufficiently
small that the current can be taken as having a constant value I0 everywhere on the
loop.

a) Prove that to the extent that the current is constant around the half-loop, the
TM modes are not excited. Give a physical explanation of this lack of excitation.

For a current density ~J , we use

A(±)
mn = −Zmn

2

∫
V

~J · ~E(∓)
mnd

3x (5)

to compute the mode expansion coefficients A(±)
mn . Since the current density cor-

responds to that of a wire loop, it is actually easier to convert the volume integral
into a line integral along the wire∫

V

~Jd3x ⇒
∫
I0d~l

We may parametrize the position ~l(ϕ) along the wire according to the angular
position ϕ along the loop



h

a

ϕ
b

y

x

In this case, we have

~l(ϕ) = x̂R sinϕ+ ŷ(h+R cosϕ)

so that
d~l = R(x̂ cosϕ− ŷ sinϕ)dϕ

For a rectangular waveguide, the normalized TMmn mode is given by

~E(±)
mn =

2√
ab

[
π

γmn

(
x̂
m

a
cos
(mπx

a

)
sin
(nπy

b

)
+ ŷ

n

b
sin
(mπx

a

)
cos
(nπy

b

))
∓ ẑ iγmn

kmn
sin
(mπx

a

)
sin
(nπy

b

)]
e±ikmnz

Using (5), we then have

A(±)
mn = −Zmn

2

∫
I0 ~E

(∓)
mn · d~l

= −I0ZmnR
2

∫ π

0

~E(∓)
mn · (x̂ cosϕ− ŷ sinϕ)dϕ

= −I0ZmnπR
γmn
√
ab

∫ π

0

[
m

a
cosϕ cos

(
mπR sinϕ

a

)
sin
(
nπ(h+R cosϕ)

b

)
− n

b
sinϕ sin

(
mπR sinϕ

a

)
cos
(
nπ(h+R cosϕ)

b

)]
dϕ

(6)
Although this expression looks rather horrendous, the integrand is in fact a total
derivative. To see this, we note that

d

dϕ

(
mπR sinϕ

a

)
=
mπR

a
cosϕ

d

dϕ

(
nπ(h+R cosϕ)

b

)
= −nπR

b
sinϕ



so that

A(±)
mn = − I0Zmn

γmn
√
ab

∫ π

0

d

dϕ

[
sin
(
mπR sinϕ

a

)
sin
(
nπ(h+R cosϕ)

b

)]
dϕ

= − I0Zmn

γmn
√
ab

[
sin
(
mπR sinϕ

a

)
sin
(
nπ(h+R cosϕ)

b

)]π
0

= 0

This demonstrates that the TMmn modes are not excited by this semi-circular
loop. In fact, this conspiracy between x̂ and ŷ components of the current and
the electric field in (6) to form a total derivative suggests that there is a more
general proof that TM modes are not excited by current loops contained in the
x-y plane.

Recall that, for a TM mode, the transverse electric field is given by a transverse
gradient

~Et,λ =
ikλ
γ2
λ

~∇tψλ

so that
~E

(±)
λ = Cλ

[
ikλ
γ2
λ

~∇tψλ ± ẑψλ
]
e±ikλz

where Cλ is an appropriate normalization constant. Using (5) for a wire source
in the transverse plane gives

A
(±)
λ = −Zλ

2

∫
V

~J · ~E(∓)
λ d3x

= −I0Zλ
2

∫ ~x1

~x0

~E
(∓)
λ · d~l

= − ikλI0ZλCλ
2γ2
λ

e±ikλz0
∫ ~x1

~x0

~∇tψλ · d~l

= − ikλI0ZλCλ
2γ2
λ

e±ikλz0 [ψλ(~x1)− ψλ(~x0)]

Note that the wire lies in the z = z0 plane, and that ~x0 and ~x1 are the initial and
final endpoints along the wire. Since this is a TM mode, we recall that ψ satisfies
Dirichlet boundary conditions, ψ|S = 0. Therefore, as long as the wire source
starts and ends at the waveguide walls, we immediately see that A(±)

λ vanishes,
regardless of the shape of the wire or the waveguide. Note that this general
proof depends on the wire being restricted to a transverse plane, and carrying a
constant current throughout.

A simple physical explanation for why the TM modes are not excited is that a
current loop in the x-y plane will generate a magnetic field in the ẑ direction.
However, TM modes by their very nature do not have any magnetic fields in



the ẑ direction. Therefore, the fields that are excited by the current in the wire
are orthogonal to the fields of the TM modes. The TE modes, however, will be
excited, as they are the ones with magnetic fields in the ẑ direction.

b) Determine the amplitude for the lowest TE mode in the guide and show that its
value is independent of the height h.

