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Disclaimer: The purpose of these notes is to provide you with a general list of topics that were
covered in class. The notes are not a substitute for reading the textbook, nor is it guaranteed that
they are complete. If you find typos, please report them to me.

1 1/6/2004

The microscopic and macroscopic Maxwell equations have been reviewed. From the microscopic equations
and under the assumptions of harmonic time dependence of the fields, well-defined ε(ω) and µ(ω), and
source-free conditions, one obtains a homogeneous Helmholtz equation for the fields,

(∇2 + εµω2
)(

E
B

)
= 0 (1)

Under the absence of boundary conditions, the equation can be solved,yielding, in cartesian coordinates,
plane-wave solutions (see Chapter 7 of Jackson). Some basic properties have been reviewed. In particular,
the dispersion relation of plane waves is

k =
ω

c
=
√

εµω = nω (2)

with refractive index n. There is no cutoff frequency, i.e. under absence of polarization damping plane
waves with real k exist down to arbitrarily low frequency.

We consider a waveguide geometry invariant under translation in z-direction. The waveguide walls form
a set of at least one closed surface S in the xy-plane. Using the ansatz

E(x, y, z, t) = E(x, y) exp(ikz − iωt)

- same for B -, with k ∈ C. Writing ∇ := ∇t + ∂
∂z we find after insertion into Eq. 1

(∇2
t + εµω2 − k2

)(
E
B

)
= 0 (3)
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with boundary conditions on S tbd. Note that this equation is for the fields that depend only on x and
y. Also, for the different solutions we will find dispersion relations k(ω) that are generally different from
the free-space one (Eq. 2).

We decompose E(x, y) into transverse and longitudinal parts, E(x, y) = ẑEz(x, y)+Et(x, y). For harmonic
fields in a linear medium it follows then from the homogeneous Maxwell’s equations

Et(x, y) =
i

εµω2 − k2
[k∇tEz(x, y)− ωẑ×∇tBz(x, y)]

Bt(x, y) =
i

εµω2 − k2
[k∇tBz(x, y) + ωεµẑ×∇tEz(x, y)] (4)

where k is positive or negative, dependent of the direction of propagation. Thus, the transverse fields
follow from the longitudinal ones unless εµω2 − k2 = 0.

In the case εµω2 − k2 = 0 it is Ez = Bz = 0, and a special treatment is necessary to find the transverse
fields. The electric field of these so-called TEM-modes follows from a 2D potential satisfying the 2D
Laplace equation,

∇2
t Φ(x, y) = 0

with boundary conditions Φ(x, y)|Si = Vi = const. on the involved waveguide surfaces Si. From the
solution for Φ(x, y) one obtains Et = −∇tΦ(x, y) and Bt(x, y) = ±√εµẑ × Et. Thus, TEM-modes
are largely found by solving equations analogous to those of 2D electrostatic problems. The dispersion
relation of TEM modes is identical to that of plane waves (k =

√
εµω; see Eq. 2).

Notes. Various examples of waveguide geometries supporting TEM modes have been discussed. One
requires at least two non-connected surfaces for TEM-modes to exist.

2 1/8/2004

We consider the case of infinite conductivity of the walls, σ →∞. The skin depth then is δ =
√

2
σµcω → 0,

and the boundary conditions are simple.

The remaining solutions fall into two types. For TE-modes, it is Ez = 0, Bz 6= 0 and ∂Bz

∂n |S = 0. For
TM-modes, it is Bz = 0, Ez 6= 0 and ∂Ez

∂n |S = 0. In both cases, the equation to be solved is

(∇2
t + µεω2 − k2)ψ(x, y) = 0

where ψ = Bz or ψ = Ez, respectively. Note the different respective boundary conditions.

Generic solution method. For both types of modes, the problem is an eigenvalue problem. Defining
γ2 = µεω2 − k2, the equation
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(∇2
t + γ2)ψ(x, y) = 0

with boundary conditions has a countable number of solutions (spectrum) γ2
i with eigenfunctions ψi

(mode index i). Note that all γ2
i > 0. For given ω, the dispersion relations have the universal form

k(ω) =
√

εµ

√
ω2 − γ2

i

εµ
=:
√

εµ
√

ω2 − ω2
i

with cutoff frequencies ωi (which depend on the details of the problem). For ω > ωi, the respective mode
propagates because it has real k, while for ω < ωi k is imaginary, and the mode is exponentially damped
(hence the name cutoff frequency). The phase velocity

vP =
ω

ki
> c

and the group velocity

vG =
dω

dki
=

c2

vP
< c .

Following Eq. 4, the transverse components of the fields with non-vanishing z-components are

Et = ± iki

γ2
i

∇tEz,i

for TM-waves, and

Ht = ± iki

γ2
i

∇tHz,i

for TE-waves. There, the ±-signs correspond to z-dependences exp(±ikz).

