Midterm - Solutions

This midterm is a two hour open book, open notes exam. Do all three problems.
[35 pts] 1. Consider the propagation of waves in a rectangular waveguide with sides of lengths a and b.

[15] a) Show that (for $m>0$ and $n>0$) a $\mathrm{TE}_{m n}$ and $\mathrm{TM}_{m n}$ mode can be superposed to make the x component of the magnetic field vanish, $H_{x}=0$.

For a right-moving $\mathrm{TE}_{m n}$ mode defined by

$$
\begin{equation*}
\psi^{\mathrm{TE}}=H_{0} \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \tag{1}
\end{equation*}
$$

the x component of the magnetic field is given by

$$
\begin{equation*}
\vec{H}_{t}=\frac{i k}{\gamma^{2}} \vec{\nabla}_{t} \psi^{\mathrm{TE}} \quad \Rightarrow \quad H_{x}^{\mathrm{TE}}=-\frac{i k}{\gamma^{2}} H_{0} \frac{m \pi}{a} \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \tag{2}
\end{equation*}
$$

Likewise, for a right-moving $\mathrm{TM}_{m n}$ mode defined by

$$
\begin{equation*}
\psi^{\mathrm{TM}}=E_{0} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{3}
\end{equation*}
$$

the x component of the magnetic field is

$$
\vec{H}_{t}=\frac{i \epsilon \omega}{\gamma^{2}} \hat{z} \times \vec{\nabla}_{t} \psi^{\mathrm{TM}} \quad \Rightarrow \quad H_{x}^{\mathrm{TM}}=-\frac{i \epsilon \omega}{\gamma^{2}} E_{x} \frac{n \pi}{b} \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b}
$$

We note that in both cases, the modes have identical eigenvalues

$$
\begin{equation*}
\gamma^{2}=\pi^{2}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}\right] \tag{4}
\end{equation*}
$$

and identical functional behavior for H_{x}. This allows us to superpose and cancel the x component of the magnetic field

$$
0=H_{x}=H_{x}^{\mathrm{TE}}+H_{x}^{\mathrm{TM}}=-\frac{i}{\gamma^{2}}\left(k H_{0} \frac{m \pi}{a}+\epsilon \omega E_{0} \frac{n \pi}{b}\right) \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b}
$$

The solution is

$$
E_{0}=-\frac{k}{\epsilon \omega} \frac{m / a}{n / b} H_{0}
$$

Of course, even though $H_{x}=0$, the other components of \vec{E} and \vec{H} do not necessarily vanish. Furthermore, the two modes that are superposed must be moving in the same direction in order to to have $H_{x}=0$ everywhere along the z direction.
[15] b) Compute the transmitted power in this superposition mode. (Recall that TE and TM modes are orthogonal in the sense that $\frac{1}{2} \int \hat{z} \cdot\left(\vec{E}_{\mathrm{TE}} \times \vec{H}_{\mathrm{TM}}^{*}\right) d a=0$ and similarly with TE and TM interchanged.)

The power is obtained from the Poynting vector
$P=\int_{A} \hat{z} \cdot \vec{S} d a=\frac{1}{2} \int_{A} \hat{z} \cdot\left(\vec{E} \times \vec{H}^{*}\right) d a=\frac{1}{2} \int_{A} \hat{z} \cdot\left[\left(\vec{E}^{\mathrm{TE}}+\vec{E}^{\mathrm{TM}}\right) \times\left(\vec{H}^{\mathrm{TE}}+\vec{H}^{\mathrm{TM}}\right)^{*}\right] d a$
However, since the modes are orthogonal, the power simply decomposes into an incoherent sum $P=P^{\mathrm{TE}}+P^{\mathrm{TM}}$ where

$$
\begin{aligned}
P^{\mathrm{TE}} & =\frac{1}{2} \int_{A} \hat{z} \cdot\left(\vec{E}^{\mathrm{TE}} \times \vec{H}^{\mathrm{TE} *}\right) d a \\
P^{\mathrm{TM}} & =\frac{1}{2} \int_{A} \hat{z} \cdot\left(\vec{E}^{\mathrm{TM}} \times \vec{H}^{\mathrm{TM} *}\right) d a
\end{aligned}
$$

