
Physics 506 Winter 2006

Homework Assignment #12 — Solutions

Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12

14.2 A particle of charge e is moving in nearly uniform nonrelativistic motion. For times
near t = t0, its vectorial position can be expanded in a Taylor series with fixed vector
coefficients multiplying powers of (t− t0).

a) Show that, in an inertial frame where the particle is instantaneously at rest at the
origin but has a small acceleration ~a, the Liénard-Wiechert electric field, correct
to order 1/c2 inclusive, at that instant is ~E = ~Ev + ~Ea, where the velocity and
acceleration fields are

~Ev = e
r̂

r2
+

e

2c2r
[~a− 3r̂(r̂ · ~a )]; ~Ea = − e

c2r
[~a− r̂(r̂ · ~a )]

and that the total electric field to this order is

~E = e
r̂

r2
− e

2c2r
[~a + r̂(r̂ · ~a )]

The unit vector r̂ points from the origin to the observation point and r is the
magnitude of the distance. Comment on the r dependences of the velocity and
acceleration fields. Where is the expansion likely to be valid?

Expanding the position around a time t0 gives

~r(t′) = ~r + ~v(t′ − t0) + 1
2~a(t′ − t0)2 + · · ·

However, we work in the instantaneous rest frame with the particle at the origin.
Hence it is sufficient to consider

~r(t′) = 1
2~a(t′ − t0)2 + · · · , ~β(t′) = 1

c~a(t′ − t0) + · · · , ~̇β(t′) = 1
c~a + · · ·

To proceed, we would like to develop a relation between observer time t and
retarded time t′. The exact expression is of course t = t′+ |~x−~r(t′)|/c. However,
since we wish to expand at time t′ ≈ t0, it is sufficient to write t = t′ + x/c + · · ·
where x = |~x |. The omitted terms turn out to be of higher order in 1/c2. We
now write down the electric field at observer time t = t0. This corresponds to a
retarded time t′ = t0 − x/c. As a result, the various expressions showing up in
the velocity and acceleration fields are given (up to order 1/c2) by

~r =
x2

2c2
~a, ~β = − x

c2
~a, ~̇β =

1
c
~a



as well as

~R = ~x−~r = ~x− x2

2c2
~a ⇒ R = x(1− x

2c2
x̂·~a ), n̂ ≡

~R

R
= x̂− x

2c2
[~a−x̂(x̂·~a )]

(1)
We also note that 1/γ2 = 1− β2 = 1 +O(1/c4) = 1 + · · · to the order of interest.
This yields the fields

~Ev(~x, t0) = e
n̂− ~β

γ2R2(1− ~β · n̂)3
= e

x̂− x
2c2 [~a− x̂(x̂ · ~a )] + x

c2~a

x2(1− x
2c2 x̂ · ~a )2(1 + x

c2 x̂ · ~a )3

= e
x̂ + x

2c2 ([~a + x̂(x̂ · ~a )]
x2(1 + 2x

c2 (x̂ · ~a ))

=
ex̂

x2
+

e

2c2x
[~a− 3x̂(x̂ · ~a )]

(2)

which agrees with the desired result (although we have used x and x̂ instead of r
and r̂). The result for the acceleration field is even more straightforward, as the
leading term is already of order 1/c2

~Ea(~x, t0) =
e

c

n̂× [(n̂− ~β)× ~̇β]

R(1− ~β · n̂)3
=

e

c

x̂× (x̂× 1
c~a )

x
=

e

c2

x̂× (x̂× ~a )
x

= − e

c2x
[~a− x̂(x̂ · ~a )]

(3)

Adding (2) and (3) gives

~E = e
x̂

x2
− e

2c2x
[~a + x̂(x̂ · ~a )]

Note that the velocity field contains the static Coulomb term ex̂/x2 along with an
acceleration term, which is perhaps unusual for a ‘velocity’ field. The latter only
falls of as 1/x for large x, which is also surprising, as the velocity field ordinarily
is thought of as a 1/R2 field. The acceleration field is as expected, however, as it
depends on acceleration and exhibits the proper 1/R behavior. The resolution to
this apparent discrepancy is the fact that our expansion is only valid for ‘small’
values of x, namely x � c2/a, where the retarded time approximation is valid
(corresponding to the 1/c2 term in (1) being small compared to the leading term).
Roughly this is similar to being in the near zone (and not the radiation zone).

b) What is the result for the instantaneous magnetic induction ~B to the same order?
Comment.

