Physics 505 Electricity and Magnetism Fall 2003
Prof. G. Raithel

Problem Set 5

Problem 1 7 Points

A cylindrical surface with radius a and infinite length in the z-direction carries a surface potential V' (z, ¢).
Find a series solution for the potential anywhere outside the cylinder. Provide an integral solution for the

expansion coefficients. There are no charges in the volume of interest.

The Laplace equation A®(p, z, ¢) = 0 is to be solved for the boundary condition V' (z, ¢) on a cylinder with

radius @ and inﬁnite 1ength in both the +2- and —z-directions. We seek the solution in the exterior volume
. 2 2

p > a. Using A = 8p2 +1 ; ap + p%aaw + 25 and ®(p,z,¢) = R(p)Q(¢)Z(z), we find
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where in the second line we have divided by RQZ and used ’ for derivatives. Since we are looking for

solutions that are orthogonal on the cylinder mantle, the z-dependence is chosen to be of the form
7" =-k*Z = Z(2)=exp(ikz) withkreal.
It follows
Q"
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Considering the fact that the potential must be a single-valued function of ¢, and that there are no boundaries

in the ¢-coordinate, the solution for @) is
Q" =-m?’Q = Q(¢) =exp(img) withminteger.
The resultant equation for R,
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is solved by the modified Bessel functions I, (|k|p) and K,,(|k|p). Since we are interested in the exterior
volume, we only use the solution that is regular for p — oo; that solution is K,,(|k|p) (see Egs. 3.98-3.104
in the textbook). Note that K, (x) = K_,,(x).

To summarize, | ®(p, z,¢0) = S0 [ An(k) K, (Jk|p) exp(ikz) exp(ime) dk
m oo Jk=—o0

To find the coefficient functions A,,(k), we consider this expression on the boundary,
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multiply with exp(—ik’z) exp(—im'¢) and integrate over the cylinder mantle,

/ 00/4, ¢) exp(—ik'z) exp(—im'¢) dzd¢ =

Z /700 m(|k|a) /oo/¢ exp(ikz) exp(img) exp(—ik'z) exp(—im'¢)dzdp dk <

m=—0o0

/00 / V(z,¢) exp(—ik'z) exp(—im'¢) dz dp =
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/ / V(z,¢) exp(—ik'z) exp(—im'¢)dzdd = A (k) K (K |a) 47

Thus, it is | Ay, (k) = W,(\k\a) = (;5220 V(z,¢) exp(—ikz) exp(—im¢) dz d¢




Problem 3.17 9 Points
To demonstrate the general method, this problem is worked out in a verbose manner.

Preparation: We use the completeness (=closure) relations
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where the last one is obtained by treating Eq. 3.108 in the textbook with the replacements explained after
Eq. 3.112. In doubt, for any complete set of functions with given orthogonality relation the appropriate
closure relation can be obtained using the procedure outlined in class. The procedure is demonstrated again

in the following:

Completeness of the set {J,(kp), k € [0,00[,m fixed } = any f(p) can be expanded as

oo

flp) = A(K)Jm (kp)dk (2)

k=0

Obtain expansion coefficient function A(k) using the orthogonality relation Eq. 3.108 of the textbook:
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=0 k=0

To simplify writing in what follows, swap primes from £ to p:

Aw =1 [ io F () )0 d?

Insert into Eq. 2:

f(o) = /k Tk / ) T T )
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From the last line, it is obvious that
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a): Obtain given expansion of Green’s function.

Step 1: Write down Equation for Green’s function with §-function in cylindrical coordinates,

AG(x,x) = —Arnd(x — x) = —47r5(pp_,p/)5(¢ —¢)8(z— ')

Step 2: On right side, use completeness relations for two out of the three §-functions. From the given result,

we suspect that we need to use the completeness relations for §(z — z’) and 6(¢ — ¢'):

AG(x,x) = _% > exp(—im¢') exp(img) sin (nT/) sin (%) 5('0,0_/"/)

m=—oo n=1
AG(x,x) = mimi {_i exp(—im¢') sin (””;) 5(”/),”/)} exp(ime) sin (%) (3)

Step 3: On left side, expand the Green’s function using the orthogonal function sets that have also been used

in Step 2. Note that x’ only enters as a parameter of the calculation; A acts on x.

