Instructor: Jianming Qian

Due date: March 21, 2002
Physics 506: Solutions to Assignment #38

Problem 11.23
(a) Let P and P’ be 4-vectors in lab and CM frame respectively, then we have

PL=(Buas), Pr=(m2,0);  Pi=(Bp), Py=(8,—p)
From the energy and momentum conservation in the lab frame, we have
Pr+Po=Ps+Py
The total center-of-mass energy W:
W2 = (B + B3)° = (B + 5)° = (¢, +p'5)* = (Py + P5)°
Now note (P} +P5)? is Lorentz invariant, we have
W2 = (P +Py)? = (P, +P2)? =P;+P3+2P, - Py =m3 +mi + 2my )
To find p’, we consider (P1 - P2)? and (P] - P3)*:

(P1 - P2)? = (maB1)? = m3(p} +mi) = mip] +mim3

(P1-P3)* = (B By +p*)? = EP B + 2B Byp”™ +p*
= @2 +mi)(p* +m3) + 2B Eyp™ +p™*

="+ (m? + m%)p’2 + 2B EYp" 4+ m2m3

=p*(2p” +mi +mj + 2B, B3) +mimj

= p(EP? + 2B\ E}) + EF) + mimj = p*W? + mim;
From Lorentz invariance, we have
m
(Pr-P2)’ = (P-PY)° = mipl=p"W? =p'=32m
Since pj and ];’ are in the same direction (the Lorentz boost is along 7 ), therefore we have
P = TP
wh
(b) We can also obtain ];’ from Lorentz transformation of p} (and —];’ from p3):

p, - ’ch(Pl - ﬁcmEl); (—P,) - ’ch(_ﬁcmmZ)

Thus
P1 3 1
(611 i ——— = cm — T o
ﬁ mo + Fy ﬁ mo + Fy
Nem = 1 . mo + . mo + _m2+E1
o V1=, Vme+E)2—p?  /m3+2maEy + B —p? w



(¢) In the non-relativistic limit,

E1%m1+p—1
2m1
therefore,
W2 a2 m?2 +m3 + 2maf +p%) (ma +m2)? + 22p2 = (my +my)? {1+ — 2 i
My +m mo(my + =——) = (my +m —pi=(mi+m —_— 2
1 2 21 oy 1 2 mlpl 1 2 (1 + m2)2 My
W = (my +mg) 1+Lﬁfv(m + mg) 1+Li =m —b—mg—b—&i
! (my +m2)? my ! (my +mg)? 2my ! mi + ma 2my
Similarly
7:@]7,\, m2 7
w my -+ ms !
7 P P
ﬁcm: ! !

These are the familiar Galilean relativity results.

Problem 12.2
(a) Let the Lagrangian L be replaced by

d
L'=L+ =0z,
T (@a),
with €2 a given function of the coordinates x,. The action is
ta ta t2 g0
A:/ Ldt, = A :/ Ldt+/ —rdi = A+ Q) I
t t1 t1

The variation of the action
A =0A+6 {Q(xa) ’éf} =30A

since, under the variation of the paths z4(), the end points remain fixed. Thus L and I/ yield the same Euler-Lagrange
equations.

(b)

The Lagrangian is

Under the gauge transformation, we have

A A—VA, ®od+-—

2 B A
L—>L’:—mc21/1—u—2+EU-A—e<I>—EU-VA—Ea—
c c c c Ot

then



2
N PRI N S S RS _ g _edh
= —mc“4/1 62+CuA ed c{6t+u V}A—L i

Since ' and L differ by a total time derivative, the two Lagrangians yield the same equations of motion.

Problem 12.3
(a) The motion of the particle is governed by Eq. (11.144):

dU« e
- — _ RaBry
dr me A

Rewriting it in terms of familiar particle velocity ¥ and electric field E, we get

3

dye) _vep - d00) _reg
dr me dr m

Let n = el//me, v)| and v be the parallel and perpendicular components of the velocity defined by the direction of
E, we then have the following three equations:
d(ve) el d(yv)  eB d(yvy)

= (o) = nlvo)); (ve) = n(ye); o

= — = 0
dr me dr me

Integrating the last equation, yv, = constant = «, thus v; = /. From the remaining equations, we get
d? 9

ﬁ('yv“) =n"(yv;) = v = Asinh(nr) + B cosh(n7)

d2

W(fyc) = n%(ve) =  vc= Acosh(nr) + Bsinh(nr)

where A and B are the same constants due to d(~yv)/dr = n(7yc). The three constants (o, A, B) are determined by
the initial condition:

