Physics 506 Winter 2008

Homework Assignment #10 — Solutions

Textbook problems: Ch. 12: 12.10, 12.13, 12.16, 12.19

12.10 A charged particle finds itself instantaneously in the equatorial plane of the earth’s
magnetic field (assumed to be a dipole field) at a distance R from the center of the
earth. Its velocity vector at that instant makes an angle a with the equatorial plane
(v/vL = tanca). Assuming that the particle spirals along the lines of force with
a gyration radius ¢ < R, and that the flux linked by the orbit is a constant of
the motion, find an equation for the maximum magnetic latitude A reached by the
particle as a function of the angle a.. Plot a graph (not a sketch) of A versus a. Mark
parametrically along the curve the values of a for which a particle at radius R in the
equatorial plane will hit the earth (radius Ry) for R/Ry = 1.2,1.5,2.0,2.5,3,4,5.

Since the particle spirals along the lines of force (ie magnetic field lines), we first
set out to calculate what these lines are. For a dipole field with a magnetic dipole

moment m = —M z, the magnetic field is
= 3r(r-m)—m M, .
B = — 3 = r_3(z_ 3 cos Or)

where 0 is the standard polar angle in spherical coordinates. This expression may
be transformed entirely into spherical coordinates by writing 2 = 7 cos — 0 sin 6.
The result is

-, M A
B = _r_3(2 cos 07 + sin 06) (1)

Because of azimuthal symmetry, we can think of this as a vector field in the r and
0 directions. What we want to do now is to come up with a parametric equation
r = r(A), & = 0(\) describing the field lines. Here A is a parameter along the
curve. The key to relating this parametric equation to the magnetic field is to
realize that the tangent to the curve should be identified with the magnetic field
vector B. Since the tangent to the curve is given by

0 dr . do -
5—5 +Ta€ (2)

we may take ratios of 7 and 6 components of (1) and (2) to obtain

2cosf  dr/d\  1ldr
sinf  rdf/d\  rdf

This gives rise to the separable equation dr/r = 2 cot 6 df which may be integrated
to yield
r(0) = Rsin® 6 (3)



Note that we have chosen the initial condition that r(7/2) = R, since § = 7/2
corresponds to the equatorial plane.

In addition to the equation for a magnetic field line, we also need the magnitude
of the magnetic field. This may be computed from (1)

M+/1+ 3cos?0

r3

B =

Along the line 7 = Rsin? 6, this becomes

B M /1 + 3cos?0

B(9) R3 sin® 0

(4)

Since the flux linked by the orbit is a constant of motion (an adiabatic invariant),
we end up with the velocity relation

B(9)
UII(H)Z =v5 — Ui,oB—O = Uﬁ,o + Ui,o (1 "B, )

where we have used v = vﬁ ot Ui,o- The particle starts at an angle 6y = 7/2.
From (4), the initial magnetic field is By = M/R3. hence

sin® 6

V14 3cos26
v(0)* = vﬁ’o + Ui,o (1 - =

The minimum value of 6 is reached at the turning point when v)(¢) = 0. This
corresponds to

=1+ —

sin® 6 V1o

V1+3cos20 V1+3cos20 v
vﬁﬁvio(l_% o o Vifsesd_ vio
sin° 0

Setting § = /2 — X where X is the magnetic latitude, and using v|o/v1 0 = tana

then gives
V1+3sin? \
1 +tana=+—"—"—"—=
+ tan”® av PRGN
or
1/2
- V1 +3sin® A .
a = tan _— —
cosb \

We may plot A versus « as
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Since the magnetic field line is given by (3), the particle will hit the earth when
Ry = Rsin?@ = Rcos? )\, or A = cos~ ' \/Ry/R. These values are indicated on
the plot.

Specialize the Darwin Lagrangian (12.82) to the interaction of two charged par-
ticles (m1,q1) and (mag, ¢2). Introduce reduced particle coordinates, ¥ = 71 — &5,
U = U] — U and also center of mass coordinates. Write out the Lagrangian in the
reference frame in which the velocity of the center of mass vanishes and evaluate
the canonical momentum components, p, = dL/0v,, etc.

