Phys. 506 Electricity and Magnetism Winter 2004
Prof. G. Raithel
Problem Set 1
Total 30 Points

1. Jackson 8.2 10 Points

a): The electric field is the same as in the 2-dimensional electrostatic problem of two concentric cylinders,

ie.
a
E(p) = pEo—
p

where Fy denotes the field on the surface of the inner conductor, which has radius a. Since for TEM waves

propagating in the +z-direction it is H = ii x E = 12 x E with the plane-wave impedance Z = |/Z, it is

H(p) = _(ZASEOZip = —QBHo%

with Hy = % being the magnetic field on the surface of the inner conductor. The Poynting vector

and the power is

b
b
P = / Re |z - S] 2mpdp = Zma® |Hp|* In <a> q.e.d.

b): On the inner surface,
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The power loss is the sum of the two,
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Then, the attenuation constant v = —#%,
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c): Voltage: V =|[E-dl| = f; pEoS - pdp = HoZaln (2)-

Current: For TEM modes, the surface currents are in z-direction, i.e. on the inner conductor K, = Hy. The

total current I = 2mraHy. Thus, the characteristic impedance Zj is

\%4 Z b
Zop=—=—In|—
Y Zn(2) e

Note that 7 is the plane-wave impedance Z = \/g .

d): The series resistance R satisfies %RI2 = ‘%L where the factor % occurs, as usual, due to the use of

complex quantities. Thus, with the above I and ‘é—}:

1 1 1
R = 2mod <a + b) qed

The inductance per length is defined via the magnetic-field energy per length, u,, = i [ B-H*da = %Tﬂ /B-

1
2

quantities. The given result obviously accounts for the field energies inside the guide, upm, guide, and in the

H*pdp = 1L|I|?, where the factor 1 (in place of the magneto-static value 1) is to the use of complex

inner and outer skin regions, U, inner a0d U outer- In the guide,
7T(12 2 b
Um,guide = M |H0‘ In{ -
2 a

In the inner guide wall it is H = Hy exp(—£/6), where £ measures the depth from the guide surface. Assuming

a > §, which is a good assumption except in pathetic cases,

27 e

o T el
tmioner = 2 [ ol exp( 26 /0)ade = T2
0

H2
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where i, is the permeability of the conductor, and similarly

_ 2mpe [ o faN?2  Tpea®s 2
Um, inner = T/o |H0| (g) eXp(—?f/(S)bdf - 4D ‘H0|

Summing over the linear magnetic-field energy densities, it is

2
s T () 4 Ok (1,1
Um = —5 |Ho {uln(a)—k 5 <a+b

4y, I b ope (11
L=—=—In|(- -+ - .e.d.
|7]? 27rn<a)+47r (a+b> ded

Note that normally § < a < b and therefore the second term is much smaller than the first.

and




2. Jackson 8.4 10 Points

a): Following the analysis on page 369f with the replacement 2% — k it is seen that the cutoff frequencies

are
WM,mn = % for mode T'M,,,, with m =0,1,.. and n =1,2,.. and
WEmn = Zma® for mode TE,y,, with m =0,1,..and n = 1,2, ..

There, Ty, is the n-th zero of the Bessel function J,, (z) and 7, is the n-th zero 4= J,,,(x). The fundamental

mode is

TE11 with WE 11 = L}%lc = Wo-

with ¢ = \/1}76 The next four higher modes are:
TM01 with wM,Ol/wo = 1.306
TFE5, with wE’gl/wo = 1.659
TE01 with OJE701/QJ0 = 2.081
TM11 with wM,ll/wo = 2.081
b): TE;;: We require ¢ to calculate the power P from Eq. 8.51 in Jackson, and all magnetic fields to
calculate

dP/dz = —i/|H|2dz

206

Here, it is

H, = w:HoL(@p) exp(ip)

/

i )

P+ os (L

H, = t¢_ Hy exp(lqﬁ){ 9311%1 ‘]1(

2
peow "

w\Ho E,11 3711
p=r \f,/ w2/ pJ2(
RZ

where the integral equals <5 (1 — x%)Jf(x’H)
11

with 72 = pewy, |, and k? = pe(w? —wg ;) and § =

Using Eq. 8.51,

Also, on the surface |H,| = |Ho|J1(z};) and [H;| = k‘H"‘Jl(xn) and thus

dpP 5 o TR|Ho|” k2
R(|H.|” + [Hy|") = le () (1 + W)

1
B )
dz 206 T




The attenuation constant for a hollow brass guide, for which u = u. = po and € = ¢; is then found to be

1 [dP| 1 pocowp 11 2+ w? —wh
9e0) = 55 | & | = BV 20 ot
Vw,Jw? =W y (nocow, 1 B2 — 1)

T Mo;: The required fields are, using v = “g- and Z = £

EwW

x
E. = v=EoJo(50)
ik lk'Eo ~L01 o1 lk'EoR Zo1
E, = —vV ()| = J
t 72 1) = PR O(RP) me O(RP)
1. ~1kE R x
H, = szEt: ¢ - (1%10)
Using Eq. 8.51, calculating
dP 1
—27R|H|?
dz | 206 TRIE
and evaluating 3 = 5 P | | for a hollow brass guide (1 = p. = po and € = ¢p), it is found
1 60&)3
B (w) = R\ 2002 - 0p)

Expressing the results in a normalized frequency,

. . . 1 EQWE,11
and the damping constants in units of 74/ =52,

b=p/ (g )

it is

Bpn(x) = 1.841% + 2% — 1
Bl VoV — 1(1.8412 — 1)
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Bar,01()

x? — 1.3062
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Figure 1: Damping constants in scaled units



3. Jackson 8.5 10 Points

a):

The problem has a discrete 7/2 rotation symmetry. Thus, any mode TX,,, is degenerate with T X,,,,
where X = F or X = M. For m # n, we can use the superposition principle to form linear superpositions of
degenerate modes that satisfy the applicable boundary conditions on the diagonal (in addition to the sides

that form a right angle).