AGEx) =AY D7 exp(ime) sin (“ ) Ann(plps 2 9')

m=—oon=1

Step 4: Write Laplacian in the proper coordinates and take derivatives of the orthogonal functions:

A= 3 Y {Carg- m ”L”] Aol .0 fexptions) sin (") @)

m=—oo n=1

Step 5: Expansions in orthogonal sets of functions are unique. Thus, we can separately equate the co-

efficients of the exp(im¢) sin (%72) in Eq. 3 and Eq. 4. Dividing by exp(—im¢’) sin (””/) and using

L
D, = [% % p d% — m—; — "Z’;Q} as abbreviation for the involved linear differential operator in p, we find
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exp(—im¢’) sin (23 L o
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Step 6: Noticing that the expression in the curly brackets of the last equation can only depend on the

parameters of D, (which are m and n), on p and on p’, we define the reduced Green’s function

Amn(plp', 7', @)

(A
gmn(pap ) - exp(—im(b’) sin (nzz/)
and proceed to solve
1o o0 m? nn? 4 6(p—p
e e Tl gmn(p,p'):**(i,) (5)
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Inspection of Eq. 3.98ff of the textbook shows that the differential equation is the modified Bessel differ-
ential equation (except the o-function inhomogeneity), and that the linearly independent solutions of the
homogeneous equation are I,,(kp) and K., (kp), with k& = “*. In the domain p < p’ only I,,(kp) is regular,
while in the domain p > p’ only K,,(kp) is regular. Thus, for the reduced Green’s function to be regular,

symmetric in p and p’, and continuous at p = p’, it must be of the form

gmn(pa ;0,) = Clm(kp<) Km(kp>) )

with a constant C to be determined to match the inhomogeneity. Also, p< = min(p, p’) and p~ = max(p, p’).

Step 7: Find C. Integrating Eq. 5 from p’ — € to p’ 4+ € with € — 0 and dropping vanishing terms we find

d d 4
dfpgmn(p, P ) p=p+e — dfpgmn(p, P)lp=p— = L

The left side equals CkW [I,(z), Kyn(x)] with © = kp’ and the Wronski determinant W =
Ln(z) (LK (2)) — (10 (2)) Kin(z). The Wronsky determinant can be evaluated in the asymptotic re-

gion, where both I,,,(z) and K,,(x) have simple forms given in Eqs. 3.102ff of the textbook, leading to
W I (2), Km ()] = —1 (see Eq. 3.147 in textbook). We thus find

1 1 4
Ckr = (Ck— — — =
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and therfore C = %.

Step 8:

Going backward through all steps, the Green’s function expansion is assembled into the final result:

4
Imn (p7 P/) = E Im(kp<) Km(kp>) )

4 . . [ nnZ
Aol ) = & L lkp<) Ko(hps) exp(—imo) sm( i )



3 _ nm
and, using k = %,

nmz nm nm

G(x,x') = 7 i i exp(—img’) exp(img) sin <n7£z’> sin (T) Im(fp<) Km(fp>) ,q.e.d.

m=—oon=1

b:

Step 1: Write down Equation for Green’s function with é-function in cylindrical coordinates,

AG(x,x") = —4md(x — x') = _47T5(ppp) (0 —¢")o(z—2")

Step 2: Use completeness relations for 5(";,”/) and (¢ — ¢'):

AG(x,x") = =2 Z / exp(—im@’) exp(im@) Jp, (kp) Jo (kp")o(z — 2') k dk

m=—0o0

S / {2k exp(—imd’) J(kp')5(z — ')} exp(ime) J (kp) dk

m=—0o0

(6)

Step 3: Expand the Green’s function using the orthogonal function sets that have also been used in Step 2.