The normalized TEmn mode is given by

~E(±)
mn =

2π
γmn
√
ab

[
−x̂n

b
cos
(mπx

a

)
sin
(nπy

b

)
+ ŷ

m

a
sin
(mπx

a

)
cos
(nπy

b

)]
× e±ikmnz

Note that this must be multiplied by 1/
√

2 if either m = 0 or n = 0. In this case,
we find

A(±)
mn = −I0ZmnR

2

∫ π

0

~E(∓)
mn · (x̂ cosϕ− ŷ sinϕ)dϕ

=
I0ZmnπR

γmn
√
ab

∫ π

0

[
n

b
cosϕ cos

(
mπR sinϕ

a

)
sin
(
nπ(h+R cosϕ)

b

)
+
m

a
sinϕ sin

(
mπR sinϕ

a

)
cos
(
nπ(h+R cosϕ)

b

)]
dϕ

Unlike in the TM case, here there is nothing particularly nice about this integral.
We focus on the lowest TE mode, namely TE10. Using γ10 = π/a, and including
the additional normalization factor of 1/

√
2, we have

A
(±)
10 =

I0Z10R√
2ab

∫ π

0

sinϕ sin
(
πR sinϕ

a

)
dϕ

Noting the integral representation for the Bessel function

J2n+1(x) =
1
π

∫ π

0

sin(x sin θ) sin[(2n+ 1)θ]dθ

we see that

A
(±)
10 =

πI0Z10R√
2ab

J1

(
πR

a

)
This is explicitly independent of the height h. The reason for this is that the
fields (both electric and magnetic) of the TE10 mode are independent of the
height. Expansion of the Bessel function for R� a gives

A
(±)
10 ≈

π2I0Z10R
2

2
√

2a3b
(7)



c) Show that the power radiated in either direction in the lowest TE mode is

P =
I2
0

16
Z
a

b

(
πR

a

)4

where Z is the wave impedance of the TE10 mode. Here assume R� a, b.

The average radiated power is given by

P
(±)
λ =

1
2

∫
( ~E(±) × ~H(±) ∗) · ẑ da =

1
2
|A(±)
λ |

2

∫
( ~E(±)

λ × ~H
(±) ∗
λ ) · ẑ da

Since the power is computed along the ẑ direction, we only need the transverse
components of the fields

P
(±)
λ = ±1

2
|A(±)
λ |

2

∫
( ~Et,λ × ~Ht,λ) · ẑ da = ± 1

2Zλ
|A(±)
λ |

2

where we used orthonormality [Jackson equation (8.133)] in the last step. For
the TE10 mode, we substitute in (7) to find

P
(±)
10 = ±π

4I2
0Z10R

4

16a3b
= ± I

2
0

16
Z10

a

b

(
πR

a

)4

The power flows to the right on the right of the source, and to the left on the left
of the source.

9.1 A common textbook example of a radiating system (see Problem 9.2) is a configuration
of charges fixed relative to each other but in rotation. The charge density is obviously
a function of time, but it is not in the form of (9.1).

a) Show that for rotating charges one alternative is to calculate real time-dependent
multipole moments using ρ(~x, t) directly and then compute the multipole mo-
ments for a given harmonic frequency with the convention of (9.1) by inspection
or Fourier decomposition of the time-dependent moments. Note that care must
be taken when calculating qlm(t) to form linear combinations that are real before
making the connection.

For a rotating set of charges, where the rotation is along the z axis, the charge
density may be written as

ρ = ρ(r, θ, φ− ω0t)

where ω0 is the angular frequency of rotation. Using this, we first examine the
time-dependent multipole moments

qlm(t) =
∫
rlY ∗lm(θ, φ)ρ(r, θ, φ− ω0t)d3x

=
∫
rlY ∗lm(θ, φ′ + ω0t)ρ(r, θ, φ′)d3x



where in the second line we have made the substitution φ = φ′ + ω0t. We now
note that the azimuthal behavior of the spherical harmonics goes as

Ylm(θ, φ) ∼ eimφ

Hence
Ylm(θ, φ′ + ω0t) = Ylm(θ, φ′)eimω0t

This allows us to isolate the time dependence of qlm(t) as

qlm(t) = qlme
−imω0t (8)

where qlm is the static multipole moment calculated in the body frame [ie with
ρ(r, θ, φ)]. This expression is almost of the analogous form as (9.1), in the sense
that the harmonic time dependence is given by a complex exponential. One
interesting difference, however, is that (9.1) involves a pure frequency ω of the
form

ρ(~x, t) = ρ(~x )e−iωt

while (8) involves a different frequency

ωm = mω0

for each different value of m. This demonstrates that a rotating set of charges
generally radiates at the fundamental frequency ω0 as well as all higher harmonics.

