
Physics 506 Winter 2006

Practice Midterm – Solutions

The midterm will be a 120 minute open book, open notes exam. Do all three problems.

1. A resonant cavity is in the shape of a rectangular box with sides of lengths a, b and c.

a) Assuming infinite conductivity for the walls, determine the modes of the cavity
and their respective resonant frequencies.

We assume the box is aligned with a, b and c along the x, y and z axes. The TM
cavity modes are given by
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Since ψ satisfies the rectangular coordinate Helmholtz equation
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The explicit modes are
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where m,n ≥ 1 and p ≥ 0. Note that here (and below) c is the length of the box
along the z axis, and not the speed of light.

The TE cavity modes are given by
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This time ψ satisfies
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where m,n ≥ 0 (m+ n ≥ 1) and p ≥ 1. In both TM and TE cases, the resonant
frequency is
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Note that, in all cases, the fields are such that Ei has cos in the i-th coordinate,
while Hi has sin in the i-th coordinate. This ensures that the boundary conditions
E‖ = H⊥ = 0 are satisfied. The lowest modes are generally TM110, TE101 and
TE011.

b) Calculate Q for each of the modes in part a), assuming the walls have large but
finite conductivity σ.

To calculate Q, we use the expressions in the textbook whenever appropriate.
For the TM modes, the stored energy and power loss are given by
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Again, we keep in mind that c is the length of the box along the z direction. The
area and circumference are given by
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Note that we take c→ 2c if p = 0.

The TE mode is slightly more involved to work out. In this case, the stored
energy is
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while the power loss may be computed from
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For the sides, we have
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The Q factor is then
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As special cases, we take a→ 2a if m = 0, or b→ 2b if n = 0.

2. A current I = <I0e−iωt is flowing in a circular antenna with radius a centered on the
origin and lying in the x-y plane.

a) Compute the exact multipole radiation coefficients aE(l,m) and aM (l,m).

In spherical coordinates, the current density takes the form
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Note that we have substituted sin θ = 1 and cos θ = 0 to obtain the last line,
since the delta functions vanish except when θ = π/2. Substituting this into the
expression for aM (l,m) gives
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b) What is the dominant radiation mode (electric dipole, magnetic dipole, electric
quadrupole, etc.) in the limit ka � 1? Compute the total radiated power for
this mode (in the limit ka� 1).

Since the electric multipole coefficients vanish, the dominant mode is the magnetic
dipole. Using P1(x) = x, we see that P ′1(x) = 1. Hence
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3. a) Using the Born approximation, compute the unpolarized differential cross section
for the scattering of electromagnetic radiation off of a uniform dielectric sphere
of relative dielectric constant εr ≈ 1.



In the Born approximation, the differential cross section is
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where θ is the scattering angle. Finally, for the unpolarized cross section, we
average over ε̂0 and sum over ε̂. This gives a factor
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b) Show that in the limit ka � 1 the differential cross section reduces to the small
sphere result
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For ka� 1 we expand the trig function
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c) Show that for ka� 1 the differential cross section is highly peaked in the forward
direction.

For ka � 1 note that qa = 2ka sin(θ/2)� 1 unless θ ≈ 0. In this limit, the trig
function can be approximated
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This demonstrates that(
sin qa− qa cos qa

(qa)3

)2

≈ cos2 qa
(qa)4

∼ 1
2(qa)4

=
1

32(ka)4
1

sin4(θ/2)

where we have averaged cos2(qa) to 1/2. This gives
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unless |θ|<∼1/ka, in which case the trig function becomes of order one. The cross
section in this forward region gets considerably larger than away from the forward
region. Note that, since ka� 1, the restriction of |θ|<∼1/ka gives rise to a highly
peaked behavior in the forward direction.


