
Physics 506 Winter 2006

Homework Assignment #4 — Solutions

Textbook problems: Ch. 9: 9.8, 9.9, 9.16, 9.17

9.8 a) Show that a classical oscillating electric dipole ~p with fields given by (9.18) radi-
ates electromagnetic angular momentum to infinity at the rate

d~L

dt
=

k3

12πε0
=[~p ∗ × ~p ]

To obtain the electromagnetic angular momentum, we begin with the linear mo-
mentum density

~g =
1

2c2
~E × ~H∗

Denoting the angular momentum density by ~m, we then have simply

~m = ~r × ~g =
1

2c2
~r × ( ~E × ~H∗) =

1
2c2

[ ~E(~r · ~H∗)− ~H∗(~r · ~E)]

Note that ~r · ~H = 0 for an electric dipole field, while it is straightforward to show
that

~r · ~E = rn̂ · ~E =
1

4πε0
(2n̂ · ~p )

(
1
r2
− ik

r

)
eikr

Hence

~m = − 1
2c2

~H∗(~r · ~E)

= − 1
2c2

ck2

4π
(n̂× ~p ∗)

e−ikr

r

(
1 +

1
ikr

)
1

4πε0
(2n̂ · ~p )

(
1
r2
− ik

r

)
eikr

=
ik3

16π2ε0cr2

(
1 +

1
(kr)2

)
(n̂ · ~p )(n̂× ~p ∗)

In principle, if we integrate this over all space, we will end up with the total
angular momentum contained in the electromagnetic field. However, this is not
what we want. Instead, we are interested in the amount of angular momentum
radiated to infinity. We can calculate this by considering the amount of angular
momentum that passes through a spherical shell of (large) radius r in a given unit
of time. Essentially, d~L = ~m da dr = ~m r2 dr dΩ, so that d~L/dt = ~m r2(dr/dt)dΩ.
Noting that the radiation travels outward at the speed of light gives

d~L

dt
= r2c

∫
~m dΩ =

ik3

16π2ε0

(
1 +

1
(kr)2

) ∫
(n̂ · ~p )(n̂× ~p ∗)dΩ



It is straightforward to evaluate the angular integral. By appealing to symmetry
considerations, we have∫

n̂in̂j dΩ = δij

∫
n̂1n̂1 dΩ =

1
3
δij

∫
(n̂2

1 + n̂2
2 + n̂2

3)dΩ =
1
3
δij

∫
dΩ =

4π

3
δij

Thus when we take the limit r →∞ we obtain simply

d~L

dt
=

ik3

16π2ε0

4π

3
~p× ~p ∗ = − ik3

12πε0
~p ∗ × ~p

The time averaged value is the real part of the above expression. Noting the −i
factor, this gives

d~L

dt
=

k3

12πε0
=[~p ∗ × ~p ] (1)

b) What is the ratio of angular momentum radiated to energy radiated? Interpret.

The energy radiated by the dipole is simply the radiated power. This was shown
to be

dU

dt
≡ P − c2Z0k

4

12π
|~p |2

Hence
d~L/dt

dU/dt
=

1
c2Z0ε0k

=[~p ∗ × ~p ]
~p ∗ · ~p

=
1
ω

=[~p ∗ × ~p ]
~p ∗ · ~p

If we break up the dipole moment into real and imaginary parts, ~p = ~p1 + i~p2, we
obtain

d~L/dt

dU/dt
=

1
ω

2~p1 × ~p2

p2
1 + p2

2

=
1
ω

2α̂p1p2 sinα

p2
1 + p2

2

where α represents the angle between ~p1 and ~p2. A simple application of the
triangle inequality then demonstrates that

d~L

dt
≤ 1

ω

dU

dt

If we identify U = h̄ω and |~L| = h̄ (angular momentum 1 for a dipole field), then
coherent radiation saturates this bound, while in general the radiated angular
momentum is smaller. We may also interpret this inequality as an upper limit on
the angular momentum carried away by a l = 1 dipole field.

c) For a charge e rotating in the x-y plane at radius a and angular speed ω, show
that there is only a z component of radiated angular momentum with magnitude
dLz/dt = e2k3a2/6πε0. What about a charge oscillating along the z axis?