The transverse components of the fields with vanishing z-components are then

Ht =
±1
Z

ẑ×Et with Z =
ki

εω

for TM-modes, and

Et = ∓Zẑ×Ht with Z =
µω

ki

for TE-modes. Note the different values of the wave impedance Z. The upper signs correspond to
z-dependences exp(ikz), and the lower to exp(−ikz).

The example of a waveguide with rectangular cross section has been discussed (read in textbook).
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The above equations present a recipe for the dispersion relations and fields of all modes - TEM, TE, TM
- in guides with linear filling and infinite wall conductivity.

Energy flow. Inserting the fields in terms of ψ = Bz or ψ = Ez for TE- and TM-modes, respectively,
one can determine the complex Poynting vector S = 1

2E×H∗, and integrate its z-component to obtain
the transmitted power (for real ε, µ),

P =
∫

A

ẑ · Sda =
1

2
√

εµ

(
ω

ωi

)2
√

1− ω2
i

ω2

{
ε
µ

} ∫

A

ψ∗i ψida (5)

The upper line is for TM , the lower for TE-modes. With regard to units, note the physical difference of
the ψ in the two cases.

Similarly, the linear energy density U =
∫

uda with u = 1
4 (εE ·E∗ + µH ·H∗ is found to be

U =
1
2

(
ω

ωi

)2 {
ε
µ

} ∫

A

ψ∗i ψida (6)

The upper line is for TM , the lower for TE-modes. The group velocity equals vG = P
U , which can be

confirmed to be identical with dω
dki

(as required).

3 1/13/2004

The effect of waveguide losses due to Ohm-type resistance is that in all fields

ki → ki + iβi + αi

with real α and β. We first calculate the damping constant β, and then the change in wavenumber, α.

It has been sketched how to derive an expression for the power loss per unit area,

dP

da
=

1
2σδ

∣∣H||
∣∣2

with wall conductivity σ, skin depth δ and surface H-field H||, which - according to the boundary
conditions for H - for reasonably well conducting walls is parallel to the surface. It follows that

∣∣∣∣
dP

dz

∣∣∣∣ =
1

2σδ

∮

C

∣∣H||
∣∣2 dl

where the line integral goes over the waveguide surface in the xy-plane. This can be worked out in terms
of the mode function of the longitudinal field, ψ. The result,
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∣∣∣∣
dP

dz

∣∣∣∣ =
1

2σδ

(
ω

ωi

)2 ∮

C





1
µ2ω2

i

∣∣∣∂ψ
∂n

∣∣∣
2

1
εµω2

i

(
1− ω2

i

ω2

)
|n̂×∇tψ|2 + ω2

i

ω2 |ψ|2



 dl

(upper line for TM, lower for TE) and Eq. 5 can be used to calculate βi,

βi =
∣∣∣∣
dP

dz

∣∣∣∣
1

2P
.

It is noted that generally losses are large close to cutoff frequencies. This fact has an intuitive explanation,
which was discussed.

To obtain the loss-induced change α in the (real) wavenumber, one follows a procedure known as per-
turbation of boundary conditions. The method was explained in some detail for a non-degenerate TM
mode. In that case, express the magnetic field on the guide surface, H||, in terms of ψ = Ez. In the case
of σ < ∞ the field H|| is accompanied by an electric field

E|| = ẑEz,wall =
√

µcω

2σ
(1− i)(n̂×H||)

(n̂ is inward and µc is the permeability of the wall), which for TM-modes is in the ẑ-direction and thus
represents a perturbation of the boundary condition for ψ (which for σ = ∞ reads ψ = 0 on S). Explicitly,
the perturbed eigenvalue problem for eigenvalue γ2 and perturbed function ψ is

(∇2
t + γ2)ψ = 0 with ψ = Ez,wall = (1 + i)

µcδ

2µ

(
ω

ωi

)2 ∣∣∣∣
∂ψ0

∂n

∣∣∣∣
S

with unperturbed cutoff frequency ωi and unperturbed modefunction ψ0. It has been explained why,
with the use of Green’s II theorem and assuming k À α, it follows α = β.

Result, valid for non-degenerate TE and TM modes and k À α: α = β, i.e. to obtain the
wavenumber change α it is sufficient to calculate β (which does not require the consideration of perturbed
B/C).

4 1/15/2004

Cavities. The only type of cavity that’s of interest for this course is obtained by taking a waveguide of
the geometry described so far (invariance under z-translation), and closing it off with conducting walls
that are transverse to the z-axis and have a distance d. As a result of the additional boundary conditions
on the ends, each waveguide mode i can exist in the cavity only at certain resonance frequencies ωip,
where p is an integer counting index.

