Physics 506 Winter 2008

Homework Assignment #9 — Solutions

Textbook problems: Ch. 11: 11.27, 11.30

Ch. 12: 12.2, 12.3

11.27

a) A charge density p’ of zero total charge, but with a dipole moment p, exists in

reference frame K’. There is no current density in K’. The frame K’ moves with
a velocity v = gc in the frame K. Find the charge and current densities p and J
in the frame K and show that there is a magnetic dipole moment, m = (p'x 5) /2,
correct to first order in #. What is the electric dipole moment in K to the same

order in 37

We assume the charge density p’ is static (independent of time t') in the rest
frame. Thus p’ = p/(Z’) is only a function of #’. Furthermore, we define

O:q/E/pldg.?J/, ﬁlz/f'pldgml

We use the prime notation (ie §’) to denote the electric dipole in the rest frame.
To boost to the lab frame K, we first construct the 4-vector current J'* = (¢p’,0).
The boosted current is then

Tt = (vep' ,yBep)

while the coordinates are related by

84

)
B(F-7") + 7Bz

SCO '7<$/0+6‘
v—1

=/
X + ﬁz

z

As a result, the lab frame charge and current densities are
p(a®,8) =~p' ("),  J(a°,F) =T (Z")

where #/ may be given by the boost &/ = & + [(y — 1)/828(0 - &) — v32°, and
we recall that p’ is independent of z'°.

In the lab frame, we define the electric and magnetic dipole moments as integra-
tions over the source distrbutions at a fixed lab time z°. For simplicity, we take
2% = 0. In this case, the boost relations (1) may be solved to give 2% = —3 - &’
as well as o
= =/ 202 =/
r=x — —— X
oo TP(6-Z7)



At fixed z° time, the 3-volume integration in frames K and K’ are related by
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We now have enough information to relate moments computed in frames K and
K'. In particular, for the magnetic dipole moment, we have
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In fact, this is exact, not just to first order, but to all orders in 3. The electric
dipole moment calculation is similar
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(If we had non-zero total charge, this expression would be corrected by the addi-
tion of a ¢’¥t term; this was not apparent in the above, since we had only worked
at fixed time ¢t = 0.) This indicates that the electric dipole moment remains
uncorrected to first order in 3, ie p'=p’ + O(3?).

Instead of the charge density, but no current density, in K’, consider no charge

density, but a current density J' that has a magnetic dipole moment . Find the
charge and current densities in K and show that to first order in 3 there is an
electric dipole moment p = (3 x m in addition to the magnetic dipole moment.

In this case, the 4-current densities are
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For the lab electric dipole moment, we have
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We now recall the identity (written in 3-space, and without primes for simplicity,
but valid in either K or K')

/xide?’x = %/(I‘ZJJ —|—{BJJZ)d3I + % /(LEZJJ — iji)dgiL‘

—

= %/Jké?k(xixj)d% + %eijk /[f X J|p d3x
— —% /xzx](ﬁ _’) d31' + %e”k/[f X j]k dgl'
(where we have used integration by parts). In the K’ frame, and with a static cur-

rent density, current conservation gives V' J =0. Moreover, the antisymmetric
term corresponds to the magnetic dipole moment /. This indicates that

/m;J;d?’x’ = ce;jEmy,
Inserting this into (2) gives
— / g ! /
i = €ijkBimy, — ———BiBi€inim, = €ixB3my,
v+1
or, in vector notation
pP=pxm'

The magnetic dipole moment picks up a correction
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To first order in 3, this is simply 7 = 7 /+O(3?). Finally, we note that the results
of a and b are not directly related by electric/magnetic duality. This is because
physically there is actually a subtle difference between magnetic dipole moments
generated by current loops versus ones generated by magnetic monopoles.



11.30 An isotropic linear material medium, characterized by the constitutive relations (in
its rest frame K'), D' = ¢E’ and /LI?I = B, is in uniform translation with velocity U
in the inertial frame K. By exploiting the fact that F},, = (E,B) and G = (D,H)
transform as second rank 4-tensors under Lorentz transformations, show that the
macroscopic fields D and H are given in terms of E and B by

oL
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where E 1 and B | are components perpendicular to .