Another important difference, however, is that m < 0 components of (8) appear
to have a negative frequency. This is somewhat artificial, since the harmonic
prescription we are using is to take the real part of the complex time-dependent
quantities. In particular

<(e−imωt) = <(e+imωt) = cos(mωt)

This indicates that modes qlm(t) and ql,−m(t) radiate at the same frequency mω0.
To avoid negative frequencies, we may use the identity

Yl,−m(θ, φ) = (−1)mY ∗lm(θ, φ)

to show that ql,−m = (−1)mq∗l,m. This allows us to rewrite (8) as

qlm(t) =


qlme

−imω0t m > 0
ql0 m = 0
(−1)m[ql|m|e−i|m|ω0t]∗ m < 0

Note that the m = 0 term has zero frequency, and hence does not radiate. At this
stage, we still have not specified what to do with the m < 0 multipoles. We note,
however, that since ultimately we only care about the real parts of these complex



expressions, it does not matter much whether we take a complex conjugate or
not. Hence we can drop the complex conjugate in the m < 0 expression above.
In this case, both qlm(t) and ql,−m(t) can be expressed using ql|m|, at least up to
a possible minus sign. To see how to deal with this sign, we note that qlm(t) is
essentially the coefficient of Ylm(θ, φ) in the spherical harmonic expansion. The
product qlm(t)Ylm(θ, φ) then has a simple m→ −m behavior

ql,−m(t)Yl,−m(θ, φ) = [qlm(t)Ylm(θ, φ)]∗

Linearly superposing the +m and −m moments then gives

qlm(t)Ylm(θ, φ) + ql,−m(t)Yl,−m(θ, φ) = <[2qlmYlm(θ, φ)e−imω0t]

This demonstrates that, when summing over all multipoles for radiation, it is
sufficient to sum over the positive frequency modes only while including an extra
factor of two. In particular, we can take

qeff
lm =

{
2qlm m > 0
ql0 m = 0 with frequencies mω0 (9)

b) Consider a charge density ρ(~x, t) that is periodic in time with period T = 2π/ω0.
By making a Fourier series expansion, show that it can be written as

ρ(~x, t) = ρ0(~x ) +
∞∑
n=1

<[2ρn(~x )e−inω0t]

where

ρn(~x ) =
1
T

∫ T

0

ρ(~x, t)einω0tdt

This shows explicitly how to establish connection with (9.1).

Recall that the complex Fourier series in the time variable t may be written as

ρ(~x, t) =
∞∑

n=−∞
ρn(~x )e−inω0t

ρn(~x ) =
1
T

∫ T

0

ρ(~x, t)einω0tdt

Assuming that ρ(~x, t) is real (as it ought to be) we note that

ρ−n(~x ) = ρn(~x )∗



Hence

ρ(~x, t) = ρ0(~x ) +
∞∑
n=1

[ρn(~x )e−inω0t + ρ−n(~x )einω0t]

= ρ0(~x ) +
∞∑
n=1

[ρn(~x )e−inω0t + (ρn(~x )e−inω0t)∗]

= ρ0(~x ) +
∞∑
n=1

<[2ρn(~x )e−inω0t]

Taking the real part of a complex time harmonic quantity is of course what we
want to make connection to (9.1). In particular, we show that the periodic in
time charge distribution ρ(~x, t) may be treated as a collection of harmonic charge
densities

ρeff
n (~x ) =

{
2ρn(~x ) n > 0
ρ0(~x ) n = 0 with frequencies nω0 (10)

Of course, ρ0(~x ) is static and does not radiate. Note the similarity in form
between this and (9).

c) For a single charge q rotating about the origin in the x-y plane in a circle of
radius R at constant angular speed ω0, calculate the l = 0 and l = 1 multipole
moments by the methods of parts a and b and compare. In method b express the
charge density ρn(~x ) in cylindrical coordinates. Are there higher multipoles, for
example, quadrupole? At what frequencies?