AG(x, %) AZ/ exp(im) I (kp) Ami (2107, 2/, &'k

m=—0o0

Step 4: Write Laplacian in the proper coordinates and take the obvious derivatives of the orthogonal func-

tions:
2
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The ordinary Bessel diff. equation reads [—— + = 6ppap} I (kp) = —k?J (kp), and thus:

Z /k L {lez —k ] Amk(ZIP’,Z’,d)} exp(imo) Jp (kp)dk

m=—0o0

Step 5: We equate coefficients in Egs. 6 and Eq. 7. Dividing by exp(—im¢’) J,,(kp') we find

L;i | { e ey ) = G )

Step 6: Noting that the expression in the curly brackets of the last equation can only depend on k, z and 2/,

we define the reduced Green’s function



Amk (2|P/a zl? ¢/)
xp(—im ) Jon (k)

gk(2,2") =
and proceed to solve

d2
L” - kﬂ gr(z,2') = =2k 6(2 — 2)
2

A reduced Green’s function that matches the boundary conditions at z = 0 and z = L, that is symmetric in

z and 2z’ and that is continuous at z = 2z’ must be of the form
gk(z,2") = C sinh(k z<)sinh(k (L — 2z5))
where the constant C needs to be determined to match the inhomogeneity at z = 2’. Also, 2z« = min(z, 2’)

and zs = max(z, ).

Step 7: Find C'. Integrating the differential equation for gx(z, 2’) from 2’ —€ to 2’ +€ with e — 0 and dropping

vanishing terms we find

d
agk(za z/)|Z=Z’+e - %Qk(za zl)|Z=Z’—6 = —2k

Direct calculation yields

d d
d—gk(z, 2 amrge — d—gk(z, Nozze = —kC [sinh(k2")cosh(k (L — 2~)) + cosh(kz") sinh(k (L — 25.))]
z z
= —kCsinh(kL)
and thus, with the equation before, C' = m

Step 8:

Going backward through all steps, the Greens function expansion is assembled into the final result

sinh(k z<) sinh(k (L — 25))
sinh(kL)

G(x,x') =2 Z /k—O exp(—imae’) exp(ime) Jp, (kp) Jo (kp') dk ,q.e.d.

m=—0o0



Problem 3.23 9 Points
Hint: Use Green’s function expansion techniques. For the second line, note Eq. 3.147.

We use the completeness relations

o0

56-¢) = — 3 exp(—img!) exp(imo)
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m+1 xmn)
a):
Step 1: Write down Equation for Green’s function with §-function in cylindrical coordinates,

AG(x,x') = —4rd(x — x') = —4r (s(”p”) (6 — ¢)o(z — 2')

Step 2: We use the completeness relations for 6(¢ — ¢’) and 6(”/)77’/) to write:

/

4 ! 1%
Z Z { m exp(—ime”) Jn (=) 0(z = 2 )} exp(im) Jon(@mn =) (9)

m=—oon=1

Step 3: Expansion of the Green’s function in exp(ime) Jy, (Zmn2):

p) Amn(z|pl>zlv¢/)

AG(x,x") = A Z Z exp(ime) J, (=

m=—oo n=1

Step 4: Apply Laplacian:

2 1 (9 (9 mn / / /

m=—oon=1

The ordinary Bessel differential equation reads, in the present case, [f— ———2} I (B2 p) =

— (Z=22)? J,, (222 ), and thus:

a

st = 30 3[4 - ()] Aunel ) | explime) 2n(220) (10

Step 5: We equate coefficients in Eqs. 9 and Eq. 10. Dividing by —W exp(—imq’) Jn, (kp') yields
- ’VT'L+1 mn



{dQ - (xmn)z} Grn(2,2) = 8(z — 2)

dz? a
with the reduced Green’s function

B a? an_;'_l(zmn) Amn(z‘plv Z/a d),)
4 exp(—=im@’) Jp, (2 p’)

gmn(z7 Z,) =

Step 6: A reduced Green’s function that matches the boundary conditions at z = 0 and z = L, that is

symmetric in z and 2’ and that is continuous at z = 2z’ must be of the form

LTm

Gmn(2,72") = C sinh(™ z.) sinh(xzn (L—25))

a

where the constant C needs to be determined to match the inhomogeneity at z = 2’. Also, z. = min(z, 2’)

and zs = max(z, ).