Since F},, transforms as a rank-2 tensor, we have seen that the components E
and B transform according to

B =r(E+§x B)~ 28 B)
50 _,__» _»_'}/2_»_»'_,
B =r(B-FxB)- =038

For this problem, it is actually convenient to rewrite these expressions in terms

of the perpendicular and parallel field components
B = (B +fx B) + 33 E) N
B'=~(BL -3 x E)+5(5-B)

where o R R
E,=FE-pB(B-E)=—-8x(8xE)

(and similarly for B 1). Since these are the relativistic transformations of the

components of a rank-2 tensor any other rank-2 tensor must transform simi-

larly. In particular, since D and H are components of the G, tensor, they also
transform as

D' =~(Dy+ 5 x H)+p3(3- D)
H' =~(H, -3 xD)+B(5-H)
The inverse transformation may be obtained by taking 5 — — 5
D=~(D, -3 xH)+p(B- D)
H=~(H, +8xD)+p3(5-H)
Using the constitutive relations D’ = eE’ and pH' = B’ gives
B=n (EL _ %gx E') L BB B
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It is now a simple matter of substituting (3) into the right hand side of the above

and simplifying the resulting expressions to obtain the desired relations between
(D,H) and (E, B).

To proceed, we split (3) into parallel and perpendicular field components

— —

GE=FF §H=FB

and
E'\=v(E, +3xB), B, =~yB.-FxE)

As a result, we easily see that
AxE =+(GxE—pB*B1), [BxB =~@xB+p*E.)
Substituting these expressions into (4) gives

—

D=~ (e(bﬂﬂtﬁx B) —

H =2 (i(él — B x E)+¢e(3 x E—ﬁQEu)> +

which simplifies to

A= LB+ 53 B - (—%) (3B, - Fx B)

or equivalently
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Note that an alternate way of deducing these expressions is to start in the rest
frame, where the four-velocity is
U* = ¢(1,0) (rest frame)

Since U* specifies the time direction, we may introduce a projection operator

I* = nlu/ o UMUV/CQ



12.2

)

This allows us to project onto the space components of a tensor. In particular,
since the magnetic field is encoded in the space-space components of the Maxwell
field strength F'*¥| we may write

1
BM = TIM*Fopll?” = F* — — (FFU\UY 4 UFULFY)
(&

The electric field comes from the space-time and time-space components

1
EM = M — BW = — (FMU\U" + UFUAFY)
(&

In particular, the full Maxwell field strength is a sum of the electric and magnetic

field components
FHY — EHV 4 BHV

With this in mind, we may write the macroscopic field strength tensor G*” as a
sum of € times the electric field and 1/p times the magnetic field

G — ¢EM 4+ lBHV
0
1 v 1 1 A v Av
= —F" 4 = (e—— | (FMU\U” + UFULF?")
M ¢ M
Although this expression was derived in the rest frame, since it is written in terms
of 4-vectors and 4-tensors, it is valid in any frame. For a moving frame where

=,

Ur = cy(1,5)

we may work out the explicit form of G*¥ and show that it gives the same result
as (5).

Show from Hamilton’s principle that Lagrangians that differ only by a total time
derivative of some function of the coordinates and time are equivalent in the sense
that they yield the same Euler-Lagrange equations of motion.

Suppose Lagrangians L; and Loy differ by a total time derivative of the form

d
Lo =1 — f(qi(t),t
2 1+ p tf (gi(t),t)
Writing out the time derivative explicitly gives

of . of
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The Euler-Lagrange equations for Lo are derived from

dL, L,  9*f .  9%f
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Then
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As a result, both L, and Ly yield the same Euler-Lagrange equations.

Note that it is perhaps more straightforward to consider the change in the action

to to ta
5, = / Lo di = / <L1+d—=’;>dt: / Lydt + F(gi(ta),t2) — Flgilt1), 1)

t1 t1 d t1

In other words, the additional of a total time derivative only changes the action
by a surface term. So long as we do not vary the path at its endpoints (dg;(t1) =
0q;(t2) = 0) we end up with the same equations of motion.

Show explicitly that the gauge transformation A% — A% 4+ 9*A of the potentials
in the charged-particle Lagrangian (12.12) merely generates another equivalent
Lagrangian.

We start with the Lagrangian
L=—mc*\/1—u?/c® + 7. A ed
c
In components, the gauge transformation A, — A, + 9, A reads

CI>—>Q>—|—12A,

A—VA
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In this case, the Lagrangian changes by the term

e(0 _, =
6L__E <§+U~V)A

However, for A = A(Z(t),t), the above is just the total time derivative

e dA
0L =———
c dt

As a result the Lagrangian changes by a total time derivative. Thus the gauge
transformed Lagrangian is equivalent to the original one in the sense of part a.



12.3 A particle with mass m and charge e moves in a uniform, static, electric field E,.

a) Solve for the velocity and position of the particle as explicit functions of time,
assuming that the initial velocity vy was perpendicular to the electric field.