A straightforward consideration of the boundary conditions on the end faces leads to:
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TM-modes (infinite conductivity):

Guide solutions are labeled as before. ψ = Ez. Solutions of the eigenvalue problem satisfy (∇2
t +γ2

i )ψi = 0
with ψi = 0 on the surface S in the xy-plane. Then, in the corresponding cavity problem it is:

Ez = ψi(x, y) cos
(pπ

d
z
)

Et = − pπ

dγ2
i

(∇tψi(x, y)) sin
(pπ

d
z
)

Ht =
iεωipπ

γ2
i

(ẑ×∇tψi(x, y)) cos
(pπ

d
z
)

ωip =
1√
εµ

√
γ2

i +
(pπ

d

)2

(7)

There, p = 0, 1, 2, ....

TE-modes (infinite conductivity):

Guide solutions are labeled as before. ψ = Hz. Solutions of the eigenvalue problem satisfy (∇2
t +γ2

i )ψi = 0
with ∂ψi

∂n = 0 on the surface S in the xy-plane. Then, in the corresponding cavity problem it is:

Hz = ψi(x, y) sin
(pπ

d
z
)

Ht =
pπ

dγ2
i

(∇tψi(x, y)) cos
(pπ

d
z
)

Et = − iµωipπ

γ2
i

(ẑ×∇tψi(x, y)) cos
(pπ

d
z
)

ωip =
1√
εµ

√
γ2

i +
(pπ

d

)2

(8)

There, p = 1, 2, .... Note that TE and TM-modes start counting with different values of p.

The spatial and temporal phase relations of the transverse and the longitudinal fields were explained.

As an example, the modes of a cylindrical resonator were discussed. The field patterns of the fundamental
modes TEmnp = TE111 and TMmnp = TM010 were shown. Polarization degeneracy was discussed using
the example of the TE111-modes.

Reading: Chapter 8.7 of Jackson.

Q-values: If a well-defined cavity mode of frequency ω is “filled” with energy and subsequently left
alone, the energy decays due to Ohm-type losses in the walls following a law

U(t) = U0 exp(−ωt/Q)

This equation can be used as a definition of the cavity Q-factor. Any non-zero field component at any
point in the cavity follows a law
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E(t) = E0 exp(−i(ω + ∆ω)t) exp(−ωt/2Q) ,

where ∆ω accounts for a (negative) shift of the cavity-mode resonance frequency from its value ω that
one would find for perfectly conducting walls. The power spectrum I(ω′) of the decaying cavity field is
proportional to the square of the magnitude of the Fourier transform of the field. It is a Lorentz curve
with FWHM-value ω

Q centered at ω + ∆ω,

I(ω′) ∝ 1

(ω′ − ω −∆ω)2 +
(

ω
2Q

)2 .

If one were to excite the cavity with a monochromatic drive of frequency ω′ and fixed amplitude, the
steady-state intracavity energy as a fucntion of ω′ would follow that curve.

To calculate Q, use Q = ω U

| dU
dt | . One finds by integration of the complex energy density u = ε

4E ·E∗ +
µ
4 H ·H∗ over the cavity volume that

U =
d

4

{
ε
µ

} [
1 +

(
pπ

γid

)2
] ∫

A

|ψ|2da

For TM modes with p=0, the result must be multiplied with 2.

The loss power is obtained from a surface integral over the ideal (loss-free) magnetic field H, which is
parallel to the surface:

∣∣∣∣
dU

dt

∣∣∣∣ =
1

2σδ

[∫

mantle+both ends

|H|2da

]

The result for Q can be written in the form

Q =
µ

µc

V

Stotδ
Gi

with a unit-less, mode-dependent G-factor, cavity volume V and total cavity surface Stot. The result has
been discussed.

One further finds from a calculation involving a variation of boundary conditions that in practical cases
(Q >> 1) the frequency shift

∆ω = − ω

2Q

Thus, to find the frequency shift it suffices to calculate the Q-value from the idealized cavity field, and
there is no variation of boundary conditions required.

Side discussion of TEM modes, the 2D Laplace equation, analytic functions, conformal mapping and
other numerical methods (relaxation, finite-element method).
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Note. In the equations involving Q and ∆ω, it is assumed that all damping and shifts originate in Ohm-
heating. In particular, we neglect coupling losses and frequency shifts due to radiation leaking out trough
cavity holes, which are of practical importance and often dominate cavity losses and frequency shifts.

A formalism can be developed that allows one to describe any harmonic waveguide field as a superposition
of normalized field modes multiplied with amplitude coefficients. To find unique amplitude coefficients
it is sufficient to specify the transverse fields Et and Ht at an arbitrary location of z (longitudinal field
components are not needed; they would actually over-specify the problem).

It is of great interest to determine the amplitude coefficients of the normalized field modes due to a
localized harmonic current density J(x) exp(−iωt) in the guide. A simple expression that allows this
calculation based on the E-field of the normalized modes exists. Similarly, it is possible to calculate the
amplitude coefficients of the normalized field modes due to localized apertures in the waveguide walls;
there, to obtain a unique result it is sufficient to know the total tangential electric field in the apertures.

Reading. Chapter 8.12 of Jackson. This material is also covered by the last homework problem on
Chapter 8.
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