
Physics 506                   Midterm exam                   March 4, 2004 
 
1. 

20 points 
Consider a waveguide with a square cross section of sidelength a.  A monochromatic field with 
angular frequencyω is present the guide. 
 

a) What are the three basic types of waveguide modes? Which ones occur in the given 
guide? 

b) For the given guide, determine the lowest cutoff frequency. What is the degree of 
degeneracy of the lowest cutoff frequency, i.e. how many guide modes have that cutoff 
frequency?  Determine all E and H-field components of these modes. Include all spatial 
and temporal dependences in your answers for the fields. 

 
c) We assume cma 5=  and srad /104.2 10×=ω . A small experimental setup that has no 

effect of the waveguide field is located at the middle of the guide. How much power 
needs to be injected to obtain an amplitude of the transverse electric field of 100 V/cm 
in the setup?  If you found degeneracy in part b, assume that only one of the degenerate 
modes is excited. 

d) Assume that the wave travels through 1000m of guide before it reaches the experiment. 
How much power needs to be injected in order to achieve the condition of part c?   
(wall conductivity  18 )102( −− Ω×= mσ  ). 

 
e) The shape perturbation indicated in the drawing is applied to the guide. Using 

perturbation theory and the mode(s) of part b, determine the k-numbers and polarization 
angles φ  of the transverse electric fields of the perturbed modes (all walls have ∞=σ ). 

 

 
 
You may use all applicable results stated in the homework solutions or in the textbook 
without losing credit. You may receive partial credit for derivations in case an answer is 
wrong. Derivations are required for results not found in the textbook/homework. 



2. 
20 points 

 
A current t

oII ωieRe −=  is flowing in the x-y plane on a circle with radius a centered to the 
origin. 

a) Find all spherical-multipole radiation coefficients ),( mlaE  and ),( mlaM  without 
using any small-source approximation.  

 
Which coefficients are zero, and which ones are not?  
 

b) Knowing the coefficients, how would you obtain the E and H-fields in the radiation 

zone, the angular distribution of the radiated power, 
Ωd

dP , and the total radiated power 

P ? It is not required to work out the expressions for the fields, ΩddP /  and P. 
 

c) Using the small-source approximation, ka<<1, and assuming that the observation point 
is in the radiation zone, determine the r̂ , ϑ̂ - and ϕ̂ - components of the E and H-fields 
of the lowest-order non-vanishing spherical-multipole radiation field.  What are the 

distribution of the radiated power, 
Ωd

dP , and the total radiated power P? 

 
 
 
3. 

20 points 
Scattering of light with wavelength nm632=λ  is used to study spherical non-absorbing and 
non-permeable nanoparticles with 20nm diameter and refractive index n=1.5. The incident light 
is a plane wave propagating in z-direction. 
 

a) Find the differential scattering cross section of a single particle for the case that the 
incident light is linearly polarized ( x̂0 =ε , no selectivity with respect to outgoing 
polarization). Provide a numerical result. 

b) Find the differential scattering cross section for the case that the incident light is 
circularly polarized with negative helicity ( −= εε 0 , no selectivity with respect to 
outgoing polarization). Provide a numerical result. 

c) A small-diameter laser beam with circular polarization and 10W power is traversing 
through a 1mm thick dust layer filled with such particles at a density of 31110 −cm . The 
particles are in a state of total spatial disorder. A detector with an area of 21cm  is 
located at a distance of 50cm from the intersection volume between the laser beam and 
the dust layer, at a scattering angle of ϑ . What is the power measured by the detector? 
Make reasonable approximations and provide a numerical result. 
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1. Problem 20 Points (4 on each part)

a): Waveguides with multiple surfaces have TE, TM and TEM modes. The given one has only one surface
and therefore only supports TE and TM modes.

b): According to Section 8.4 of Jackson, the lowest mode is the TE10-mode. Since the cross section is square,
the TE10 mode is degenerate with TE01 (i.e. the degree of degeneracy is two). The cutoff frequency is

ω10 = ω01 =
π√
µεa

=
πc

a

and k = 1
c

√
ω2 − ω2

01 (not required). The fields are given by Eq. 8.46 of Jackson,

TE10:

Hz = H0 cos
(πx

a

)
exp(ikz − iωt)

Hx = − ika

π
H0 sin

(πx

a

)
exp(ikz − iωt)

Ey =
iωaµ

π
H0 sin

(πx

a

)
exp(ikz − iωt)

TE01:

Hz = H0 cos
(πy

a

)
exp(ikz − iωt)

Hy = − ika

π
H0 sin

(πy

a

)
exp(ikz − iωt)

Ex = − iωaµ

π
H0 sin

(πy

a

)
exp(ikz − iωt)

where the extra − in the last line follows from the fact that S = 1
2Et × H∗

t must point in the positive
z-direction.