We use the standard expressions for transmitted power in a waveguide

$$
\begin{aligned}
P^{\mathrm{TE}} & =\frac{\mu \omega k}{2 \gamma^{2}} \int_{A}\left|\psi^{\mathrm{TE}}\right|^{2} d a=\frac{a b}{8} \frac{\mu \omega k}{\gamma^{2}}\left|H_{0}\right|^{2} \\
P^{\mathrm{TM}} & =\frac{\epsilon \omega k}{2 \gamma^{2}} \int_{A}\left|\psi^{\mathrm{TM}}\right|^{2} d a=\frac{a b}{8} \frac{\epsilon \omega k}{\gamma^{2}}\left|E_{0}\right|^{2}
\end{aligned}
$$

where ψ^{TE} and ψ^{TM} are given in (1) and (3), respectively. Hence

$$
P=\frac{a b}{8} \frac{\omega k}{\gamma^{2}}\left(\epsilon\left|E_{0}\right|^{2}+\mu\left|H_{0}\right|^{2}\right)=\frac{a b}{8} \frac{\mu \omega k}{\gamma^{2}}\left[1+\frac{k^{2}}{\mu \epsilon \omega^{2}}\left(\frac{m / a}{n / b}\right)^{2}\right]\left|H_{0}\right|^{2}
$$

Finally, noting that $k^{2}=\mu \epsilon \omega^{2}-\gamma^{2}$ as well as the definition of γ^{2} in (4), the power expression may be rewritten as

$$
P=\frac{a b}{8} \frac{\mu \omega k}{(n \pi / b)^{2}}\left[1-\frac{(m \pi / a)^{2}}{\mu \epsilon \omega^{2}}\right]\left|H_{0}\right|^{2}
$$

This may alternatively be written in terms of E_{0} as

$$
P=\frac{a b}{8} \frac{\epsilon \omega k}{(m \pi / a)^{2}}\left[1+\frac{(n \pi / b)^{2}}{k^{2}}\right]\left|E_{0}\right|^{2}
$$

[5] c) Can we still have $H_{x}=0$ when $m=0$ or $n=0$?
If either $m=0$ or $n=0$, then the TM mode does not exist. In this case we cannot superpose the two modes. However, the TE mode itself may have a vanishing H_{x}. For H_{x}^{TE} given in (2), this may occur when $m=0$. In particular, the $\mathrm{TE}_{0 n}$ mode has $H_{x}=0$, while $\mathrm{TE}_{m 0}$ cannot have $H_{x}=0$. So it is possible to have $H_{x}=0$ when $m=0$ but not when $n=0$.
[35 pts] 2. A non-conducting sphere $\left(\epsilon=\epsilon_{0}\right.$ and $\left.\mu=\mu_{0}\right)$ of radius a carries a uniform charge density ρ_{0} throughout its volume. The sphere is centered at the origin of the coordinate system and oscillates back and forth about the z-axis with an angular velocity $\vec{\omega}=$ $\hat{z} \phi_{0} \omega \cos \omega t$.
[5] a) Show that the current density may be expressed as

$$
\vec{J}=\Re\left[\hat{\phi} \rho_{0} \phi_{0} \omega r \sin \theta e^{-i \omega t}\right]
$$

The velocity of a point \vec{r} within the sphere is given by

$$
\vec{v}=\vec{\omega} \times \vec{r}=\hat{z} \times \vec{r} \phi_{0} \omega \cos \omega t=\hat{\phi} \phi_{0} \omega r \sin \theta \cos \omega t
$$

