Physics 506 Winter 2006

Practice Midterm — Solutions
The midterm will be a 120 minute open book, open notes exam. Do all three problems.

1. A resonant cavity is in the shape of a rectangular box with sides of lengths a, b and c.

a) Assuming infinite conductivity for the walls, determine the modes of the cavity
and their respective resonant frequencies.

We assume the box is aligned with a, b and ¢ along the x, y and z axes. The TM
cavity modes are given by
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Since v satisfies the rectangular coordinate Helmholtz equation
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The explicit modes are
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where m,n > 1 and p > 0. Note that here (and below) ¢ is the length of the box
along the z axis, and not the speed of light.

The TE cavity modes are given by
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where m,n >0 (m+n > 1) and p > 1. In both TM and TE cases, the resonant

frequency is
2
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Note that, in all cases, the fields are such that E; has cos in the i-th coordinate,
while H; has sin in the ¢-th coordinate. This ensures that the boundary conditions
Ey=H, =0 are satisfied. The lowest modes are generally TM;1g, TE191 and
TEo11.

Calculate @ for each of the modes in part a), assuming the walls have large but
finite conductivity o.

To calculate (), we use the expressions in the textbook whenever appropriate.
For the TM modes, the stored energy and power loss are given by

2
pT 2
1+ (W) ]/AM da

2
€ p Cc 5
Ploss = —— |14+ [ 2= 14622 d
} uaél +<vc) ( +£4A>/A|¢| a

Again, we keep in mind that c is the length of the box along the z direction. The
area and circumference are given by
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Since 9 = sin(mnx/a) sin(nwy/b), we calculate
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Note that we take ¢ — 2c¢ if p = 0.

The TE mode is slightly more involved to work out. In this case, the stored

energy is
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while the power loss may be computed from
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We have to consider both terms. For the ends, we have
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As a result
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For the sides, we have
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Note that n x £ lies in the transverse direction, while n x ﬁ@b lies in the z direction.
As a result
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Integrating this over the z direction gives

| delix e = [W (7 )|nxw|2]
0 ey

We now perform the circumference integrals using ) = cos(mmz/a) cos(nmy/b)
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As special cases, we take a — 2a if m =0, or b — 2bif n = 0.

. A current I = RIpe~*? is flowing in a circular antenna with radius a centered on the
origin and lying in the z-y plane.

a) Compute the exact multipole radiation coefficients ag(l, m) and aps(l, m).

In spherical coordinates, the current density takes the form
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where dl = rd¢ is the infinitesimal length along the wire. This problem does not
have any intrinsic magnetization. Hence the electric multipole coefficient is
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Hence all electric multipole coefficients vanish
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For the magnetic multipole coefficient, we have
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Note that we have substituted sinf = 1 and cosf = 0 to obtain the last line,
since the delta functions vanish except when 6 = 7/2. Substituting this into the
expression for ays(l,m) gives
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The r and ¢ integrals are trivial to perform. The result is

Iok? . /1
ay(l,m) = ————=2madm 0ji(ka Y,5(6)8 (cos 0)d(cos 0
) = U amabii(ka) | i(0) cos)alcoso)
2 1
= %2%@57,%03}%@) 2l4—7t ! /_1 Py(cos 0)d' (cos 0)d(cos 0)

Note that the §’(cosf) can be removed by integration by parts. The result is
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What is the dominant radiation mode (electric dipole, magnetic dipole, electric
quadrupole, etc.) in the limit ka < 17 Compute the total radiated power for
this mode (in the limit ka < 1).

Since the electric multipole coefficients vanish, the dominant mode is the magnetic
dipole. Using P (z) = x, we see that P{(x) = 1. Hence

an(1,0) = ilgk*ajy (ka) 37”

In the long wavelength limit (ka < 1) the spherical Bessel function behaves as
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The total radiated power is then
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Using the Born approximation, compute the unpolarized differential cross section
for the scattering of electromagnetic radiation off of a uniform dielectric sphere
of relative dielectric constant €, ~ 1.



In the Born approximation, the differential cross section is
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and where ¢ = ko — k. We assume the sphere is non-permeable. Then
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The integral may be performed in spherical coordinates. Lining up the coordinate
system with the ¢ direction gives ¢'- & = qr cos . In this case
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This can be integrated by parts to give
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As a result, the cross section becomes
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where 6 is the scattering angle. Finally, for the unpolarized cross section, we
average over ¢y and sum over €. This gives a factor
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Show that in the limit ka < 1 the differential cross section reduces to the small

sphere result
do
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For ka < 1 we expand the trig function
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Show that for ka > 1 the differential cross section is highly peaked in the forward
direction.

For ka > 1 note that ga = 2kasin(6/2) > 1 unless 6 ~ 0. In this limit, the trig
function can be approximated
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unless || $1/ka, in which case the trig function becomes of order one. The cross

section in this forward region gets considerably larger than away from the forward
region. Note that, since ka > 1, the restriction of |8| S1/ka gives rise to a highly
peaked behavior in the forward direction.