A moving charge corresponds to a time-dependent charge density

ρ = eδ(x− a cos ωt)δ(y − a sinωt)δ(z)



The dipole moment is thus the obvious time dependent expression

~p(~x, t) =
∫

~xρ d3x = ea(x̂ cos ωt + ŷ sinωt)

which may be written as the real part of a complex quantity

~p(~x, t) = <[ea(x̂ + iŷ)e−iωt]

Hiding the harmonic behavior gives a complex dipole moment

~p = ea(x̂ + iŷ)

This is the expression that ought to be substituted into (1). The result is

d~L

dt
=

k3e2a2

6πε0
ẑ

Note that it is important that the charge is rotating in a circle. This gives a phase
difference between the real and imaginary parts of ~p. In fact, this 90◦ phase shift
and equal magnitudes in x̂ and ŷ (perfect circle) saturates the radiated angular
momentum bound.

For linear motion along the z axis, on the other hand, we have ~p = pẑ (up to an
unimportant overall phase). In this case we have simply d~L/dt = 0. It ought to
be at least intuitively plausible that linear motion does not gives rise to angular
momentum in the radiated fields.

d) What are the results corresponding to parts a) and b) for magnetic dipole radia-
tion?

The simple treatment for magnetic dipole radiation is to make the substitution
~E → Z0

~H, Z0
~H → − ~E and ~p → ~m/c. In fact, all we need is the latter replace-

ment in (1). This gives

d~L

dt
=

k3

12πε0c2
=[~m ∗ × ~m ] =

µ0k
3

12π
=[~m ∗ × ~m ]

Similarly, the power is

P =
Z0k

4

12π
|~m |2

Hence the results of part b) are unchanged.

9.9 a) From the electric dipole fields with general time dependence of Problem 9.6, show
that the total power and the total rate of radiation of angular momentum through
a sphere at large radius r and time t are

P (t) =
1

6πε0c3

(
∂2~pret

∂t2

)2

d~Lem

dt
=

1
6πε0c3

(
∂~pret

∂t
× ∂2~pret

∂t2

)



where the dipole moment ~p is evaluated at the retarded time t′ = t− r/c.

For real fields with explicit time dependence, the Poynting vector is simply ~S =
~E × ~H. Hence the angular power distribution is

dP

dΩ
= r2n̂ · ( ~E × ~H)

In the radiation zone, the result of Problem 9.6 may be given as

~H = − 1
4πcr

n̂× ∂2~p

∂t2
, ~E = − 1

ε0c
n̂× ~H

where all dipole expressions should be evaluated at the retarded time. This gives

dP

dΩ
= − r2

ε0c
n̂ · ((n̂× ~H)× ~H) =

r2

ε0c
| ~H|2

where we have used the fact that n̂ · ~H = 0. Substituting in the expression for ~H
and noting that (for any vector ~V )

(n̂× ~V ) · (n̂× ~V ) = |~V |2 − |n̂ · ~V |2 = V 2 − V 2 cos2 α = V 2 sin2 α

where θ is the angle between n̂ and ~V , we obtain

dP

dΩ
=

1
16π2ε0c3

(
∂2~p

∂t2

)2

sin2 α

This expression is not entirely useful in itself, as the angle α may be some com-
plicated function of the retarded time. However, this factor drops out after inte-
grating over the entire solid angle. The standard result

∫
sin2 α dΩ = 8π/3 then

gives us

P =
1

6πε0c3

(
∂2~p

∂t2

)2

(2)

(to be evaluated at the retarded time).