As a result, the current density is

$$
\vec{J}=\rho_{0} \vec{v}=\hat{\phi} \rho_{0} \phi_{0} \omega r \sin \theta \cos \omega t=\Re\left[\hat{\phi} \rho_{0} \phi_{0} \omega r \sin \theta e^{-i \omega t}\right]
$$

This current is only non-vanishing for $r<a$. For this time-harmonic current density, we may define the complex current as

$$
\begin{equation*}
\vec{J}(\vec{x})=\hat{\phi} \rho_{0} \phi_{0} \omega r \sin \theta \tag{5}
\end{equation*}
$$

[20] b) Compute the multipole radiation coefficients $a_{E}(l, m)$ and $a_{M}(l, m)$. Note that the integral $\int x^{l+2} j_{l}(x) d x=x^{l+2} j_{l+1}(x)$ may be helpful.

We start with the electric multipoles $a_{E}(l, m)$. Note from (5) that both $\rho=$ $(1 / i \omega) \vec{\nabla} \cdot \vec{J}=0$ and $\vec{r} \cdot \vec{J}=0$. Since

$$
a_{E}(l, m)=\frac{k^{2}}{i \sqrt{l(l+1)}} \int Y_{l m}^{*}\left[c \rho \frac{\partial}{\partial r}\left[r j_{l}(k r)\right]+i k(\vec{r} \cdot \vec{J}) j_{l}(k r)\right] d^{3} x
$$

we immediately conclude that all electric multipoles vanish

$$
a_{E}(l, m)=0
$$

For the magnetic multiples $a_{M}(l, m)$, we first compute

$$
\vec{r} \times \vec{J}=\vec{r} \times \hat{\phi} \rho_{0} \phi_{0} \omega r \sin \theta=-\hat{\theta} \rho_{0} \phi_{0} \omega r^{2} \sin \theta
$$

and
$\vec{\nabla} \cdot(\vec{r} \times \vec{J})=\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \sin \theta(\vec{r} \times \vec{J})_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \rho_{0} \phi_{0} \omega r^{2} \sin ^{2} \theta=-2 \rho_{0} \phi_{0} \omega r \cos \theta$
This allows us to compute

$$
\begin{aligned}
a_{M}(l, m) & =\frac{k^{2}}{i \sqrt{l(l+1)}} \int Y_{l m}^{*}\left[\vec{\nabla} \cdot(\vec{r} \times \vec{J}) j_{l}(k r)\right] d^{3} x \\
& =\frac{k^{2}}{i \sqrt{l(l+1)}}\left(-2 \rho_{0} \phi_{0} \omega\right) \int Y_{l m}^{*} r \cos \theta j_{l}(k r) r^{2} d r d \Omega \\
& =\frac{2 i k^{2} \rho_{0} \phi_{0} \omega}{\sqrt{l(l+1)}} \sqrt{\frac{4 \pi}{3}} \int Y_{l m}^{*} Y_{10} r^{3} j_{l}(k r) d r d \Omega \\
& =\frac{2 i k^{2} \rho_{0} \phi_{0} \omega}{\sqrt{l(l+1)}} \sqrt{\frac{4 \pi}{3}} \delta_{l, 1} \delta_{m, 0} \int_{0}^{a} r^{3} j_{l}(k r) d r \\
& =i \sqrt{\frac{8 \pi}{3}} k^{2} \rho_{0} \phi_{0} \omega \delta_{l, 1} \delta_{m, 0} \int_{0}^{a} r^{3} j_{1}(k r) d r
\end{aligned}
$$

where we have used the fact that $\cos \theta=P_{1}(\cos \theta)=\sqrt{3 / 4 \pi} Y_{10}(\theta, \phi)$ as well as the orthonormality of the spherical harmonics. The radial integral may be performed according to

$$
\int_{0}^{a} r^{3} j_{1}(k r) d r=\frac{1}{k^{4}} \int_{0}^{k a} x^{3} j_{1}(x) d x=\left.\frac{x^{3} j_{2}(x)}{k^{4}}\right|_{0} ^{k a}=\frac{(k a)^{3} j_{2}(k a)}{k^{4}}
$$