Step 7: Find C. Integrating the differential equation for g, (z,2’) from 2z’ — € to 2’ + ¢ with e — 0 and

dropping vanishing terms we find

?gmn('% Z/)|z:z/+e - 7gmn(zv ZI)‘z:z’fe =1

d d

Direct calculation similar to Problem 3.17 b) yields

a

C =" 1 TmnL
Ty Sinh(Fmes)

Step 8:

Going backward through all steps, the Greens function expansion is assembled into

sinh(#zme 2 ) sinh(#22 (L — 2))

Gl x) = % S Y exp(—imd) exp(ime) Jun (T2 p) ()

= a a T J2y 11 (Tmn) sinh(%)

The potential of a point charge ¢ at x’ follows from its charge density, p(x”) = ¢d(x” — x’), and

1
n 4meg

P(x,x’) / p(x"G(x,x")d*z" = a / S(x" — xG(x,x")d*z" = LG(X,X,)
v v

4meg TeEQ

Thus, with the above obtained G(x,x’) it is

Box) = 3 exp(-imd) explim) J (22 ) gy (P22 fy TS E) SR (L)

amey L~ a a Tomn Jﬁl_,_l(:rmn) sinh(%)

,q.e.d.



b):

Step 1: Write down Equation for Green’s function with é-function in cylindrical coordinates,

AG(x,x') = —4nd(x — /) = —47#5(0;,”/)5((;5 — ¢)5(z — 2')

Step 2: We use the completeness relations for (¢ — ¢’) and §(z — 2’) to write:

AG(x,x) = i i {_i exp(—im¢') sin (””;) 6<pp_/pl)}exp(imq§) sin(%) (11)

m=—ocon=1

Step 3: Expansion of the Green’s function in exp(img) sin (22 ):

L

AG(x,x') = A Z Z exp(ime) sin (%) Apmn(plp, 2, 0")

m=—oon=1

Step 4: Apply Laplacian:

sate)= 30 S [yl - (M) I ol ) | explims) sin ("F) (12

Step 5: We equate coefficients in Egs. 11 and Eq. 12, and divide by —% exp(—ima¢’) sin ("zzl). We find

2

Ld d oy m o1

for the reduced Green’s function

LA (plp'. 2, ¢")

nwz’ )

4 exp(—im¢’) sin (5

Imn (P, pl) =

Step 6: The differential equation for g,,, is the modified Bessel equation (except the inhomogeneity). Thus,
a reduced Green’s function that solves the homogeneous equation, is symmetric in p and p’, is continuous at

p = p’, is regular at p = 0 and is vanishing at p = a must be of the form
I, (%19) nw
mn ) — ]mnl ]mnl - LR (——
G (P, ') = C L (- p<) | Im (- p>) Hra (r>)

where the constant C needs to be determined to match the inhomogeneity at p = p’. Also, p< = min(p, p’)

and p> = max(p, p').

Step 7: Find C. Integrating the differential equation for gm,n(p,p’) from p’ — € to p’ + € with € — 0 and
dropping vanishing terms we find



d ) d ) 1
dpgmn(pap)|p:p’+e dpgmn(p,p)Ip:pue =

Straightforward calculation yields

, I, ( ) / /
1 = —Cp I ﬁ [ () K, (%) —Im(x)Km(@‘)b:%pf
C Im(vnga)

where in the second line Eq. 3.147 has been used.
Step 8:

Going backward through all steps, the Greens function expansion is assembled into

4 oo oo

)= 2 X {exp(imb) exp(—img’) sin (%> sin <m£z> I}:‘f:ﬂ?

m=—oon=1 L

[ (VK (F2) = Ko () L ()|

The potential of a point charge ¢ at x’ follows from ®(x,x') = -L-G(x,x’), leading to

4meg

b (x,x’) L7T60 ; z::l {exp(imQS) exp(—ima’) sin (%) sin (m;z’> ];nm((tzré;)