Working out the radiated angular momentum involves similar manipulations. We
have

d~L

dt
= cr2

∫
dΩ~r × (

1
c2

~E × ~H)

=
r3

c

∫
dΩ[ ~E(n̂ · ~H)− ~H(n̂ · ~E)] = −r3

c
~H(n̂ · ~E)

= −r3

c

∫
dΩ

(
− 1

4πr2

) (
1 +

r

c

∂

∂t

)
n̂× ∂~p

∂t

(
1

4πε0

(
1 +

r

c

∂

∂t

)
2n̂ · ~p

r3

)
=

1
8π2ε0cr2

∫
dΩ

[(
1 +

r

c

∂

∂t

)
n̂× ∂~p

∂t

] [(
1 +

r

c

∂

∂t

)
n̂ · ~p

]



Performing the angular integral as in the previous problem gives

d~L

dt
=

1
6πε0cr2

[(
1 +

r

c

∂

∂t

)
~p

]
×

[(
1 +

r

c

∂

∂t

)
∂~p

∂t

]
In the limit that r →∞, the only term that contributes is

d~L

dt
=

1
6πε0c3

(
∂~p

∂t
× ∂2~p

∂t2

)
(3)

b) The dipole moment is caused by a particle of mass m and charge e moving
nonrelativistically in a fixed central potential V (r). Show that the radiated power
and angular momentum for such a particle can be written as

P (t) =
τ

m

(
dV

dr

)2

d~Lem

dt
=

τ

m

(
dV

rdr

)
~L

where τ = e2/6πε0mc3 (= 2e2/3mc3 in Gaussian units) is a characteristic time,
~L is the particle’s angular momentum, and the right-hand sides are evaluated
at the retarded time. Related these results to those from the Abraham-Lorentz
equation for radiation damping [Section 16.2].

For a single particle of mass m and charge e, the dipole moment is ~p = e~x. Hence

∂~p

∂t
= e~̇x =

e

m
(m~̇x )

∂2~p

∂t2
= e~̈x =

e

m
(m~̈x ) =

e

m
~F = − e

m
~∇V = − e

m
n̂

dV

dr

where we have used F = ma in the second line as well as the fact that V (r) is a
central potential. Substituting this into (2) gives

P =
e2

6πε0m2c3

(
dV

dr

)2

=
τ

m

(
dV

dr

)2

where τ = e2/6πε0mc3. Similarly, substituting into (3) yields

d~L

dt
= − e2

6πε0m2c3
(m~̇x)× ~x

(
1
r

dV

dr

)
=

τ

m

(
dV

r dr

)
~L

where ~L = ~x× (m~̇x ).



c) Suppose the charged particle is an electron in a hydrogen atom. Show that the
inverse time defined by the ratio of the rate of angular momentum radiated to the
particle’s angular momentum is of the order of α4c/a0, where α = e2/4πε0h̄c ≈
1/137 is the fine structure constant and a0 is the Bohr radius. How does this
inverse time compare to the observed rate of radiation in hydrogen atoms?

We estimate

Γ =
dL/dt

L
≈ τ

m

∣∣∣∣ dV

r dr

∣∣∣∣
For the hydrogen atom, we use the Coulomb potential V = e2/4πε0r. As a result

Γ ≈ e2

6π2ε0m2c3

∣∣∣∣1r d

dr

e2

4πε0r

∣∣∣∣ ≈ e4

24π3ε20m
2c3

1
a3
0

where in the last step we assumed that r ≈ a0, the Bohr radius. Noting that
a0 = h̄/αmc as well as α = e2/4πε0h̄c, the above expression simplifies to

Γ ≈ 2
3π

α4c

a0
≈ 0.212

α4c

a0

This may be compared, for example, with the quantum mechanical calculation of
the width of the 2p → 1s E1 transition of the hydrogen atom

Γ2p→1s =
(

2
3

)8
α4c

a0
= 0.039

α4c

a0

While the general agreement is fairly reasonably, it does indicate that small (or
large) numerical factors, which may superficially be estimated as O(1), can show
up in the detailed calculation.

d) Relate the expressions in parts a) and b) to those for harmonic time dependence
in Problem 9.8.