The magnetic induction is given by

~B = n̂× ~E =
(
~x− x

2c2
[~a− x̂(x̂ · ~a )]

)
×
(

ex̂

x2
− e

2c2x
[~a + x̂(x̂ · ~a )]

)
= − e

2c2x
(~a× x̂ + x̂× ~a ) = 0



In other words, the instantaneous ~B vanishes (to this level of approximation).
This should not be surprising, because the particle is instantaneously at rest
(and a static particle does not generate a magnetic field).

c) Show that the 1/c2 term in the electric field has zero divergence and that the
curl of the electric field is ~∇× ~E = e(r̂ × ~a )/c2r2. From Faraday’s law, find the
magnetic induction ~B at times near t = 0. Compare with the familiar elementary
expression.

We compute the divergence as follows

~∇ ·
(

~a + x̂(x̂ · ~a )
x

)
= ~∇ ·

(
~a

x

)
+ ~∇ ·

(
~x(~x · ~a )

x3

)
= ~∇

(
1
x

)
· ~a + ~∇

(
1
x3

)
· ~x(~x · ~a ) +

1
x3

~∇ ·
(
~x(~x · ~a )

)
= − 1

x2
x̂ · ~a− 3

x2
x̂ · ~a +

4
x2

x̂ · ~a = 0

This demonstrates that the 1/c2 term has zero divergence. For the curl, we obtain

~∇× ~E = ~∇×
(

e~x

x3

)
− e

2c2
~∇×

(
~a

x
+

~x(~x · ~a )
x3

)
= − e

2c2

(
~∇
(

1
x

)
× ~a +

1
x2

~∇(~x · ~a )× x̂

)
= − e

2c2x2

(
−x̂× ~a + ~a× x̂

)
=

e

c2x2
x̂× ~a

Faraday’s law states ~∇× ~E + (1/c)∂ ~B/∂t = 0. Hence

∂ ~B

∂t
= −c~∇× ~E = −e

c

x̂× ~a

x2

Integrating this for times near t0 gives

~B = −e

c

x̂× [~a(t− t0)]
x2

= −e

c

x̂× ~v(t)
x2

=
e

c

~v(t)× x̂

x2

This reproduces the elementary Biot-Savart law for the magnetic field.

14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per unit
solid angle in nonrelativisic motion of a particle with charge e, moving

a) along the z axis with instantaneous position z(t) = a cos ω0t.

In the non-relativisitic limit, the radiated power is given by

dP (t)
dΩ

=
e2

4πc
|n̂× ~̇β|2 (4)



In the case of harmonic motion along the z axis, we take

~r = ẑa cos ω0t, ~β = −ẑ
aω0

c
sinω0t, ~̇β = −ẑ

aω2
0

c
cos ω0t

By symmetry, we assume the observer is in the x-z plane tilted with angle θ from
the vertical. In other words, we take

n̂ = x̂ sin θ + ẑ cos θ

This provides enough information to simply substitute into the power expression
(4)

n̂× ~̇β = ŷ
aω2

0

c
sin θ cos ω0t ⇒ dP (t)

dΩ
=

e2a2ω4
0

4πc3
sin2 θ cos2 ω0t

Taking a time average (cos2 ω0t → 1
2 ) gives

dP

dΩ
=

e2a2ω4
0

8πc3
sin2 θ

This is a familiar dipole power distribution, which looks like
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Integrating over angles gives the total power

P =
e2a2ω4

0

3c3

b) in a circle of radius R in the x-y plane with constant angular frequency ω0.

Sketch the angular distribution of the radiation and determine the total power
radiated in each case.

