
Physics 506 Winter 2008

Homework Assignment #1 — Solutions

Textbook problems: Ch. 8: 8.2, 8.4

8.2 A transmission line consisting of two concentric circular cylinders of metal with con-
ductivity σ and skin depth δ, as shown, is filled with a uniform lossless dielectric (µ, ε).
A TEM mode is propagated along this line. Section 8.1 applies.

a) Show that the time-averaged power flow along the line is

P =
√
µ

ε
πa2|H0|2 ln

(
b

a

)
where H0 is the peak value of the azimuthal magnetic field at the surface of the
inner conductor.

A TEM mode is essentially a two-dimensional electrostatic problem. Thus we
start by finding the electric field between the two cylinders. By elementary means,
it should be clear that

~Et =
A

ρ
ρ̂

where A is a constant that will be determined shortly. Assuming wave prop-
agation in the +z direction, we use ~Bt =

√
µε ẑ × ~Et to obtain the magnetic

field
~Ht =

√
ε

µ

A

ρ
φ̂

This indicates that the magnitude of the magnetic field at the inner conductor is
H(a) =

√
ε/µ(A/a). Defining this as H0 gives

~Et =
√
µ

ε
H0

a

ρ
ρ̂, ~Ht = H0

a

ρ
φ̂ (1)

The (harmonic) Poynting vector is then

~S = 1
2
~E × ~H∗ =

1
2

√
µ

ε
|H0|2

a2

ρ2
ẑ

so the power flow is

P =
∫
A

ẑ · ~S da =
1
2

√
µ

ε
|H0|2

∫ b

a

a2

ρ2
2πρ dρ = π

√
µ

ε
|H0|2a2 ln

(
b

a

)
(2)

b) Show that the transmitted power is attenuated along the line as

P (z) = P0e
−2γz



where

γ =
1

2σδ

√
ε

µ

(
1
a + 1

b

)
ln
(
b
a

)
We compute the attenuation coefficient according to

γ = − 1
2P

dP

dz
(3)

The power P was calculated in part a. For the power loss per unit length of the
waveguide, we use

−dP
dz

=
1

2σδ

∮
C

|n̂× ~H|2 dl =
1

2σδ
|H0|2

∮
C

a2

ρ2
dl

Note that there are two boundaries, one at ρ = a (with circumference 2πa) and
the other at ρ = b (with circumference 2πb). This gives

−dP
dz

=
1

2σδ
|H0|2[2πa+ (a/b)22πb] =

π

σδ
|H0|2

a

b
(a+ b) (4)

Inserting this power loss expression and the power (2) into (3) yields

γ =
1

2σδ

√
ε

µ

a+ b

ab ln(b/a)
=

1
2σδ

√
ε

µ

(
1
a + 1

b

)
ln
(
b
a

)
c) The characteristic impedance Z0 of the line is defined as the ratio of the voltage

between the cylinders to the axial current flowing in one of them at any position
z. Show that for this line

Z0 =
1

2π

√
µ

ε
ln
(
b

a

)

Since Z0 = |∆V |/I, we need to compute the voltage difference between the cylin-
ders as well as the current. For the voltage difference, we have

∆V = −
∫ b

a

~E · d~l = −
√
µ

ε
H0

∫ b

a

a

ρ
dρ = −

√
µ

ε
H0a ln

(
b

a

)
where we have used (1) for the electric field. In addition, the current is given by
integrating the surface current density. For the inside conductor, we have

~K = n̂× ~H = ρ̂×
(
H0

a

ρ
φ̂

)
ρ=a

= H0ẑ



Hence
I =

∮
C

|K| dl = 2πaH0

Taking the ratio Z0 = |∆V |/I results in

Z0 =
1

2π

√
µ

ε
ln
(
b

a

)

d) Show that the series resistance and inductance per unit length of the line are

R =
1

2πσδ

(
1
a

+
1
b

)
L =

{
µ

2π
ln
(
b

a

)
+
µcδ

4π

(
1
a

+
1
b

)}
where µc is the permeability of the conductor. The correction to the inductance
comes from the penetration of the flux into the conductors by a distance of order δ.