Hence the only non-vanishing magnetic multipole is

$$
a_{M}(1,0)=i \sqrt{\frac{8 \pi}{3}} \rho_{0} \phi_{0} \omega k a^{3} j_{2}(k a)
$$

[10] c) Find the time-averaged power radiated per unit solid angle $d P / d \Omega$.
Since the radiation is purely magnetic dipole, the angular power distribution is given by

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{Z_{0}}{2 k^{2}}\left|a_{M}(1,0)\right|^{2}\left|X_{10}\right|^{2} \\
& =\frac{Z_{0}}{2 k^{2}} \frac{8 \pi}{3} \rho_{0}^{2} \phi_{0}^{2} \omega^{2} k^{2} a^{6} j_{2}^{2}(k a)\left[\frac{3}{8 \pi} \sin ^{2} \theta\right] \\
& =\frac{Z_{0}}{2} \rho_{0}^{2} \phi_{0}^{2} \omega^{2} a^{6} j_{2}^{2}(k a) \sin ^{2} \theta
\end{aligned}
$$

[30 pts] 3. Three small uniform and non-permeable $\left(\mu=\mu_{0}\right)$ dielectric spheres of radii b and relative dielectric constant $\epsilon_{r} \approx 1$ are located along the z axis, centered at positions $z=-a, z=0$ and $z=a$.
[15] a) Using the Born approximation, compute the unpolarized differential scattering cross section $d \sigma / d \Omega$. Assume $k b \ll 1$, but allow a to be arbitrarily small or large. The Born approximation is given by

$$
\begin{aligned}
\vec{\epsilon}^{*} \cdot \vec{f} & =\frac{k^{2}}{4 \pi} \int d^{3} x e^{i \vec{q} \cdot \vec{x}}\left[\vec{\epsilon}^{*} \cdot \vec{\epsilon}_{0} \frac{\delta \epsilon}{\epsilon_{0}}+\left(\hat{n} \times \vec{\epsilon}^{*}\right) \cdot\left(\hat{n} \times \vec{\epsilon}^{*}\right) \frac{\delta \mu}{\mu_{0}}\right] \\
& =\frac{k^{2}}{4 \pi} \int d^{3} x e^{i \vec{q} \cdot \vec{x}_{\epsilon}} \vec{\epsilon}^{*} \cdot \vec{\epsilon}_{0} \frac{\delta \epsilon}{\epsilon_{0}}
\end{aligned}
$$

where $\vec{q}=\vec{k}_{0}-\vec{k}$ and where we have used the fact that the dielectric is nonpermeable. Since $\delta \epsilon$ is only non-vanishing in the interior of the dielectric spheres, the volume integral may be restricted to the three small spheres located at $\vec{x} \approx 0$, $\vec{x} \approx a \hat{z}$ and $\vec{x} \approx-a \hat{z}$. Since each sphere has a volume of $(4 / 3) \pi b^{3}$, we obtain

$$
\begin{aligned}
\vec{\epsilon}^{*} \cdot \vec{f} & \approx \frac{k^{2}}{4 \pi}\left(\frac{4}{3} \pi b^{3}\right)\left(\epsilon_{r}-1\right)\left(\vec{\epsilon}^{*} \cdot \vec{\epsilon}_{0}\right)\left(1+e^{i a q_{z}}+e^{-i a q_{z}}\right) \\
& =\frac{1}{3} k^{2} b^{3}\left(\epsilon_{r}-1\right)\left(\vec{\epsilon}^{*} \cdot \vec{\epsilon}_{0}\right)\left(1+2 \cos \left(a q_{z}\right)\right)
\end{aligned}
$$

where

$$
q_{z}=k_{0 z}-k_{z}=k\left(\cos \theta_{0}-\cos \theta\right)
$$

Here θ_{0} is the polar angle of the incident wave, and θ is the polar angle of the scattered wave. The differential scattering cross section is then

$$
\frac{d \sigma}{d \Omega}=\left.\left|\vec{\epsilon}^{*} \cdot \vec{f}^{2} \approx k^{4} b^{6}\left(\frac{\epsilon_{r}-1}{3}\right)^{2}\right| \vec{\epsilon}^{*} \cdot \vec{\epsilon}_{0}\right|^{2}\left[1+2 \cos \left(k a\left(\cos \theta_{0}-\cos \theta\right)\right)\right]^{2}
$$