The two particle Darwin Lagrangian reads

1 1 1 Q1 TG o i e o
L= §m1v1—|—2m21)2+8 2(m1'l)1—|—m21)§) q2T12—|—2T1202 ['1)1~’U2—|—(1)1-7‘)<U2~7”)] (5)

We take a standard (non-relativistic) transformation to center of mass coordinates

Pz % é_m1f1+mzf2
— 41 2, - M
where M = my + ms. Inverting this gives
Zi=R+ %ﬁ B %F
As a result, the individual terms in the Lagrangian (5) become
1 1 1
§mlvl + 2m2U2 = —MV2 + Q,uv
(myv] + movy) 1 4 2,2 me =M1 2 mi+m3
52 =32 MV=+6uV=v +4MT(V-U)?} +MT’U
. mg —My = W 9
V2 V.-v——
M YT M
(31 0)(F ) = (V<72 4 P2V )@ 5) = (0



where p = mymsy/M is the reduced mass. For vanishing center of mass velocity

—

(V' = 0) the Lagrangian becomes

1 1 m3+ms q192 1q192
L= 2t — Mt me a _ 2 4 (5. 7)2 6
LR VL Ve paiy - CER CREN (6)

The canonical momentum is p; = 0L/0v;, which gives

- Lol o mi4md oL paige L .

b) Calculate the Hamiltonian to first order in 1/c¢? and show that it is

2 1 1 4 1 1 24 (p-7)?
H:P_(_+_>+Q1CD_]9_2<_3+_3)+ Q1CJ22(P (P )>
r 8ct \my  my 2mimac r

2 ma mo

[You may disregard the comparison with Bethe and Salpeter.]

The Hamiltonian is obtained from the Lagrangian (6) by the transformation H =
p-U— L. Note, however, that we must invert the relation (7) to write the resulting

H as a function of p’and 7. We start with

1 1 m3+ms q1G2 1q1q2
H=v-7— = 2 1 2 4 2 S a\2
e L v + " SN o2 [v* + (V- 7)7] .
2 3 3
_ Lo A2 I mi+m; 4 qiqe Hq14q2 . o a9
BT Lo v R T voor LR

Since we only work to first order in 1/c?, we do not need to completely solve (7)
for ¢ in terms of p. Instead, it is sufficient to note that

1 1
o= 1pvo(2)
7

2
Inserting this into (8) gives (to order 1/c?)

2 3 3
pe 1L mi+my 4 g G192 [ 2 | (o a2
2u 82 M3u3 P r +2M,ur02 p”+ (7))
2

1 1 pt (1 1 4192 q192 2, (= a2
(m1 - m2> 8c? <m:1” T m%) i r - 2mymarc? P+ - 7)]

H =

2

12.16 a) Starting with the Proca Lagrangian density (12.91) and following the same pro-
cedure as for the electromagnetic fields, show that the symmetric stress-energy-

momentum tensor for the Proca fields is

1 1 1
@aﬁ — E |:goz’7ny>\F>\5 + ZgaﬂF/\VFAV + 'u2 <A04A5 _ §gaﬂA>\A/\):|



The Proca Lagrangian density is

L= —% WF“”—I—%ﬁAMA“
Since ) oc )
" = 8(%./4,\8 Ay —n*"L
e find v Lo Lo Lo 0
A :—EF“aAA—Fm—Wn“F —8—7Tun“A

where we have used a shorthand notation F? = F,, F* and A* = A,A*. In
order to convert this canonical stress tensor to the symmetric stress tensor, we
write Y Ay = F¥ + 0,AY. Then

1 1
T — _ Fu)\FV 1 ul/FZ 1,2 ,ul/AQ . Fp,)\ AY
el A= 17 + g AT = FRR0)
1 1
= = [FPARY = R gty A% = (NI AT = O\ AY)

Using the Proca equation of motion Oy F* + p2A* = 0 then gives
TH = O + 9,5

where .
O = —— [FIOFy = i F? — (AR A — 3 A%)] (9)
is the symmetric stress tensor and S = (1/4w)F M AY is antisymmetric on the

first two indices.