TM-modes:
E.(z,y) = Ey {sin (—mms) sin
a

(228) i (72 i (2

for n,m =1,2,3.. and n #m. It is E,(z,y) = 0 for z = y. The corresponding cutoff frequencies are

vm?2 4 n?

T
WM mn = a\/ﬁ
The lowest TM-mode has m =1 and n = 2.

TE-modes:

H.(z,y) = Ho [COS (mmc) cos (@> + cos (@) cos (wﬂ
a a a a

for n,m =0,1,2,.. but not n = m = 0. As required, the normal derivative on the diagonal,

0 1 0 0
anHZ_\/i<8x_8y)HZ

vanishes for = y. The corresponding cutoff frequencies are also

vm?2 4+ n?

WE mn =

m
a/Je
The lowest TE-mode has m =0 and n = 1.

Note. Since each pair of degenerate modes of the square guide gives only one mode of the triangular
guide, there are about half as many modes in the triangular guides as there are in the square guide. This

observation makes sense, because generally the mode density (=number of modes per frequency interval) at

large frequencies is approximately proportional to the guide cross section.

b): TElol

We need to calculate the power and the magnetic field on the surfaces. With an (unnormalized)

Y= H, = cos (B) + cos (E)
a a



and, by symmetry,

2

1 1
/ Yy dady = f/ Y dady = f/ [COS2 (E) + cos? (@) + 2 cos (E) cos (@)} dxdy = @
triangle 2 square 2 square a a a a 2
Magnetic-field amplitudes on the sides: Use H, = 1 and
ik ik
H = Zv,g =27 [fcsin (E> + sin (@)]
~2 v2a a a

to see that on the side x = 0 it is H.(y) = 1+ cos (%) and Hy(y) = ’” © sin (%£). Then, along that side it is

v=o 3 1k
H|? dy = [ + = ]
/z_O.,y—O H 2 24%?

The y = 0-side yields the same result. On the diagonal x = y it is H.(y) = 2cos (Ty) and H.(y) =
\@% sin (%) Then, along the diagonal it is

y=a y=a 2.2
H?dl = V2 HP dy = v3a |24 2T
z vta?

=y,y=0 z=y,y=0

and the sum over all three sides,

(1+\[)—a(3+2\[) (1+\f)

7{|H\ dl = a(3 +2V2) +
Use k% = pe(w? — W129,01) and Yg,01 = wpo1/€ = T to get

7{|H| dl—a(2+2f)+a (1+\f)

wE ,01

With Eq. 8.51 and |22 | = ;L § [H|*dl and 8 = ;5 |42

1 € w 1 1
BEo = ——1/— - 3
o0p,01 \ 1\ wEo0 a /1 _ YB01
w2

2
HeOWE 01"

2+ \/ﬁ)w%’zm +(1+v2)

where dg 01 = The result has been written in a form analogous with Eq. 8.63 in Jackson.

TMis: We use

¢ =sin (%T) sin (22y> — sin <27;x> sin (%)

which yields



2

[ wwrdsay =7
triangle 4

Also, H, = 0, and the magnitude of the magnetic field is

ks (7TCL’) . [ 2my 21 2rx\ . (wy)
X | — cos sin{ — ) — —cos | — | sin ( —=
a a a a a a
R |:27T . <7TJ?) <27Ty> T . (27rz> (ﬂy)”
y | — sin cos | —Z | — —sin | — | cos [ —=
a a a a a a

On the side x =0 it is

y=a 5 222
/ |H|2 dy =35 ‘ w4 u
z=0,y=0 2 va

The same applies on the side y = 0. On the diagonal z = y, it is

€w |2m . /Tx 2mx T 2mx T
H; = 2—2 — sin ( ) cos — —sin [ — ] cos ( )
¥4 | a a a a a a

and

y=a y=a 2,22
/ H2dl = /2 Hdz =527
xr

2
=y,y=0 r=y,y=0 e

The line integral over all three sides in

2,22
j{|H|2dZ=106 —
Yra

Use Y12 = war,124/H1HE = f% and Eq. 8.51 and “2—5 = % ¢ \H\le and 8 = # |‘fl—f| to find

1 € w 4 1
Briz = ———/— - 5
o2\ B wM,12a\/1_T,m
w2

For the corresponding modes in a square guide, double the area integrals f Y*dxdy, and for the line integrals

double the results over the vertical and horizontal sides of the triangular guide and leave out the diagonals.

TMFE01: The area integral doubles and the line integral becomes

2

2
WE 01

7{|H|2dzz4a+2a 2



The resultant damping constant is

1 2 + 4"“%‘,01

_ w?
ﬁE,Ol,square - BE,Ol,tm’angle X 5

(1+v2)+ (2+V2)

3
“E.01
o2

T Mis: The area integral doubles and the line integral remains unchanged. Thus,

ﬂM,lQ,square = ﬁM,lZ,triangle X 5