Consider the mapping of Problem 9.8

~pret → ~p ei(kr−ωt),
∂

∂t
→ −iω

As a result

∂~p

∂t
→ −iω~pei(kr−ωt) and

∂2~p

∂t2
→ −ω2~pei(kr−ωt)

In addition, for harmonic fields, we would like to the the complex conjugate of
one of the harmonic factors in either (2) or (3) and divide by two to compute the
time averaged quantity. Thus

P =
1

6πε0c3

(
∂2~p

∂t2

)2

→ 1
6πε0c3

ω4( 1
2~p · ~p ∗) =

ck4

12πε0
|~p |2



and

d~L

dt
=

1
6πε0c3

(
∂~p

∂t
× ∂2~p

∂t2

)
→ 1

6πε0c3
iω3( 1

2~p× ~p ∗) =
ik3

12πε0
~p× ~p ∗

We should, of course, take the real part of this expression. The result is the
expected one

d~L

dt
=

k3

12πε0
=[~p ∗ × ~p ]

9.16 A thin linear antenna of length d is excited in such a way that the sinusoidal current
makes a full wavelength of oscillation as shown in the figure.

a) Calculate exactly the power radiated per unit solid angle and plot the angular
distribution of radiation.

Note that the current flows in opposite directions in the top and bottom half of
this antenna. As a result, we may write the source current density as

~J(z) = ẑI sin(kz)δ(x)δ(y)Θ(d/2− |z|) (4)

where
k =

2π

d

In the radiation zone, the vector potential is given by

~A(~x ) =
µ0

4π

eikr

r

∫
~J(~x ′)e−ikn̂·~x ′

d3x′

= ẑ
µ0I

4π

eikr

r

∫ d/2

−d/2

sin(kz)e−ikz cos θdz

Since the source current is odd under z → −z, this integral may be written as

~A = −ẑ
iµ0I

4π

eikr

r

∫ d/2

0

2 sin(kz) sin(kz cos θ) dz

= −ẑ
iµ0I

4π

eikr

r

∫ d/2

0

[cos((1− cos θ)kz)− cos((1 + cos θ)kz)] dz

= −ẑ
iµ0I

4π

eikr

kr

[
1

1− cos θ
sin((1− cos θ)kz)− 1

1 + cos θ
sin((1 + cos θ)kz)

]d/2

0

= −ẑ
iµ0I

2π
eikrkr

sin(π cos θ)
sin2 θ

In the radiation zone, the magnetic field is

~H =
ik

µ0
n̂× ~A = −φ̂

I

2π

eikr

r

sin(π cos θ)
sin θ



where we have used n̂× ẑ ≡ r̂× ẑ = −φ̂ sin θ. This gives rise to a radiated power

dP

dΩ
=

Z2r2

2
| ~H|2 =

Z0|I|2

8π2

sin2(π cos θ)
sin2 θ

(5)

This looks almost (but not quite) like a quadrupole pattern.
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b) Determine the total power radiated and find a numerical value for the radiation
resistance.

The total radiated power is given by integrating the angular distribution over the
solid angle

P =
Z0|I|2

8π2
2π

∫ 1

−1

sin2(π cos θ)
1− cos2 θ

d cos θ =
Z0|I|2

4π

∫ 1

−1

sin2(πx)
1− x2

dx ≈ Z0|I|2

4π
× 1.557

Comparing this with P = 1
2Rrad|I|2 gives a radiation resistance

Rrad =
Z0

2π
× 1.557 = 93.4 Ω (6)

9.17 Treat the linear antenna of Problem 9.16 by the multipole expansion method.

a) Calculate the multipole moments (electric dipole, magnetic dipole, and electric
quadrupole) exactly and in the long-wavelength approximation.

Although the length of the antenna is equal to the wavelength (so the multipole
expansion method is not particularly valid), we may still see what we get. Using
the current density (4), we may obtain a charge density

ρ =
1
iω

~∇ · ~J =
1
iω

d ~J

dz
= − iI

c
cos(kz)δ(x)δ(y)Θ(d/2− |z|)

where we used ω = ck. The electric dipole moment is then

~p =
∫

~x ρ d3x = −ẑ
iI

c

∫ d/2

−d/2

z cos(kz) dz = 0



Simple symmetry arguments under z → −z demonstrates that there is no electric
dipole. The magnetic dipole moment also vanishes since