For these fields in interaction with the external source J”, as in (12.91), show that
the differential conservation laws take the same form as for the electromagnetic
fields, namely

J\FA

Cc

9,08 =

Taking a 4-divergence of the symmetric stress tensor (9) gives

1
0,0 = -~ [0, FF* FY\ + FF9,FY\ — LF,\0" F**
— 12 (0, AP AY + AMO, AV — A" AY)]

1
= =[O s + GE (00 — 0V F™) + i AN9” Ay — 03 A”)]
v
1
= = [OuF" 4 AN F ) 4 3 Fpa (07 F + 0P F™ + 0V ™))
1

1
= —ZJ \FY\ = S\ FY
C C



Note that in the second line we have used the fact that 9,A4* = 0, which is
automatic for the Proca equation. To obtain the last line, we used the Bianchi
identity 30P F¥ = 0 as well as the Proca equation of motion.

¢) Show explicitly that the time-time and space-time components of %% are

@00: 8L[E2+B2+MQ(A0AO+A'E)]
s
o0 — ﬁ[(ﬁ « Bi + p2 AT AY]

Given the explicit form of the Maxwell tensor, it is straightforward to show that

—

F?*=F, F" = -2(E* - B?), A*=A,A"=(A"?-A*?
Thus
1 .
O = — = [FIFY s + 3™ (B? = B?) = p2(AFA” = Sy ((A°)? =A%)

The time-time component of this is

QU0 — _% |:F0iF0i + L(E? — B?) — p2((A%)2 — 1((A%)? — gg))]
= _i [—%(EQ —I—BZ) _ %M2((A0)2 +A’2)]

Similarly, the time-space components are

. 1 g . 1 _
017 0 % 2 40 gt k 2 10 gt
C) :——47T[F ij—/LAA}:——Lm[EJ(—eijkB)—,uAA]
— e iRk _ 2204 — i 2 A0 i
47T[€UkEB p*APA'] 47T[(E><B)+MAA}

12.19 Source-free electromagnetic fields exist in a localized region of space. Consider the
various conservation laws that are contained in the integral of 9, M%7 = 0 over all
space, where M*%7 is defined by (12.117).

a) Show that when ( and v are both space indices conservation of the total field
angular momentum follows.

Note that
MOBY — @27 — @B

Hence

MO = @Y%l — @Yyl = ¢(glad — g7at) = R (G x T)F = —ceTF (i x §)*



where ¢ is the linear momentum density of the electromagnetic field. Since ¥ x ¢
is the angular momentum density, integrating M% over 3-space gives the field
angular momentum

MY = /MOijd3x = —cetk /(f X ) dPx = —ceF LF

The conservation law 9, M**% = 0 then corresponds to the conservation of angular
momentum in the electromagnetic field.

Show that when 3 = 0 the conservation law is

where X is the coordinate of the center of mass of the electromagnetic fields,
defined by
)Z/ud3x:/fud3x

where u is the electromagnetic energy density and F., and P, are the total
energy and momentum of the fields.

In this case, we have
MO = /MOOide _ /(@ooxz’ — 0%20) @3y
= /(u:z:z —cg'2®) P = /(u:z:z — Ptg") d®x

Making use of the definition [uz’d3x = EX® where E = [ud3x is the total field
energy, we have simply _ ' ‘
MY = EX"' — c*tP'

where P = [ Gd?z is the (linear) field momentum. Since M% is a conserved
charge, its time derivative must vanish. This gives

(where we used the fact that energy and momentum are conserved, namely
dE/dt = 0 and dP/dt = 0). The result dX /dt = c*P/E then follows.