c): Pick, for instance, TE10. It is

P =
1
2

∫

A

Re [ẑ ·Et ×H∗
t ] da = −1

2

∫

A

Re [−EyH∗
x ] da =

a2

4
ka2ωµ

π2
|H0|2

Since also the amplitude of the transverse electric field, Ey = H0
ωaµ

π , it is



P = E2
0

a2k

4ωµ

We also use k = 1
c

√
ω2 − (

πc
a

)2, which gives k = 49.61m−1. The numerical result for P is

P = 102.8W

Alternate method: Use Eq. 8.51 with ψ = H0 cos
(

πx
a

)
with H0 = πE0

ωaµ = 20.83 A
m .

d): We need to find the damping constant, which we can calculate, for instance, for the TE10-mode:

β =
1

2P

1
2σδ

∮
|H|2dl =

1
2P

1
2σδ

∮ (|Hz|2 + |Hx|2
)
dl

Along the y−sides, which have x = 0 or x = a, it is Hx = 0 and Hz = H0, and thus

∫

x=0 or a

|Hz|2dl = 2a|H0|2

Along the x−sides, which have y = 0 or y = a, it is

∫

y=0 or a

(|Hz|2 + |Hx|2
)
dl = 2

∫ a

x=0

|H0|2
[
cos2

(πx

a

)
+

k2a2

π2
sin2

(πx

a

)]
dx = a|H0|2

[
1 +

k2a2

π2

]

and the sum over all sides,

∮
|H|2dl = a|H0|2

[
3 +

k2a2

π2

]

With the result from c), P = a2

4
ka2ωµ

π2 |H0|2, we find

β =
√

1
2σµω

3π2 + k2a2

ka3
= 3.32× 10−3m−1

The injected power is the result of c) times exp(2β × 1000m) = 765,

P = 78.8kW

Alternate method to find β: use Eq. 8.63 with the information in the next two paragraphs.

e): Since there are two degenerate TE-modes, we use the result of Problem 8.13a. Since the modes will be
normalized during the process, we can use just

ψ10 = cos
(πx

a

)
and ψ01 = cos

(πy

a

)



The normalization integrals are then

N10 = N01 =
∫

A

|ψany|2da =
a2

2

The deformation is δ = a/16 on the lower side for a/2 < x < a and on the upper side for 0 < x < a/2.
Otherwise δ = 0. Also, since we are dealing with TE-modes, all single-normal-derivative terms in the
equation for ∆ij are zero. On the lower side,

ψ10 = cos
(πx

a

)
and ψ01 = 1 and

∂2ψ10

∂n2
=

∂2ψ10

∂y2

∣∣∣∣
y=0

= 0 and
∂2ψ01

∂n2
=

∂2ψ01

∂y2

∣∣∣∣
y=0

= −π2

a2

On the upper side,

ψ10 = cos
(πx

a

)
and ψ01 = −1 and

∂2ψ10

∂n2
=

∂2ψ10

∂(−y)2

∣∣∣∣
y=a

= 0 and
∂2ψ01

∂n2
=

∂2ψ01

∂(−y)2

∣∣∣∣
y=a

=
π2

a2

Thus,

∆10,10 =
∮

δ(x)ψ∗10
∂2ψ∗10
∂n2

dl = 0

∆01,10 =
∮

δ(x)ψ∗01
∂2ψ∗10
∂n2

dl = 0

∆01,01 =
∮

δ(x)ψ∗01
∂2ψ∗01
∂n2

dl = 2×
∫ a/2

x=0

a

16

(
−π2

a2

)
dx = −π2

16

∆10,01 =
∮

δ(x)ψ∗10
∂2ψ∗01
∂n2

dl = 2×
∫ a/2

x=0

a

16
π2

a2
cos

(πx

a

)
dx =

π2

8a

[a

π
sin

(πx

a

)]a/2

0
=

π

8

Thus, the equation to be solved is

(
xa2

2
π
8

0 xa2

2 − π2

16

)(
a10

a01

)
= 0

where we use x = γ2 − γ2
0 . The determinant is zero if x = 0 or x = π2

8a2 . The perturbed solutions then are

For x = 0: a10 = 1 and a01 = 0. This is the original unperturbed TE10-mode. Since x = 0, this mode also
retains its unperturbed values of γ and k, and it is k = k0 = 49.61m−1. The electric-field polarization is
φ = π/2 (i.e. polarized in y-direction).

