Instructor: Jianming Qian

Due date: March 14, 2002
Physics 506: Solutions to Assignment #7

Problem 11.6

Let v(t) be the instantaneous velocity of the rocket with respect to the earth. At a given time ¢, consider the rocket’s
motion in an inertial frame moving with (constant) velocity v(t) with respect to the earth.

(a) The rocket’s velocity in this frame is v’ = 0, while its acceleration is a"‘ = g and a| = 0. Then by the Problem

11.5, we know that an observer in the earth’s frame would see the rocket to have an acceleration

v(t)?
o =(1-—3 )*2g
such an observer measures the acceleration by using
dv(t) v(t)® 1372
a) = dl :(1— 2 )/g

Therefore v(t) can be solved from the above differential equation. The initial condition for the 1st part of the journey
(the five years of acceleration) is v(0) = 0:
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The relationship between dt in the earth’s frame and dt’ in the instantaneous rest frame is
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But in the instantaneous rest frame, w/ = 0, which leads to dr’ = 0. Therefore dt = ~(v)dt’. Thus
dt dt t t
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For the first leg of the journey

3-10% . 3-10°x3-107

t 10 sinh( 0

)R 75 x (3-107) s = 75 years
The total journey takes four times of the first leg:

tiotal ~ 4 X 75 ~ 300 years

Therefore, the year on earth is 2400 when the twin returns to visit his/her sibling’s grave.
(b) The furtherest distance the rocket ship traveled
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Problem 11.8
(a) In frame K’ in which the fluid is at rest, the frequency and wave vector are related by ck’ = n(w’)w’ because only
in this frame can we define the index of refraction. We assume the speed of light in the fluid is

Applying velocity addition formula for parallel velocities, we get

v+, c {1+ﬂn(w’)}

1+ vvy, /c? - n(w’) |1+ 8/n(w’)

vau:

where 0 = v/c. Expanding in powers of 3 and keeping only first order in 3:

u%ﬁJrv{l—%}Jro(ﬂzc)

To find the correction for dispersion, we must relate w’ to the lab frequency w. We now note that both w’/c and ¥’
are the time and space components of a 4-vector (because the phase of a wave is a Lorentz invariant). Thus

! !
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Since ¢k’ = w'n(w’), solving w and ck in terms of w', we get
w=y(1+8n(w)w',  ck=y(nw)+B)w

In passing, we note that the lab phase velocity is

- ()

k nw')
just as we found above from the velocity addition formula. And the index of refraction for the moving fluid can be

defined as

_k n(w)+p
m0w) = e = T Bt

It depends not only on the frequency, but also on the speed of the fluid.
To the first order in 3, we have

Wwrw(l-P0n(w) = W-ws-—Fwn(w)

Taylor expanding n(w') at w’' = w:

() = nw) + T ! — ) + O —w)?)
=n(w) — ﬁwn(w)g—z +O(F%) ~ n(w) {1 - ﬂwg—n}

Thus




@ {1 - dZEJW)}

Similarly the velocity formula for the antiparallel case is

w dn(w)}

= m“’{“nw ") dw

Problem 11.13
(a) In the wire’s rest frame K’, the wire has a constant linear charge density ¢o. In this frame, the electric and
magnetic fields in Gaussian units are given by (in cylindrical coordinates):

g=2P:  F_g
T

Here we used r instead of p to denote the polar radius to avoid confusion (see below). Lorentz-transform along the

=

z—axis using the inverse of Eq. (11.149) to get the fields in the lab frame (5 = %2):
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Note that the radial (r) and angular (¢) lengths (coordinates) are the same in both frames since the relative motion
is in the z—direction.
(b) In the rest frame K’, the current and charge densities are:

7 — 1 9o
'] _07 p - 27TT6(T)

Note that it is easy to verify that the charge per unit length is gg. Since (¢p/, J! ) transform as a four-vector, we have
in the lab frame:

‘= 2B5(r)

cp=7(cp' +BJ)=ncp' = p=np = 5y

i.e., the line charge density in the lab frame is vqg, consistent with the Lorentz contraction of the wire in z—direction.

Jo = (I + Bep) =Bep’ = JT= %5(7“)2 = pvi = pif
This is the current density of a line current ygyv.
(¢) An observer in the laboratory frame sees a line charge of density vgo and a line current ygov. Therefore, the
electric and magnetic fields can be readily calculated from Gauss’s and Ampere’s laws to be:

_ 2v8qo ,
7 v =—
r c 2mr r

in agreement with those of (a).

Problem 11.16
(a) Since the equation

1 o
a_ - By — Z B
J CQ(UB'] W c Us

is a covariant equation, it is valid in all inertial {frames if it is valid in one of them. In the rest frame of the conducting
medium, U® = (c,0), so that in this frame we have

1
a=0: cp—c—z(c-cp)c:%FOO-c = cp—cp=0
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a=1: J—c—2(c-cp)-0:EF ¢ = J'=o0FE

The equation gives Ohm’s law in the rest frame and therefore valid in all frames.
(b) If the medium has a velocity @ = ¢@, then U® = ~¢(1, ) and the equation becomes to:

c - O o e - e
a=0: Cp—(vcg) (Cp—ﬁ-J)ZEFOlUizwﬁ-E = Yep-B-J)=cp—roB-E
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Here we have used the following identity:
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and similar ones for Zj F% 37 and Zj E3337, Therefore
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(¢) Since (cp, j) is a four-vector,
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Thus Ohm’s law generalizes to:
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