Instructor: Jianming Qian

Due date: February 7, 2002
Physics 506: Solutions to Assignment #4

Problem 9.12
Since 3 is small and the charge distribution is uniform, we can approximate the charge distribution by
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where (&) = Oy coswt. Since the problem is spherical symmetric, all mutipole moments with m # () vanish. Therefore,
the electric multipole moments (here we have ignored any currents on the sphere) are:
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Thus, the only time-varying non-vanishing moment is the electric dipole moment (£ = 2):

QR3A(1) = QR{Re{Boe™ ™"}

3 3
o= 55

For the long wavelength approximation,
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The angular distribution of the radiation
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Problem 9.16

Let the z—axis along the antenna so that the antenna spans between —d/2 < z < d/2. Therefore, the current density
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J(7) = 21 sin(kz)d(z)d(y) for |z| < 3

where kd = 27. The vector potential from Eq. (9.8):
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Here we have used the following integral
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The magnetic field is given by
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(a) The angular distribution of radiated power is
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which is plotted below (in the unit of ZoI?/8). The § = 0 direction is vertically up.
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(b) The total power of radiation
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Problem 9.17
The charge distribution can be calculated from the continuity equation:
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(a) Exact calculations:
The dipole moment
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The magnetic dipole moment
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The only non-vanishing quadrupole moments are Q11,22 and Q33.
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Long wavelength limit:
In the long wavelength limit, we have
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The electric quadrupole moment
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Not surprising, the exact calculation and the long wavelength approximation yield very different values for the electric
quadrupole moment tensor in this case. With kd = 2m, the approximation does not work.
(b) The angular power of radiation (of the exact calculation of the quadrupole moments):
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The left plot below shows graphically the angular distribution (in the unit of ZoI?/8) of the quadrupole radiation. The
right plot compares the shape of this distribution (thin line) with that (thick line) of the exact calculation scaled up
by a factor of 157.9/93.6 = 1.69 (see the discussion below). Evidently, apart from an overestimation of the radiation
power, the angular distribution of the quadrupole agrees reasonablly well with that of the exact calculation.
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(¢) The total power of the exact calculation
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The corresponding radiation resistance:
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The total power of the long wavelength approximation:
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Obviously the long wavelength approximation does not work in this case. In Problem 9.16, we have R.,q = 93.4 Ohms
from the exact calculation without expansion. There is a puzzle here that the radiation by the electric dipole mode
is greater than the sum of all modes. This is because the leading term in the expansion (electric £ = 2 term or E2) is
not a good approximation whenever the dimensions of the source are comparable to or larger than a wavelength.

Problem 9.22 (Only TE modes are worked out)
The general solutions to the Maxwell equations are given by Fq. (9.122):
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where ag(¢,m) and ap(£,m) are the electric and magnetic multipoles respectively. fy(kr) and ge(kr) are linear
combinations of spherical Bessel functions jy(kr) and ng(kr). Furthermore, the fields must be finite at r = 0. Thus,
we have fo(kr) = je(kr) and ge(kr) = jo(kr).
The fields of the TE modes are given by Eq. (9.116):
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The ¢ = 0 case leads to null fields everywhere inside the cavity. The corresponding components are
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Similarly the TM fields are given by Eq. (9.118):
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(a) At r = a, the electric field must be perpendicular to the conducting surface and there must be no normal component

of the magnetic field. Applying this boundary condition to the TE modes leads to jg(ka) = 0. Let xz, be the nt®

root of jz(x), the characteristic frequencies wi ¥ are therefore given by
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For the TM modes, we have
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Let Yz, be the n'" root of &(xj,(x))/Ox, the characteristic frequencies are then given by
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In both cases, the characteristic frequencies are independent of m (degenerate in m), as result of the ¢p—symmetry.
We proceed with TE modes only.
(b) The four lowest roots of je(x) = 0 (¢ # 0) are 11 = 4.5,221 = 5.8,231 = 6.85 and x12 = 7.64. Thus the

corresponding wavelengths
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(c) The lowest TE mode corresponds to £ = 1,n = 1, independent of m. In this case, k1 1 = )\21—”1 = 4.5a. The fields
for m = ( are (apart from normalization constants):
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