Here we take instead

~r = R(x̂ cos ω0t + ŷ sinω0t) → ~β =
Rω0

c
(−x̂ sinω0t + ŷ cos ω0t)

~̇β = −Rω2
0

c
(x̂ cos ω0t + ŷ sinω0t)



Then

n̂× ~̇β = −Rω2
0

c
[ŷ cos θ cos ω0t + (ẑ sin θ − x̂ cos θ) sinω0t]

which gives
dP (t)
dΩ

=
e2R2ω4

0

4πc3
(cos2 θ cos2 ω0t + sin2 ω0t)

Taking a time average gives

dP

dΩ
=

e2R2ω4
0

8πc3
(1 + cos2 θ)

This distribution looks like
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The total power is given by integration over angles. The result is

P =
2e2R2ω4

0

3c3

14.6 a) Generalize the circumstances of the collision of Problem 14.5 to nonzero angular
momentum (impact parameter) and show that the total energy radiated is given
by

∆W =
4z2e2

3m2c3

(m

2

)1/2
∫ ∞

rmin

(
dV

dr

)2(
E − V (r)− L2

2mr2

)−1/2

dr

where rmin is the closest distance of approach (root of E − V − L2/2mr2), L =
mbv0, where b is the impact parameter, and v0 is the incident speed (E = mv2

0/2).

In the non-relativistic limit, we may use Lamour’s formula written in terms of ~̇p

P (t) =
2z2e2

3m2c3

∣∣∣∣d~p

dt

∣∣∣∣2 =
2z2e2

3m2c3

(
dV (r)

dr

)2

(5)

where we noted that the central potential gives a force d~p/dt = ~F = −r̂dV/dr.
The radiated energy is given by integrating power over time

∆W =
∫ ∞

−∞
P (t) dt



However, this can be converted to an integral over the trajectory. By symmetry,
we double the value of the integral from closed approach to infinity

∆W = 2
∫ ∞

rmin

P

dr/dt
dr (6)

The radial velocity dr/dt can be obtained from energy conservation

E =
1
2
mṙ2 +

L2

2mr2
+ V (r) ⇒ dr

dt
=

√
2
m

(
E − V (r)− L2

2mr2

)1/2

Substituting P (t) from (5) as well as dr/dt into (6) then yields

∆W =
4z2e2

3m2c3

√
m

2

∫ ∞

rmin

(
dV

dr

)2(
E − V (r)− L2

2mr2

)−1/2

dr (7)

b) Specialize to a repulsive Coulomb potential V (r) = zZe2/r. Show that ∆W can
be written in terms of impact parameter as

∆E =
2zmv5

0

Zc3

[
−t−4 + t−5

(
1 +

t2

3

)
tan−1 t

]
where t = bmv2

0/zZe2 is the ratio of twice the impact parameter to the distance
of closest approach in a head-on collision.

Substituting

V (r) =
zZe2

r
, L = mbv0, E =

1
2
mv2

0

into (7) gives

∆W =
4z4Z2e6

3m2c3v0

∫ ∞

rmin

r−4

(
1− 2

zZe2

mv2
0r
− b2

r2

)−1/2

dr

=
4zmv5

0

3Zc3t3

∫ ∞

rmin

(
b

r

)2(
1− 2

b

tr
− b2

r2

)−1/2
b dr

r2

=
4zmv5

0

3Zc3t3

∫ xmax

0

x2√
1− 2(x/t)− x2

dx

=
4zmv5

0

3Zc3t3

∫ x+

0

x2√
(x− x−)(x+ − x)

dx

(8)

where we used t = bmv2
0/zZe2, and the variable substitution x = b/r. In the last

line x+ and x− are the roots of the quadratic equation

x± = −1
t
±
√

1
t2

+ 1



The x integral can be performed by Euler substitution. We use the indefinite
integral∫

x2√
(x− x−)(x+ − x)

dx =− 1
4

√
(x− x−)(x+ − x)

(
2x + 3(x+ + x−)

)
+

1
4
(
3(x+ + x−)2 − 4x+x−

)
tan−1

√
x− x−
x+ − x

Putting in limits gives∫ x+

0

x2√
(x− x−)(x+ − x)

dx = 3
4

√
−x+x−(x+ + x−)

+ 1
4

(
3(x+ + x−)2 − 4x+x−

)
tan−1

√
x+

−x−

= − 3
2t

+
(

3
t2

+ 1
)

tan−1

(
−1

t
+

√
1
t2

+ 1

)