The charged particle dynamics is governed by the equation of motion

dUr _ € puyy
dr mec

For a constant electric field only, this breaks up into time and space components

du®© e = du e =
o CEa Yo SR 6
dr me ° s dr — mec ° (6)

where we have taken U* = (U°, @). These set of coupled equations may be solved
by taking a proper time derivative of the first equation and noting that

mc

22U e - di eFy\ >
= — Fy — = Uo°
dr? me 0 dr ( )

Thus
UO :Ae(eEo/mC)T+Be—(8EQ/mC)T

Substituting this into the second equation of (6) and integrating gives

i = —»O +EO<Ae(eEo/mc)T - Be—(eEo/mc)T)

Since we took a proper time derivative of the first equation of (6) and converted
it into a second order equation, it is important to check that the original first
order equation is satisfied. When we do this, we find the constraint

Ey-ilg=0

This indicates that the proper velocity @ has two components, a T-dependent
parallel component in the direction F, and a constant perpendicular component
Up. At this stage, the solution for the four-velocity is given in terms of four
independent parameters: A, B and two components of 1y perpendicular to the
electric field. Note however, that the four-velocity satisfies the constraint U*U,, =
c2. This gives rise to a relation among the parameters

4AB — i3 = 2
Before proceeding, we simplify the notation by choosing proper time 7 = 0 to

correspond to the actual time ¢ = 0. In this case, the condition that the initial
parallel velocity vanishes is equivalent to demanding that the component of «



along the Ej direction vanishes at 7 = 0. This is satisfied by taking A = B, so

that . .
U° = 24 cosh (e OT> , ﬁ:ﬁo+2AE‘osinh(e OT)
me mc

2A = ¢y /1 +ud/c?

The parameters of the solution are the two independent perpendicular compo-
nents of the initial proper velocity uy. This may be converted to ordinary velocity
by the usual relation

where

Uy = YoU, where 2 — 1
0 = YoVo %_1—1’8/02
The result is
E . E
Uozc'yocosh<6 OT) , U = YoUp + Yo FEp sinh (6 OT>
me mce

We may now obtain the position four-vector by integrating

E
ct = 20 /Uod': C% inh(6 OT)
me

270 - E
x—/ wdr’ = yoUoT + C%EO {cosh(e OT) —1}
0 ek me

Note that we have chosen the initial position to be at z#* = 0.

(7)

The above expressions have been given in terms of the proper time 7. To obtain
v and ¥ as a position of time, we note that

E Eot
t = mcYo sinh ezor = T = me sinh~! €20
eFEy mc el meyo

This gives

Hence

For the position, we have

Eot 200 = Eot \°
#(t) = 05, sinh ™! (e 0 ) + E g, \/1+ <e 0 ) ~1
ely mcyo elqy mcYo




Note that, for short times ¢ < mcyy/eEy, the velocity and position may be
expanded as

—

U~ Uy + , T~ gt +

— =ekj p = ymuv

under the approximation v &~ 7. In the non-relativistic case (y ~ 1), this

corresponds to the familiar uniform acceleration in a uniform electric field, @ =
(e/m)Ey.

Note that an alternate solution would be to start with the 3-vector equation

—

v _
dr 0

which may immediately be integrated to yield
7= Po + eEot

Since we want to work relativistically, we must use p = ymu. As a result, the
velocity is
— — € =
YU = YU + — Eot (10)
m
This expression looks simple, except that the left-hand side is actually a non-

linear function of the velocity (because v = 1/4/1 — v2/c?). To proceed, we may
square this expression to obtain

2
eEot

B2% = B35 + ( )
mc

where we have made use of the initial condition Ej - 7 = 0. Noting that 3242 =
~v? — 1 allows us to solve for

2
eEot
¥ =15+ ( )

mc

which is perhaps a quicker way to arrive at the v factor of (8). Inserting this into
(10) then gives
Eot
v myo

which agrees with (9). This can be integrated once more (using trig substitution)
to get the position as a function of time.




b) Eliminate the time to obtain the trajectory of the particle in space. Discuss the
shape of the path for short and long times (define “short” and “long” times).

It is best to work with (7) to eliminate time. Splitting the directions into per-
pendicular and parallel components, we write

2 E
T = W;CE% [cosh (e OT) — 1] , T = YoUoT
0 mc
T = el cosh cEo L) _ 1
I GEO mcyo Vo

Using the same criteria for short times (¢t < mcyy/eEp), we may expand the cosh
to obtain

Hence

€E0 2
T~ ——5<T
| 2myovg

demonstrating that the short time path is parabolic. For long times (¢ >
meyo/eEy), we have instead an exponential path

A mc270 ox el L
I 2eFq mcyo Vo




