Instructor: Jianming Qian

Due date: January 17, 2001
Physics 506: Solutions to Assignment #1

Problem 8.2
(a) In a cylindrical coordinate system with the z—axis along the axes of the two circular cylinders, the TEM mode
has fields that vary as €"(*2=9%)  where k2 = w?/v? = pew?. Therefore, the magnetic field has the form

E — B¢$ei(kZ7wt)
where By is determined from Ampere’s law:
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The electric field in between the two cylinders can be determined from the magnetic field through the Ampere-
Maxwell’s equation:
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Here k = k2 = w, /li€z is the wave vector. The average Poynting vector

The average power flow along the line (neglecting the wires) is
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(b) The average power loss per unit area on the cylinder surfaces is given by FEq. (8.15):
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The average power loss per unit length along the z—direction
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From (a), one has

Plugging into dP/dz:




where

Integrating the above equation:
P(z) = Pye2?

(¢) The characteristic impedance Zy is the ratio between the voltage and the current.
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The current is given in (a) to be I = 2raye’*~w, The impedance is therefore

V 1 jp. b
Zo=T =57\ 3

(d) Series resistance per unit length can be calculated from the average power loss per unit length:
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The inductance per unit length can be calculated from the energy per unit length in the magnetic field:
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Note that inside the conductors,
ﬁ(g,t) = ﬁ“e*(lfi)é/éefiwt _ H(éef(ki)g/aefmqg

where £ is the distance into the conductor and ﬁH is the tangential component of the field at the surface. Assuming
d < a,
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The inductance per unit length
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Problem 8.5
(a) Since the guide is a single conductor, there can be no TEM modes. To determine TM and TE modes, we choose

a rectangular coordinate system with its origin at the middle of the side v/2a such that the three sides are described
by x = a/2, y = —a/2, and y = z. For TM modes, the ¢» = 0 on the surfaces. The boundary conditions at © = a/2
and y = —a/2 can be met by choosing ¥y, (2, y) to have the form:

mm(z— a/2) ) Sin(mr(y + a/2)) N Sin(mw(x + a/2))sin(n7r(y + a/2))

Vi (:I:, y) ~ Sin( a a a a



The boundary condition at ¥(z,¥)|,—, = 0 can be met by requiring ¢ (z,y) be antisymmetric under the exchange of
T <y, le.,

mw(xo—bb— a/2) ) Sin(mr(y ;}— a/2)) B Sin(mr(a: 2— a/2) ) Sin(mw(y;— a/2)

Y(z,y) ~ sin( )

Thus, the TM waves have the general form

Yy =30 A {Sin(m(m 92 ) (P2 (TE L 02 (T ¥ 0/2) )}

a a a a

m=1n=1

Here A, = 0 for m = n (¢ vanishes if m = n). The corresponding cutoff frequencies are given by Eq. (8.44):

T /m?2 n? 7 )
Wimn = ——A\ —5 + — = —Vm? +n? with m #nand m,n >0
VeV a2 a? a

The dominant mode is m=1,n=2orm=2,n=1:
e
Wiz =wz 1= —V5H
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For TE waves, 0¢/0n = 0 on the surfaces. The conditions at @ = /2 and y = —a/2 are met by choosing ¥y (z,y)
to have the form:

mm(x +a/2 nm(y +a/2
Yn (T, Y) ~ cos( ( / ))cos( (v +a/ ))
a a
The boundary condition at y = x is met if 9¢/In
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is antisymmetric under exchange x <+ ¥, i.e.;

1 {W(%y) B aw(w,y)} 1 {aw(y,w‘) B aw(y,w‘)}
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Thus ¢(x,y) must be symmetric under « <+ y. Therefore, the TE waves have the general form

Y(x,y) = Z Apon {COS(mﬂ-(x;_ a/2))c0s(nﬂ-(y : a/2)) _)_COS(M) COS(M)}

The corresponding cutofl frequencies are

T /m? n? 7 .
Winn = ——=A{| —5 + —5 = —Vm? +n? with and m,n >0
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Though m and n can be equal in this case, however they cannot be both zero. Otherwise, H, = % is a constant,
which leads to vanishing H; and FE,. Consequently there is no wave. The dominant mode is therefore m = 1,n =0
orm=0,n=1:

e
W1,0 = wWo1 = ;

Problem 8.8
(a) Assume h < a, §;,0, < @, the electric and magnetic fields are approximately
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where wy = (/£(£ +1)c/a is the resonance frequency and wy(r) is the solution of the radial equation (8.103). The
average energy stored in the fields
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Note that
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Plugging into U:

U— 2rhu?(a) £(¢ + 1)
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(Note that the average energies in electric and magnetic fields are equal). The average power loss is given by Eq.

(8.15):
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Therefore,
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The Schumann resonance ) value:
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independent of £ and N = 2.

(b) For the lowest Schumann resonance,
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(c) With o; & 1075 (Qm) !, §; & 49 km is not small compared with k & 100 km. However, the fields vary over
distances of order a, at least for £ = 1. Thus, the approximation of Section 8.1 are valid, at least for small ¢ values.
When a/f becomes of order of §;, these approximations won’t be adequate. In this case, it occurs at £ ~ 100.

Problem 8.18
(a) For TM modes, we have

(Vi+%)E.x =0, and E.\|c=0
where the subscript C denotes boundary contour. Applying Green’s theorem in two dimension:

2 28\ da — oy _ 00
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where the — on the right side is due to the difference in the normal definition. With ¢ = E, and ¥ = E,,,, we gets

OF, OE
/S (EAViE,, — B, V2E,\)da = — }’,{3 (Ez,\a—n“ - Ewa—n)dﬁ

The line integrals on the right-hand side vanish due to the boundary conditions. Therefore,
0= [ (BaVEEy— B V2BAa = [ {Bo(=9EBe) = B =R Eor)} da = (5 =) [ BoaPyda
For the case vy # 7., the integral must vanish:
/ EnE,da=0
s

Same argument applies to H,» and H;,, except in this case, the line integrals vanishes due to boundary conditions

0H,
on

lc=0



(b) Proof for TM modes only
Applying Green’s first identity

0
[@6vt0 V6 Viwyin = § 63 ar
with ¢ = E,5 and ¥ = E,, for the TM modes, we get
/ (EANVZE,, +ViF, - ViE,,)da= — }’4 Ez,\ﬁEwdE
s C 67’7/

Again, the line integral on the right vanishes due to the boundary condition. V; [, and VZE, are given by Egs. (8.33,
8.34):

vtzEzA = —’)@\Ezm vtzEzu = _’hZLEzp,
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where E and E_ju are transverse electric fields. The Green’s first identify becomes

B [ = A o[ s A
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Assuming non-degeneracy and from (a), we obtain:

By properly normalizing E}\, we have

/ E\ - E,da =6, (8.131)
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Now turn into the relations of magnetic fields. Note that
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Using Green’s first identity with ¢ = £, and ¥ = E,,,, we have
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Thus,
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where Zy = ky/(ew) is the wave impedance.
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