The arctan term can be simplified by double angle relations to give∫ x+

0

x2√
(x− x−)(x+ − x)

dx = − 3
2t

+
1
2

(
3
t2

+ 1
)

tan−1 t

Inserting this into (8) finally gives

∆W =
2zmv5

0

Zc3

(
− 1

t4
+

1
t5

(
1 +

t2

3

)
tan−1 t

)

14.12 As in Problem 14.4a), a charge e moves in simple harmonic motion along the z axis,
z(t′) = a cos(ω0t

′).

a) Show that the instantaneous power radiated per unit solid angle is

dP (t′)
dΩ

=
e2cβ4

4πa2

sin2 θ cos2(ω0t
′)

(1 + β cos θ sinω0t′)5

where β = aω0/c.

For one-dimensional motion, the relativistic radiated power expression simplifies

dP (t′)
dΩ

=
e2

4πc

|n̂× [(n̂− ~β)× ~̇β ]|2

(1− ~β · n̂)5
=

e2

4πc

|n̂× (n̂× ~̇β )|2

(1− ~β · n̂)5
=

e2

4πc

|n̂× ~̇β|2

(1− ~β · n̂)5
(9)

We use the same setup as Problem 14.2a), namely

~r = ẑa cos ω0t
′, ~β = −ẑ

aω0

c
sinω0t

′, ~̇β = −ẑ
aω2

0

c
cos ω0t

′



The observer is located at a point

~x = x(x̂ sin θ + ẑ cos θ)

which gives rise to

~R = ~x− ~r = x̂x sin θ + ẑ(x cos θ − a cos ω0t
′)

or

R = x

(
1− 2a

x
cos θ cos ω0t

′ +
a2

x2
cos2 ω0t

′
)1/2

, n̂ =
~R

R

This rather complicated expression actually simplifies in the radiation zone (x →
∞), which is the only region we are interested in. In this case, R = x and
n̂ = ~x/x = x̂ sin θ + ẑ cos θ. Noting that

1− ~β · n̂ = 1 +
aω0

c
cos θ sinω0t

′

we simply evaluate (9) to obtain

dP (t′)
dΩ

=
e2a2ω4

0

4πc3

sin2 θ cos2 ω0t
′

(1 + aω0
c cos θ sinω0t′)5

Making the substitution β = aω0/c then results in

dP (t′)
dΩ

=
e2cβ4

4πa2

sin2 θ cos2 ω0t
′

(1 + β cos θ sinω0t′)5
(10)

b) By performing a time averaging, show that the average power per unit solid angle
is

dP

dΩ
=

e2cβ4

32πa2

[
4 + β2 cos2 θ

(1− β2 cos2 θ)7/2

]
sin2 θ

To time average (10), we need to perform the integral

I(a) =
∫ 2π

0

cos2 α

(1 + a sinα)5
dα

This may be performed by complex variables techniques. Defining z = eiα con-
verts this to a contour integral

I(a) =
8
a5

∮
|z|=1

z2(1 + z2)2

(z2 + 2iz/a− 1)5
dz =

8
a5

∮
|z|=1

z2(1 + z2)2

(z − z−)5(z − z+)5
dz

where z+ and z− are the roots

z± = − i

a
± i

√
1
a2
− 1



It is easy to see that only z+ lies inside the unit circle, provided 0 < a < 1. (Since
I(−a) = I(a), we can extend the result to |a| < 1.) As a result, the value of I(a)
comes from the residue at z+

I(a) =
16πi

a5

1
4!

d4

dz4

(
z2(1 + z2)2

(z − z−)5

)∣∣∣∣
z=z+

Working out the derivatives gives the result

I(a) =
π

4
4 + a2

(1− a2)7/2

Using a = β cos θ for time averaging (10), we find

dP

dΩ
=

e2cβ4

32πa2

4 + β2 cos2 θ

(1− β2 cos2 θ)7/2
sin2 θ

c) Make rough sketches of the angular distribution for nonrelativistic and relativistic
motion.

The nonrelativistic limit yields ordinary dipole radiation. The angular distribu-
tion for various values of β are
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The relativistic beaming effect (along the z axis) is clearly pronounced at large
values of β.