L

(T K (P2) = K (T I (P} aed

c):

The equation (A+A)® = 0 for the given boundary conditions has the following complete set of orthonormal

eigenfunctions (* see addendum below)

1 2 kmz V2 Tonn P
o mn — ~ — i — si m
k o exp(ima) \/; sin ( 7 ) Tt o) J, ( " )

Using the Bessel differential equation, it is seen that

10 0 1 02 02
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m?_ap,  (kn\'_m?) o
,02 a2 T p2 kmn
x2 k2
<_ (:;n - (L) (I)k:mn = _)\k:mn(bkmn ’

2
The eigenvalue Ay of the eigenfunction @y 18 Apms = 22 (’%’T)2 Increasing the number of indices
in Eq. 3.160 of the textbook and setting A = 0, we find

Gl i ii exp(im(¢ — ¢')) sin (kzz) sin (k’zz/) Im (x";"p) I (x’";p,)

m=—oon=1k=1 ((%)2 + (%)2) J72n+1(1’mn)

and for the potential ®(x,x’) of a point charge ¢ at x’ it follows from ®(x,x’) = - L-G(x,x’) that

4men

o0

B, ook (m(6 = 9) sin () sin (A5) T (2222) I (2222)
x,x')
“m, 2 2 (2" + (5)7) T2 ()

q.e.d.

Discussion. By the uniqueness theorem, all solutions must be identical. Therefore, some hard-to-come-by
sum rules can be extracted. The comparison of a) with c) yields a discrete Fourier series expansion of the

reduced Green’s function in z:

a sinh(#ze z_) sinh(®=e

Tmn sinh(—m"';"L)

) s () i (1)
L )2 o (k)2
e (F2) "+ ()

for 0<z2 <L and m=0,£1,£2,... and n=1,2,3,...

(L—25))

gmn(za Z/) =

The comparison of b) with ¢) yields a discrete Bessel series expansion of the radial reduced Green’s function:

NP> nwa NTP>

L) = KT (P22

nw
I’rn ( p< |: nﬁa

/ = =
gmn(pVP) - Im n7'ra
(xmkp) Jm (xnzk,p/)

= a2 Z ( ) n (T)2> J3n+1(33mk)

for 0<p,p'<a and m=0,£1,£2,... and n=1,23,..

Addendum. If not known or guessed from the statement of the problem, the eigenfunctions ® (and
corresponding eigenvalues \) of A® + A\ = 0 for the given boundary conditions are obtained as follows.
Writing ® = R(p)Q(4)Z(z) it is



0? 10 1 02 0?
Z P4 P4 P+ —D+\D
op? +'pap +_025¢2 NP
1 1 1 QII Zl/
—R'4+ =R +="4+=4+X =0
= +pR +p2Q+—Z+ :
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where in the second line we have divided by RQZ and used ’ for derivatives. To match the boundary

conditions at z = 0 and L, for the z-dependence we choose
Z(z) = sin (Tz) with k = 1,2, ...
Then, Z" /7 = — (’%)2, and it follows

2 "
P 1" P Q

Er\?
A= — =0
(7)1
Considering the fact that the eigenfunction must be single-valued functions of ¢, the solution for @ is

Q(¢) = exp(im¢) with minteger

Then, Q"”/Q = —m?, and the remaining equation for R,

A_<’W>2_mj
L P

is the standard Bessel equation (Eq. 3.75 in textbook) with k replaced by 4/ A — (’%)2 Since the eigenfunc-

tions must be regular at p = 0 and zero at p = a, the radial dependence is J,, (p\//\ — (kL”)2> with an

eigenvalue A such that

1
R//“F*R/"_
p

2 2 . . . .
Thus, Agmn = m(;g" + (kf“) , and the corresponding eigenfunction is

k mn
D = constant x exp(ime) sin <Zz> Im (:r ,0)
a

The normalization constant follow from [ ®F  (p, ¢, 2)Prmn(p, ¢, z) pdpdddz = 1 and Eq. 3.95 of the text-
book.