We may obtain the series resistance from the power loss

1
2 |I|

2R = −dP
dz

where R denotes the resistance per unit length. Using −dP/dz from (4) as well
as the current computed above, we find

R =
2
|I|2

(
−dP
dz

)
=

1
2πσδ

a+ b

ab

For the inductance per unit length, we compute the energy per unit length stored
in the magnetic field. Inside the volume of the waveguide, we have

Uvol =
∫
A

µ

4
| ~H |2da =

µ

4
|H0|2

∫ b

a

a2

ρ2
2πρ dρ =

µ

2
|H0|2πa2 ln

(
b

a

)
In addition, since some of the magnetic field penetrates the conducting walls, we
use the approximation

H(ζ) = H‖e
−ζ/δeiζ/δ

where ζ is the distance into the conductor. Assuming the skin depth is much
less than the thickness of the conductor as well as the radius of curvature, we
approximate

Uwall = C

∫ ∞
0

µc
4
|H(ξ)|2 dξ =

µc
4
C|H‖|2

∫ ∞
0

e−2ξ/δdξ =
µc
8
Cδ|H‖|2



where C is the circumference of the wall. On the inside wall, we have C = 2πa
and H‖ = H0, while on the outside wall, we have C = 2πb and H‖ = H0(a/b).
Hence

Uwalls =
µc
8
δ|H0|2[2πa+ 2πb(a/b)2] =

µc
4
πδ|H0|2

a

b
(a+ b)

Using
1
4L|I|

2 = Uvol + Uwalls

we end up with

L =
µ

2π
ln
(
b

a

)
+
µcδ

4π
a+ b

ab

8.4 Transverse electric and magnetic waves are propagated along a hollow, right circular
cylinder with inner radius R and conductivity σ.

a) Find the cutoff frequencies of the various TE and TM modes. Determine nu-
merically the lowest cutoff frequency (the dominant mode) in terms of the tube
radius and the ratio of cutoff frequencies of the next four higher modes to that of
the dominant mode. For this part assume that the conductivity of the cylinder
is infinite.

The eigenvalue equation for either TE or TM modes is

[∇2
t + γ2]ψ(ρ, φ) = 0

where ψ(R,φ) = 0 for TM modes or dψ(ρ, φ)/dρ|ρ=R = 0 for TE modes. Writing
ψ(ρ, φ) = ψ(ρ)e±imφ, the radial equation (in cylindrical coordinates) becomes(

1
ρ

∂

∂ρ
ρ
∂

∂ρ
+ γ2 − m2

ρ2

)
ψ(ρ) = 0

which is solved by Bessel functions. Avoiding the Neumann function which blows
up at ρ = 0, we have

ψ(ρ, φ) ∼ Jm(γρ)e±imφ

The boundary conditions then place conditions on γ. For TM modes (Dirichlet
conditions), we demand Jm(γR) = 0. Hence

(TM) γmn =
xmn
R

or ωmn =
xmn√
µεR

where xmn is the n-th zero of Jm. For TE modes (Neumann conditions), on the
other hand, we demand J ′m(γR) = 0. Hence

(TE) γmn =
x′mn
R

or ωmn =
x′mn√
µεR



where x′mn is the n-th zero of J ′m. Sorting through the zeros of Jm and J ′m, the
lowest five modes are given by

mode
√
µεRωmn ωmn/ωdominant

TE11 1.841 1
TM01 2.405 1.306
TE21 3.054 1.659
TE02 and TM11 3.832 2.081

Note that the TE02 and TM11 modes are degenerate. This is a special case where
the Bessel identity J ′0(ζ) = −J1(ζ) demonstrates that x′0,n+1 = x1n.

b) Calculate the attenuation constants of the waveguide as a function of frequency
for the lowest two distinct modes and plot them as a function of frequency.