At7=0: v, =0, vi=1 = a = vy, A =r"9c, B=0
where 9 = 1/4/1 — v3/c2. Thus
vo

¥ =r"ocosh(nr); v =ctanh(nr); v, = m

These results are expressed in terms of proper time. To rewrite them as functions of laboratory time, we use df = vdr:
T T ’YO
t= / ~ydT = / ~o cosh(nT)dr = — sinh(nT)
0 0 n

Thus

. nt 3 nt 1
sinh(nT) = —; cosh(nT) = /1 +n%t2/4%; tanh(nT)= ——n=—"u—
(n7) o () = /L +7*t* /75 (n7) o VT

Therefore,

n%t2 net Vg
Y=/l + 53 Y E——e——, V| = —————
V' % T VIR V3I+n* /v

In the coordinate system defined by E = F2 and v) = vo&, and assuming the particle is at the origin initially, the the
position of the particle is given by

t t
dt it
@ :/ v dt = Y0 = 270 ginn (1)
0

o VI+722/2 1 Yo




t t
tdt 2¢2
Z:/det:/L:m 1+77_2_1
0 0 Yo 1+n*2/ng 0
We could also get this result by starging from the Lorentz force equations (11.124):
dp _
d_ft’ =eE=els = p=po+ebt:
In perpendicular and parallel components:
p| =ymy =elt, pL =ymvL = ymug
Then
ek
YU = —t=mnct, YvL =Yoo
m

SO

2,2 22,2
2 2 2 2 22,2 2 _ Yovy +ncet /2 | 252
e = VA + c“t = VPV = ————F— Or == + t
Y YoVo TN 2+ P Y Yo T
(b) To determine the trajectory, we need to eliminate the time-dependence. From the equation for z, we get

4
" _ sinh( e )
0 n ~Yovo

Pluggint it into the equation for z:

For t < ~vo/n (i.e. © < 1/ (vov0)):

1
cosh(PE) o1+ L2 )2
YoVo 2 vovo
2.2
Yo, N°x 1 ne
PR (5 m) = 5o

It is a parabola. In terms of ¢, we have

For t > ~o/n:

Eliminating t:
c
Z R ﬂe"""")/ovo
2n
The particle moves along the z—direction with a speed close to ¢ with a gradual motion in z—direction.

Problem 12.6(b)

Choose the z—axis along the E and B direction, we have

F®=_p, F*?=_B, F?' = B, F*° = [, and the rest F** =0



The equation:

auve
& pas
dr  me Us
becomes
dauye ekl dut eB duy? eB du? ekl
=, =m0, =0, =0
dr me dr me dr me dr me

Use U* = dx®/dr, the above four equations become to:

d?(ct) eFd: d?x eBdy d%y eBdx  d*2  eE d(ct)

dr2 ~ medr’ dr2 medr’ dr?  medr’ dr? me dr
Integrating over proper time,

d(et) el dx eB dy eB dz elF

= — _ = — _ = —— — = —(ct
dr me” dr me? dr me?  dr mc(c)

Let w = eB/mc and 1 = eF//mec, the second and the third equations are coupled and can be solved

% = —w?z, % =Wy = x ~sin(wr), y ~ cos(wr) (by an appropriate choice of axes)
Note that
xz—f —o—y;l—i =0 = 2?-+y?=constant = A’R?
Therefore,

x=ARsin¢, y=ARcos¢ with ¢ =wr

Also
d? d?(ct
d—z =12, % =n*(ct) =  ze~cosh(nr), ct~sinh(nr)
T T
Note that
d d 2 _ 242 2
cta(ct) —zaz:0 =  2° —c“t* = constant = B
Therefore,

E
z = Beosh(pp), ct = Bsinh(pp) with pp=n7 (p= g = E)
Thus the position and velocity 4-vectors are

% = (ct,x,y, z) = (Bsinh(pg), AR sin ¢, AR cos ¢, B cosh(pg))

U® = (nz,wy, —wz,n{ct)) = (Bncosh(pd), AwR cos ¢, —Aw R sin ¢, By sinh(p¢))
From U*U, = ¢2, we get
B%1? cosh?(pg) — A%w?R? cos? g — A2W2R?sin? ¢ — B ?sinh?(pg) = 2 =  B2p? —w2AZR? = 2

which leads to

2
\/c2+w2A2R2 24— :§\/1+A2

Therefore we have

xr=ARsin¢, y=ARcos¢, 2= %\/ 1+ A2 cosh(pg), ct= %\/ 1+ A2 sinh(pg)



