Instructor: Jianming Qian

Due date: April 4, 2002

Physics 506: Solutions to Assignment #10

Problem 14.4
(a) The instantaneous power radiated per unit solid angle for 5 < 1 is given by Eq. (14.20):
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The average power in the unit of (e2a?w3)/(8mc?) is plotted below. The positive vertical axis defines § = 0.
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The problem is azimuthal symmetric and therefore, the differential power radiated is independent of ¢. Without
loosing generality, we can choose 7t in the x — 2z plane. In this case, i = cos 8% + sin 62 and
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Alternate approach
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The (dP/dQ) (in (e?wqiR?)/(8mc?) unit) vs @ is plotted below, again § = 0 is defined by the upper vertical axis.

Problem 14.5
a) For a non-relativistic particle with charge ze, the power radiated is
F lativisti ticle with ch th diated 1

where v is the acceleration, given by
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Assuming the amount of energy radiated is small, we have approximately
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Note that the particle has zero velocity at the position of the closest approach. The total energy radiated is the time
integral of power radiated
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(b) For a Coulomb potential,

the energy radiated is
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The differential power in particle’s own time is given by Eq. (14.38):
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where Oy = awg/c. Here I used Gy instead of § for the constant to avoid confusions.
(b) The average power
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c) For non-relativistic case, 8y < 1, therefore
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In the relativistic case, 8y — 1,
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As fy approaches 1, (dP/dQ?) develops peaks close to 8 = 0, 7. The (dP/dQ) distribution for the non-relativistic case
(Bo = 0) is the same as Prob. 14.4(a). For fy = 0.9, {(dP/dS?) is plotted below:

As [y increases, the four lobeds become narrower. The upper two are increasing clustered together, forming a strong
peak in the forward direction. Similarly, the lower two lobeds form a strong peak in the backward direction.

Problem 14.13
From Eq. (14.67), we have
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If the charge is in periodic motion with period 7', the integrand almost repeat itself (except for a phase factor) each
period. We can thus break the integral over time into a sum of terms, times a common integral over one cycle. If the
charge has actually been in periodic motion always, the total radiated energy is infinite. To keep track of things and
to avoid square of delta functions, we make the integral from —NT to +NT where N is a large integer, thus

N-1 (n+1)T L .
Av= > / dt 7 x (7t x Gt/
N nT

n——

Changing variables to t' = ¢ — n" and using the factor that #(¢t) and E(t) are periodic, we have
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Therefore,

d21 e2w?
Tod( = 120 |Sn (W) Ao (w)[?

Multiplying both sides of Sy by ¢“T/2, we get
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where c.c. is a short-hand for complex conjugate. This is a standard diffraction pattern function that peaks up strongly
at w = (2n/T)m if N is large. Here m is an integer. Let wl = 2mm + 2 and assume x < 1, then
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Thus for frequencies near w = m(27/T) = mwy, the frequency spectrum is sharply peaked. Evidently as N — oo the
frequency spectrum becomes a series of lines at w = mwy. The integral over frequency of |Sy|? near w = muwy is
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The radiated energy in each line is proportional to N. Since the total time interval is 2NT" = 47N /wyg, the power
radiated in each harmonic is
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Alternate Approach
The energy distribution is given by Eq. (14.70):
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Expanding the integrand in Fourier series
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The above equation shows that the frequency spectrum is discrete. Integrating over w, the total energy radiated per
unit solid angle is
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To facilitate the power calculation, we replace the time interval (—co,00) with (—N7T, NT) where N is a large integer
and T = 27 /wy is the period. In this case, the energy radiated per unit solid angle in the time interval 2N7T is
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The average power per unit solid angle is therefore
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