The computation of the attenuation coefficients involves computing both power
P and power loss −dP/dz. We first consider TM modes. The power is given by

P =
1
2

√
ε

µ

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2 ∫
A

|ψ|2 da (5)

Using ψ = Jm(γρ)e±imφ gives∫
A

|ψ|2 da = 2π
∫ R

0

Jm(xmnρ/R)2ρ dρ = 2π[ 12R
2Jm+1(xmn)2] = πR2Jm+1(xmn)2

where the expression in the square brackets comes from the Bessel function or-
thogonality relation∫ a

0

Jν(xνmρ/a)Jν(xνnρ/a)ρ dρ = 1
2a

2Jν+1(xνm)2δmn

Hence

P =
1
2

√
ε

µ

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2

πR2Jm+1(xmn)2 (6)

For a TM mode, the power loss is given by

−dP
dz

=
1

2σδ

(
ω

ωmn

)2 ∮
C

1
µ2ω2

mn

∣∣∣∣∂ψ∂n
∣∣∣∣2 dl

In this case
∂ψ

∂n
= − ∂ψ

∂ρ

∣∣∣∣
ρ=R

= −γmnJ ′m(xmn)e±imφ

Using γ2
mn = µεω2

mn, we obtain

−dP
dz

=
1

2σδ
ε

µ
(2πR)J ′m(xmn)2



We may now have some fun with Bessel functions. Using the recursion relation

Jm+1(ζ) =
m

ζ
Jm(ζ)− J ′m(ζ)

as setting ζ = xmn to be a zero of Jm, we obtain

Jm+1(xmn) = −J ′m(xmn)

This allows us to rewrite the power loss as

−dP
dz

=
1

2σδ
ε

µ
(2πR)Jm+1(xmn)2 (7)

Given (6) and (7), the TMmn attenuation coefficient is obtained by setting

βmn = − 1
2P

dP

dz
=

1
2σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 2πR
πR2

=
1
σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 1
R

Note that 1/R = C/(2A) were C = 2πR and A = πR2 are the circumference and
area of the cylindrical waveguide. Since δ = δmn

√
ωmn/ω (where δmn is the skin

depth at the cutoff frequency ωmn), we get the standard TM expression with the
geometric factor ξmn = 1.

For the TE mode, the power loss calculation is somewhat lengthier, as it involves
both Hz and ~Ht. We begin with the power, which is given by a similar expression
as (5), however with a factor of

√
µ/ε instead. The Bessel normalization integral

is now ∫ R

0

Jm(x′mnρ/R)2ρ dρ = 1
2R

2(1−m2/x′ 2mn)Jm(x′mn)2

which gives

P =
1
2

√
µ

ε

(
ω

ωmn

)2(
1− ω2

mn

ω2

)1/2

πR2

(
1− m2

x′ 2mn

)
Jm(x′mn)2 (8)

This time, the power loss expression is

−dP
dz

=
1

2σδ

(
ω

ωmn

)2 ∮
C

[
1
γ2
mn

(
1− ω2

mn

ω2

)
|n̂× ~∇tψ|2 +

ω2
mn

ω2
|ψ|2

]
dl

There are two terms to evaluate. The simple one is∮
C

|ψ|2dl = (2πR)Jm(x′mn)2



For the gradient term, we note that n̂ = −ρ̂ on the inside of the cylinder. And
~∇t = ρ̂∂ρ + (1/ρ)φ̂∂φ. Hence

∮
C

|n̂× ~∇tψ|2dl = (2πR)
∣∣∣∣1ρ ∂ψ∂φ

∣∣∣∣2 = (2πR)
m2

R2
Jm(x′mn)2

Combining these two terms yields

−dP
dz

=
1

2σδ

(
ω

ωmn

)2

(2πR)
[
m2

x′ 2mn

(
1− ω2

mn

ω2

)
+
ω2
mn

ω2

]
Jm(x′mn)2

Using this for the power loss and (8) for the power itself gives an attenuation
coefficient

βmn = − 1
2P

dP

dz

=
1

2σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 2πR
πR2

[
m2

x′ 2mn

(
1− ω2

mn

ω2

)
+
ω2
mn

ω2

] [
1− m2

x′ 2mn

]−1

=
1
σδ

√
ε

µ

(
1− ω2

mn

ω2

)−1/2 1
R

[
m2

x′ 2mn −m2
+
ω2
mn

ω2

]
This demonstrates that the TE geometric factors are ξmn = m2/(x′ 2mn−m2) and
ηmn = 1.

The attenuation constants are plotted as follows

/
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where

β =
1

σδmn

√
ε

µ

1
R