~m = 1
2

∫
~x× ~J d3x =

I

2

∫ d/2

−d/2

sin(kz)(zẑ)× ẑ dz = 0

We are left with an electric quadrupole moment

Qij =
∫

(3xixj − r2δij)ρ d3x = − iI

c

∫ d/2

−d/2

(3(zδi3)(zδj3)− z2δij) cos(kz) dz

The only non-vanishing moments are

Q33 = −2Q11 = −2Q22 = −2iI

c

∫ d/2

−d/2

z2 cos(kz) dz (7)

The integral is straightforward, and the result is

Q33 = −2Q11 = −2Q22 =
8πiI

ck3

So far, we have worked with the ‘exact’ multipole expressions. In the long wave-
length limit (kd → 0), we really ought to modify the current density as appropri-
ate. Nevertheless, by assuming the same symmetry as (4) under z → −z, both
dipole moments will of course vanish. For the quadrupole moment in the long
wavelength limit, we take cos(kz) → 1 in (7), which corresponds to a uniform
charge density. The result of the trivial integration is then

Q33 = −2Q11 = −2Q22 = − iId3

6c
= −8πiI

ck3

(kd)3

48π

Since kd → 0, this greatly underestimates the actual quadrupole moment given
above. But of course we have to be extremely careful with this interpretation, as
the current and charge densities (in particular, the current I) in the exact expres-
sions do not directly carry over to the same counterparts in the long wavelength
limit.

b) Compare the shape of the angular distribution of radiated power for the lowest
nonvanishing multipole with the exact distribution of Problem 9.16.

The lowest multipole is the electric quadrupole. In this case, the angular distri-
bution is

dP

dΩ
=

c2Z0k
6

512π2
|Q0|2 sin2 θ cos2 θ =

Z0|I|2

8
sin2 θ cos2 θ

where Q0 = Q33 = −2Q11 = −2Q22. This is plotted in black, and may be com-
pared with the exact distribution (5), plotted in green in using the same scale
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The comparison is more direct when the electric quadrupole radiation is normal-
ized to the same total radiated power
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c) Determine the total power radiated for the lowest multipole and the corresponding
radiation resistance using both multipole moments from part a). Compare with
Problem 9.16b). Is there a paradox here?

The total power radiated using the exact electric quadrupole moment is

P =
Z0|I|2

8
2π

∫ 1

−1

sin2 θ cos2 θ d cos θ = Z0|I|2
π

15

This gives a radiation resistance of Rrad = 2πZ0/15 = 158 Ω. Curiously, this (and
the radiated power) is larger than the exact expression of (6). The reason this
is not a paradox is that destructive interference from higher order terms in the
source expansion will be able to bring this power down to the exact expression
of (6). Here it is worth noting that this expansion in terms of source multipole
moments is not the same as the the one for radiation multipoles. In the latter
case, we would get a total radiated power

P =
Z0

2k2

∑
l,m

[|aE(l,m)|2 + |aM (l,m)|2]



which is a sum of squares without interference. (Of course, interference still
shows up in the angular distribution.) If the quadrupole factor aE(2,m) was too
large, then we would have a true paradox. However, this is not the case. In fact,
it is easy to show (by reversing the parity argument) that for this antenna the
radiation multipole coefficients are given by Jackson (9.184) with even l, instead
of odd

aE(l, 0) =
I

πd

√
4π(2l + 1)
l(l + 1)

(
kd

2

)2

jl

(
kd

2

)
l even

Substituting in kd = 2π gives

aE(l, 0) =
Ik

2

√
4π(2l + 1)
l(l + 1)

jl(π)

so in particular the l = 2 moment is

aE(2, 0) =
Ik

2

√
30
π3

The angular power distribution for the quadrupole is

dP

dΩ
=

Z0

2k2
|aE(2, 0)|2 15

8π
sin2 θ cos2 θ =

Z0I
2

8

(
15
2π2

)2

sin2 θ cos2 θ

and the total quadrupole power is

P = Z0|I|2
15
4π3

⇒ Rrad = 91.2 Ω

which is around 2% less than the exact result for the total power radiated in all
modes, (6). This shows that here the quadrupole really is the dominant mode.