For x = π2

8a2 : Since x = γ2 − γ2
0 = k2

0 − k2 = π2

8a2 , the perturbed k-value is

k =

√
k2
0 −

π2

8a2
= 44.36m−1

Inserting x = π2

8a2 into the above equation for a10 and a01, we find a10 = − 2
π a01 and an unnormalized

perturbed solution ψ = − 2
π ψ10 + ψ01. Noting further that the unperturbed field modes differ by a minus in

the electric-field components, we see that for an electric field of 1 in some unit in the x-direction, coming
from the TE01-part, the electric field in the y direction, coming from the TE10-part, is + 2

π . The polarization
angle thus is φ = arctan

(
2
π

)
= +32o.



2. Problem 20 Points (8 on a, 6 on b, 6 on c)

a): Use Eqs. 9.167f with ρ = 0, M = 0 and

J(x) =
I0

a
δ(r − a)δ(cos θ)φ̂

No proof required, but to see that this is correct integrate over a plane of constant φ:

∫ ∞

r=0

φ̂ · J(x)rdθdr =
∫ ∞

r=0

I0r

a
δ(r − a)δ(cos θ)dθdr = I0

Since in the present case r · J, it is aE(l,m)=0.

To determine aM (l, m), we require ∇ · (r× J):

r× J =
I0

a
δ(r − a)δ(cos θ)r(r̂× φ̂) = −I0δ(r − a)δ(cos θ)θ̂

∇ · (r× J) = − I0

r sin θ

∂

∂θ
(sin θδ(r − a)δ(cos θ))

= −I0δ(r − a)
r sin θ

(
cos θδ(cos θ) + sin θ

∂

∂θ
δ(cos θ)

)

= −I0δ(r − a)
r sin θ

(
0 + sin θ

(
d cos θ

dθ

)
d

d cos θ
δ(cos θ)

)

= −I0δ(r − a)
r

δ(cos θ)
d

d cos θ
sin θ

This is to be read as a distribution, i.e. the derivative needs to be applied on all θ-dependent functions that
will show up under the integral. Thus, following Eq. 9.168 of Jackson

aM (l, m) = − I0k
2

i
√

l(l + 1)

∫
δ(r − a)

r
jl(kr)δ(cos θ)

d

d cos θ
(sin θY ∗

lm(θ, φ)) r2d cos θdφ

=
iI0k

2ajl(ka)√
l(l + 1)

∫
δ(cos θ)

d

d cos θ
(sin θY ∗

lm(θ, φ)) d cos θdφ

=
iI0k

2ajl(ka)√
l(l + 1)

2πδm,0

∫
δ(cos θ)

d

d cos θ
(sin θY ∗

l0(θ, 0)) d cos θ

=
iI0k

2ajl(ka)√
l(l + 1)

2πδm,0

∫
δ(cos θ)

d

d cos θ
(sin θY ∗

l0(θ, 0)) d cos θ

Denoting x = cos θ, we have

aM (l, m) =
iI0k

2ajl(ka)√
l(l + 1)

2πδm,0

√
2l + 1

4π

∫ 1

−1

δ(x)
d

dx

(√
1− x2Pl(x)

)
dx

=
iI0k

2ajl(ka)
√

π(2l + 1)√
l(l + 1)

δm,0

∫ 1

−1

δ(x)
(

d

dx
Pl(x)

)
dx

=
iI0k

2ajl(ka)
√

π(2l + 1)√
l(l + 1)

δm,0
d

dx
Pl(x)

∣∣∣∣
x=0

(1)



It is aM (l,m) 6= 0 for m = 0 and l odd.

b): Copy Eqs. 9.149, 9.150 and 9.155 of Jackson for our case,

H =
exp(ikr − iωt)

kr

∑

l odd

(−i)l+1aM (l, 0)n̂×Xl,0

E = Z0H× n̂

dP

dΩ
=

Z0

2k2

∣∣∣∣∣
∑

l odd

(−i)l+1aM (l, 0)Xl,0

∣∣∣∣∣

2

P =
Z0

2k2

∑

l odd

|aM (l, 0)|2

Note n̂ = r̂.

c): Use result of a) and Eq. 9.88, which says j1(ka) = ka
3 for ka → 0. Also, d

dxP1(x)
∣∣
x=0

= 1. Thus,

aM (1, 0) =
iI0k

3a2
√

π√
6

and the power
P =

Z0

2k2
|aM (1, 0)|2 =

Z0I
2
0k4a4π

12

Also, using Table 9.1 of Jackson, it is

dP

dΩ
=

Z0I
2
0k4a4π

12
3
8π

sin2 θ

The magnetic field

H =
exp(ikr − iωt)

kr
(−i)2aM (1, 0)n̂×X1,0

= −exp(ikr − iωt)
kr

iI0k
3a2

√
π√

6
r̂× L̂

1√
2
Y1,0

= −exp(ikr − iωt)
kr

iI0k
3a2

√
π√

12
r̂×

[
1
i

(
φ̂

∂

∂θ
− θ̂

1
sin θ

∂

∂φ

)]√
3
4π

cos θ

=
exp(ikr − iωt)

kr

I0k
3a2

4
(r̂× φ̂) sin θ

= −θ̂
exp(ikr − iωt)

r

I0k
2a2

4
sin θ

and the electric field

E = Z0H× r̂ = φ̂
exp(ikr − iωt)

r

Z0I0k
2a2

4
sin θ

Alternate method 1: Use Eqs. 9.171f of Jackson.