For a single rotating charge q, the time dependent charge density may be written
in spherical coordinates as

ρ(~x, t) =
q

R2
δ(r −R)δ(cos θ)δ(φ− ω0t)

We start with the method of part a. Here we calculate the body-centric multipole
moments

qlm =
∫
rlY ∗lm(θ, φ)ρ(r, θ, φ)r2drd cos θdφ

= qRlY ∗lm(π/2, 0)

= qRl

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (0)

(11)

The l = 0 and l = 1 moments are

q00 =

√
1

4π
q, q11 = −

√
3

8π
qR

so that, according to (9), we have

qeff
00 =

√
1

4π
q, qeff

11 = −
√

3
2π
qR



For the method of part b, we start by calculating the n-th Fourier mode

ρn(~x ) =
ω0

2π

∫ 2π/ω0

0

ρ(~x, t)einω0tdt

=
ω0

2π

∫ 2π/ω0

0

q

R2
δ(r −R)δ(cos θ)δ(φ− ω0t)einω0tdt

=
q

2πR2
δ(r −R)δ(cos θ)einφ

The multipole moments calculated from ρn(~x) are

qlm[ρn] =
∫
rlY ∗lm(θ, φ)ρn(r, θ, φ)r2drd cos θdφ

=
q

2πR2

∫
rlY ∗lm(θ, φ)δ(r −R)δ(cos θ)einφr2drd cos θdφ

= qRl
1

2π

∫ 2π

0

Y ∗lm(π/2, φ)einφdφ

= qRlδmnY
∗
lm(π/2, 0)

= qRlδmn

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (0)

Note that the moments calculated from ρn(~x ) have m = n, but otherwise agree
with (11). Since the effective charge density ρn(~x ) is doubled for n > 0 according
to (10), the effective moments qlm[ρn] are doubled as well. This effective doubling
is consistent across parts a and b.

Finally, we note from (11) that all higher multipoles are present, so long as Pml (0)
is non-vanishing. By parity, this happens whenever l +m is even. Thus the l-th
multipole will radiate at frequences lω0, (l − 2)ω0, (l − 4)ω0, . . ..

9.3 Two halves of a spherical metallic shell of radius R and infinite conductivity are sepa-
rated by a very small insulating gap. An alternating potential is applied between the
two halves of the sphere so that the potentials are ±V cosωt. In the long-wavelength
limit, find the radiation fields, the angular distribution of radiated power, and the
total radiated power from the sphere.

In the long wavelength limit, the electric dipole approximation ought to be rea-
sonable. In this case, we may first work out the multipole expansion of the source,
and then extract the dipole term. For this problem, the source is essentially a har-
monically (e−iωt) varying version of the electrostatic problem with hemispheres
at opposite potential. The long wavelength limit is also equivalent to the low
frequency limit. Thus it is valid to think of the source as a quasi-static object.
Using azimuthal symmetry, the potential then admits an expansion in Legendre
polynomials

Φ(r, θ) =
∑
l

αl

(
R

r

)l+1

Pl(cos θ)



where

αl =
2l + 1

2

∫ 1

−1

Φ(R, cos θ)Pl(cos θ)d cos θ

For hemispheres at opposite potential ±V (times e−iωt, which is to be under-
stood), the expansion coefficients are

αl = (2l + 1)V
∫ 1

0

Pl(x) dx odd l only

The dipole term is dominant, and it is easy to see that α1 = 3
2V . This gives rise

to a dipole potential of the form

Φl=1 =
3
2
V

(
R

r

)2

P1(cos θ) =
3
2
V R2 z

r3

Comparing this with the dipole expression

Φ =
1

4πε0
~p · ~r
r3

allows us to read off an electric dipole moment

~p = 4πε0( 3
2V R

2ẑ) = 6πε0V R2ẑ

Working in the radiation zone, this electric dipole gives

~H =
ck2

4π
(r̂ × ~p )

eikr

r
= −ck

2

4π
6πε0V R2 e

ikr

r
sin θφ̂ = −3

2
Z−1

0 V (kR)2 e
ikr

r
sin θφ̂

and
~E = −Z0r̂ × ~H = −3

2
V (kR)2 e

ikr

r
sin θθ̂

The angular distribution of dipole radiation gives

dP

dΩ
=
c2Z0

32π2
k4|~p |2 sin2 θ =

c2Z0

32π2
k436π2ε20V

2R4 sin2 θ =
9
8
Z−1

0 V 2(kR)4 sin2 θ

and the total radiated power is

P = 3πZ−1
0 V 2(kR)4