For unpolarized scattering, the polarization average is given by

$$
\left|\vec{\epsilon}^{*} \cdot \vec{\epsilon}\right| \quad \rightarrow \quad \frac{1}{2}\left(1+\cos ^{2} \gamma\right)
$$

where γ is the angle between \vec{k}_{0} and \vec{k} (ie the incident and scattered wave). Hence

$$
\begin{equation*}
\frac{d \sigma}{d \Omega} \approx k^{4} b^{6}\left(\frac{\epsilon_{r}-1}{3}\right)^{2} \frac{1+\cos ^{2} \gamma}{2}\left[1+2 \cos \left(k a\left(\cos \theta_{0}-\cos \theta\right)\right)\right]^{2} \tag{6}
\end{equation*}
$$

where $\cos \gamma$ is given in spherical coordinates by

$$
\cos \gamma=\cos \theta \cos \theta_{0}+\sin \theta \sin \theta_{0} \cos \left(\phi-\phi_{0}\right)
$$

[5] b) Show that, for $k a \ll 1$, the cross section is nine times as large as that for a single sphere.

For $k a \ll 1$, we may approximate

$$
1+2 \cos \left(k a\left(\cos \theta_{0}-\cos \theta\right)\right) \approx 3
$$

Substituting this into (6) gives

$$
\frac{d \sigma}{d \Omega} \approx 9 k^{4} b^{6}\left(\frac{\epsilon_{r}-1}{3}\right)^{2} \frac{1+\cos ^{2} \gamma}{2}
$$

which is nine times as large as the single sphere result

$$
\frac{d \sigma(\text { one sphere })}{d \Omega}=k^{4} b^{6}\left(\frac{\epsilon_{r}-1}{3}\right)^{2} \frac{1+\cos ^{2} \gamma}{2}
$$

Note that for N small spheres, the long wavelength scattering cross section would be N^{2} as large. At long wavelengths, the scattering is coherent, and the amplitude scales as total dielectric volume (so the cross section scales as the square of the volume).
[10] c) Now suppose the incident plane wave is traveling in the $+x$ direction. For what values of a does the scattered power vanish along the z axis? Give your answer in terms of the wavelength $\lambda=2 \pi / k$.

If the incident wave travels along the $+x$, this corresponds to taking $\theta_{0}=\pi / 2$ and $\phi_{0}=0$. Inserting this into (6) gives

$$
\frac{d \sigma}{d \Omega} \approx k^{4} b^{6}\left(\frac{\epsilon_{r}-1}{3}\right)^{2} \frac{1+\sin ^{2} \theta \cos ^{2} \phi}{2}[1+2 \cos (k a \cos \theta)]^{2}
$$

In order to examine the scattered power along the z axis, we take $\theta=0$ or π. In either case, the result is

$$
\frac{d \sigma}{d \Omega} \approx k^{4} b^{6}\left(\frac{\epsilon_{r}-1}{3}\right)^{2} \frac{1}{2}[1+2 \cos k a]^{2}
$$

This vanishes when

$$
1+2 \cos k a=0 \quad \Rightarrow \quad \cos k a=-\frac{1}{2} \quad \Rightarrow \quad k a= \pm \frac{2 \pi}{3}+2 n \pi
$$

Using $k=2 \pi / \lambda$ gives

$$
a=\left(n \pm \frac{1}{3}\right) \lambda
$$

This result can also be obtained by simply demanding destructive interference of the scattered waves from the centers of the three (small) spheres.

