1 Problem 13.9

Using Jackson’s equation 13.50 and the fact that n = y/e(w) yields:
1

cosf,. = % (1)

Now, we know that K = (v — 1)mc®> = ( L _ 1) mec?. Solving this expression for j3

/1-p2
vV EK? 4+ 2Kmc?
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yields:
b=
Plugging this into equation (1) yields:
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Jackson’s equation 13.48 gives us:

dE 22e? 1

A single energy quantum (i.e., a photon) radiated will have energy hw. Thus, the above
equation can be rewritten to express the number of quanta emitted:
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For z = 1 (since we’re dealing with isolated particles), n = 1.5, and Ay, = 4000 A, this

equation becomes:
dN 1 1
o = = 283 (1 .5%2) cm (3)

Plugging K = 1 MeV and mc? = 0.511 MeV into equation (2) yields B = 0.941. Plugging
this into equation (3) yields dN/dx = 149 photons per cm.

Plugging K = 500 MeV and mc? = 938 MeV into equation (2) yields 8 = 0.758. Plugging
this into equation (3) yields dN/dx = 64 photons per cm.

Plugging K = 5000 MeV and mc* = 938 MeV into equation (2) yields 8 = 0.987. Plugging
this into equation (3) yields dN/dx = 154 photons per cm.
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2 Problem 14.4

2.1 Part a
Z = acos (wot) 2
¥ = —awp sin (wot) 2
— f= — 20 gin (wot) 2

c

5 aw

f=———=cos (wot) 2
c

The observer is located at the zenith angle 6 from the z-axis. Thus, the angle between n

and 5 is 6. Equation 14.20 becomes:
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The time average of cos?(wot) is 52 [7'“" cos?(wot) = 5. Thus, the time average of dP/dS)

is:
dP e2a’wg
< d_Q > sin 9

The polar plot of this is shown below, where 28 “ has been set to unity:



The total time-averaged power radiated can be determined by integrating the above expres-
sion over solid angle:
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2.2 Part b

T = Rcos (wot) & + Rsin (wot) ¥

U = Ruwy sin (wot) T — Rwy cos (wol) §
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c c

Because this system has azimuthal symmetry (when averaged over a full period, which is

what we will do in the next step), we can rotate the coordinate system such that the observer
lies in the x-z plane. Thus,

n=-cosfz +sinfz



Note: here, 0 is not the zenith angle, but the angle between the observer’s
position and the z-y plane. Equation 14.20 becomes:

dP_ e?

e U
" .
e? Y N
= 4_ cos 0 0 sin 0
2
e ° cos (wot) —22Bgin (wet) 0O
2 2 2 2
= — | — 2 sin (wot) cos 2 — —2 cos (wyt) cos B — —2 sin (wot) sin O
dme | ¢ c &
R2 2, 4
— 46 (;JO [sin® (wot) (cos® @ + sin* ) + cos” (wot) cos™ 6]
e
R*wl -
=3 ¢ [sin” (wot) + cos® (wot) cos® 6]
The time average of cos®(wpt) is 22 OQW/WO cos?(wot) = 5 while the time average of sin®(wot)
is “0 02 /0 gin? (wot) = &. Thus, the time average of dP/dS2 is:
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The polar plot of this is shown below, where R2 0 has been set to unity:




The total time-averaged power radiated can be determined by integrating the above expres-

sion over solid angle:
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3 Problem 14.10

3.1 Part a

Suppose the velocity is in the z-direction. Then, 5 = [z and B’ = 52, where 6 is defined as
follows:

0 t<0
p=q o <t <At
0 t> At

The observer is located at the zenith angle 6 from the z-axis. Thus, the angle between n

and E is #. Equation 14.38 (we use this equation since we’re not given that the motion is
nonrelativistic) becomes:

€ 32 sin% 0
~ Awe(1 - Beosh)’

Integrating the above expression with respect to time will yield dE/dS):
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Letting u = 3, du = Bdt and setting the remaining /3 term to its piecewise definition yields:

E 2 0 — B /A
d — ¢ 1 / ( ﬁlnlt/ t)s du
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3.2 Partb

For v > 1, we only need to consider small values of §. We note that 1 — Jcos# occurs quite
frequently in our expression for dFE/dQ; this can be approximated as:

1 1
N+ =62
22 + 2

2
(1 + 5+ %92) {1 + (# + %02) ] sin 0
init

Substituting this into the result from part a yields:
dE e? 32
dQ " 16mwcAt S
(532 +5¢2)

Expanding and replacing v20% with & yields:

dE PR, 167 4+ 49" + 8y + 4829 + 840 + 292 + 6672 + 6€272 + 8¢S + 26342 ey
— m
dQ  16mwcAt (1+ &) ——

~02

Note that the v® term will dominate. Hence,

dE _ *fhy  169° 52
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dQ " 16meAt (1+ 5)4

Letting 0% = £y 2 - .
dE . € Pt 7

dQ " meAt (1+ 5)4

§
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We note that d) = 2msin0df ~ 270df. Letting 6 = /&y ' and df = 1£71/2y71, we find

that dQ) = w2 Substituting this for dQ in the above expression yields:

init

dEN€2 2 74 5
d¢ ~ At (1+¢)

VA0 =/ (€/?)
= V(&) /v
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T
Plugging this into equation (4) yields:

V(0% = V2/y

Integrating our expression for dE/d§ with respect to £ yields an expression for E:
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And differentiating this with respect to time gives the power:
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which agrees with equation 14.43.
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4 Problem 21

4.1 Part a

Using the Coulomb force law:

ke
=
v2 kZe?
m— =
R R2
, v kZe?
“o = R2 T mR3

Plugging this value for wy into the result from problem 14.4.b yields:
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3¢
_2Rze2 kZer\”
33 <m—R3>
252 7%e®

3m2R4c3

P =

According to the problem statement, Bohr’s correspondence principle states that P =
hwo/T = 1/17 = P/hwy:
1P
T hw
2k27%eb

- 5
3m2RAc3 hw (5)

Now, we use the Rydberg formula to find an expression for wy in terms of n (in order to get
our answer in the desired form):

2m 9 1
Wy = 7 = 27TRRde |:—A <ﬁ>:|
Where A (1) = - — =, But since n; and ny are close, A (&) = % () = —&. Hence:

2 1

Z2
Wy = 47 RRde

where Rgyq is the Rydberg constant: Rgyq = 88”;—?;0. Substituting this into the above expres-
0

sion yields:
Z’me*

Wy = 4m——
8z2h3en?

8



Also, the allowed orbital radius is:

R
AT
Substituting the above two equations into equation (5) and simplifying yields:
1 7% m
— = 32k°n’e}
T AT

1\’ 2¢2 [ Ze2\ ' me? 1
= 16k* | — s | T—) — =
(47?5[)) 03 e ( he > h nd
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~ 3 ke \ he honp

Converting to Gaussian units, we let £ = 1. Moreover, the Rydberg constant does not have
a ¢ in the denominator, which means that we need to divide the above expression by an
overall factor of ¢. Thus, 1/7 becomes:

1 2 (Ze Yme? 1
r  3he\ he h nb

4.2 Part b

Setting Z = 1 and substituting in the values of the physical constants, the result from part
a becomes:

1 1
—%1)(1010—5
T n

— 7a1x107°

‘ n ‘ classical ‘ quantum
20— 1s | 232x10%|1.6x107°
4f —+3d|4]1.0x1077|7.3x1078
6h —5g | 6| 7.8 x 1077 | 6.1 x 10~°
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