Alternate method 2: Use results of Chapter 9.3 of Jackson for a magnetic dipole m = I0a
2πẑ.



3. Problem 20 Points (7 on a, 7 on b, 6 on c)

a): The spheres have µ = µ0 and ε = εrε0 with εr = n2 = 2.25. Since further the radius of the spheres
a = d/2 = 10nm ¿ λ = 632nm, this is a case of electric-dipole scattering. We can use Eq. 10.6 of Jackson,

dσ

dΩ
= k4a6

(
εr − 1
εr + 2

)2

|ε∗ · ε0|2

with incident polarization ε0 = x̂ =




1
0
0


. Two orthonormal vectors of linear exit polarization are

ε1 = θ̂ =




cos θ cosφ
cos θ sin φ
− sin θ


 and ε2 = φ̂ =



− sinφ
cosφ

0




For the given incident polarization, the differential scattering cross section summed over the exit polarizations
is

dσ

dΩ
= k4a6

(
εr − 1
εr + 2

)2 [
|ε∗1 · ε0|2 + |ε∗2 · ε0|2

]

= k4a6

(
εr − 1
εr + 2

)2 [
cos2 θ cos2 φ + sin2 φ

]

= 8.45× 10−22 m2

sterad

[
cos2 θ cos2 φ + sin2 φ

]

The angular part can be written in various other forms, such as cos2 θ cos2 φ+sin2 φ = cos2 θ+sin2 θ sin2 φ =
1− sin2 θ cos2 φ.

b): Use ε0 = 1√
2
(x̂− iy) = 1√

2




1
−i
0


. Then,

|ε∗1 · ε0|2 =
1
2
(cos θ cosφ− i cos θ sin φ)(cos θ cos φ + i cos θ sin φ) =

1
2

cos2 θ

|ε∗2 · ε0|2 =
1
2
(− sin φ− i cos φ)(− sin φ + i cos φ) =

1
2

dσ

dΩ
= k4a6

(
εr − 1
εr + 2

)2 [
|ε∗1 · ε0|2 + |ε∗2 · ε0|2

]
= k4a6

(
εr − 1
εr + 2

)2 1
2

[
1 + cos2 θ

]

= 8.45× 10−22 m2

sterad

1
2

[
1 + cos2 θ

]

Alternate method for a and b: With incident field E0 = E0ε0, the induced dipole is

p = 4πε0

(
εr − 1
εr + 2

)
a3E0ε0



In the far-field, it produces a scattered electric field

Esc = Z0
ck2

4π

exp(ikr)
r

[(r̂× p)× r̂] = Z0ε0ca
3E0k

2

(
εr − 1
εr + 2

)
exp(ikr)

r
[(r̂× ε0)× r̂]

The scattering cross section, summed over exit polarizations, is

dσ

dΩ
=

r2E∗sc ·Esc

E∗0 ·E0

= k4a6

(
εr − 1
εr + 2

)2

|(r̂× ε0)× r̂|2

= k4a6

(
εr − 1
εr + 2

)2

|r̂× ε0|2

Insert r̂ =




sin θ cos φ
sin θ sinφ

cos θ


 and the incident polarizations ε0 to obtain the already given results.

c): Since the laser beam illuminates only a small volume and the diode is quite far away, all scattering
detected occurs at a practically constant scattering angle θ. Also, due to the disorder of the scatterers, the
scattering is incoherent (i.e. scattering cross sections of multiple particles just add up).

Since the scattering is linear, we may assume an incident beam with constant intensity Iin over an area
Ain = Pin/Iin. There, Pin is the incident power.

The number of illuminated particles is NP = Aindn, where d is the layer thickness and n the particle volume
density.

The detector covers a solid angle ∆Ω = ∆A
r2 , where ∆A is the detector area and r the detector distance.

The detected power ∆P then is

∆P =
dσ

dΩ
× (Iin NP ∆Ω)

=
dσ

dΩ
×

(
Pin

Ain
Ain dn

∆A

r2

)

=
dσ

dΩ
×

(
Pin d n

∆A

r2

)

Inserting the result of b) for dσ
dΩ , and the given numbers (Pin = 10W , d = 10−3mm, n = 1017m−3,

∆A = 10−4m−2, and r = 0.5m), we find

∆P = 1.70× 10−10W (1 + cos2 θ)


