Prof. G. Raithel

Problem Set 4

a): First, note that due to the the superposition principle the problem is equivalent to the sum of a constant potential $\frac{V_{1}+V_{2}}{2}$ and a problem of two half-cylinders on opposite potentials $\frac{V_{1}-V_{2}}{2}$ and $\frac{V_{2}-V_{1}}{2}$. Thus, we only need to consider the case of two half-cylinders on opposite potentials $V=\frac{V_{1}-V_{2}}{2}$ and $-V=\frac{V_{2}+V_{1}}{2}$. Assuming that $\phi=0$ corresponds to the middle of the half-cylinder on potential V, dropping diverging terms, and considering the symmetry of the problem, for our case Eq. 2.71 reads

$$
\begin{equation*}
\Phi(\rho, \phi)=\sum_{n=1}^{\infty} a_{n} \rho^{n} \cos (n \phi) \tag{1}
\end{equation*}
$$

To obtain the coefficients a_{n}, we write the potential on the surface $\rho=b$, multiply with $\cos \left(n^{\prime} \phi\right)$ and integrate over ϕ :

$$
\begin{equation*}
\int_{0}^{2 \pi} V(\phi) \cos \left(n^{\prime} \phi\right) d \phi=\sum_{n=1}^{\infty} a_{n} b^{n} \int_{0}^{2 \pi} \cos (n \phi) \cos \left(n^{\prime} \phi\right) d \phi=\sum_{n=1}^{\infty} a_{n} b^{n} \pi \delta_{n, n^{\prime}}=a_{n^{\prime}} b^{n^{\prime}} \pi \tag{2}
\end{equation*}
$$

Thus,
$a_{n}=\frac{V}{b^{n} \pi n}\left(\int_{-\pi / 2}^{\pi / 2} \cos (n \phi) d \phi-\int_{\pi / 2}^{(3 \pi) / 2} \cos (n \phi) d \phi\right)=\frac{4 V}{b^{n} \pi n} \sin \left(\frac{n \pi}{2}\right)=\frac{4 V}{b^{n} \pi n}\left\{\begin{array}{cl}0 & \text { n even } \\ (-1)^{(n+3) / 2} & , \quad \text { nodd }\end{array}\right.$
$a_{n}=\left\{\begin{array}{cll}0 & \text { n even } \\ -\mathrm{i} \frac{4 V}{b^{n} \pi n} \mathrm{i}^{n} & , & \text { n odd }\end{array}\right.$
and:

$$
\begin{equation*}
\Phi(\rho, \phi)=-\mathrm{i} \frac{4 V}{\pi} \sum_{n \text { odd }}^{\infty} \frac{1}{n}\left(\frac{\rho}{a}\right)^{n} \mathrm{i}^{n} \cos (n \phi)=-\mathrm{i} \frac{4 V}{\pi}\left(\mathrm{i} \operatorname{Im} \sum_{n \text { odd }}^{\infty} \frac{1}{n} Z^{n}\right) \quad \text { with } \quad Z=\mathrm{i} r \exp (\mathrm{i} \phi) \quad \text { and } \quad r=\frac{\rho}{a} \tag{4}
\end{equation*}
$$

Following the elaborations on p.74f of the textbook, it is $\sum_{n \text { odd }}^{\infty} \frac{1}{n} Z^{n}=\frac{1}{2} \ln \frac{1+Z}{1-Z}$, and $\operatorname{Im}\left(\ln \frac{1+Z}{1-Z}\right)$ equals the phase of $\frac{1+Z}{1-Z}$. Since we find $\frac{1+Z}{1-Z}=\frac{1-r^{2}+\mathrm{i} 2 r \cos (\phi)}{1+r^{2}+2 r \sin (\phi)}$ with $0 \leq r \leq 1$, the phase has a range $[-\pi / 2, \pi / 2]$ and is equal to $\tan ^{-1}\left(\frac{2 r \cos (\phi)}{1-r^{2}}\right)=\tan ^{-1}\left(\frac{2 \rho b \cos (\phi)}{b^{2}-\rho^{2}}\right)$. Thus,

$$
\begin{equation*}
\Phi(\rho, \phi)=-\mathrm{i} \frac{4 V}{\pi}\left(\frac{\mathrm{i}}{2} \tan ^{-1}\left(\frac{2 \rho b \cos (\phi)}{b^{2}-\rho^{2}}\right)\right)=\frac{2 V}{\pi} \tan ^{-1}\left(\frac{2 \rho b \cos (\phi)}{b^{2}-\rho^{2}}\right) \tag{5}
\end{equation*}
$$

Using $V=\frac{V_{1}-V_{2}}{2}$ and the superposition explained at the beginning, it is

$$
\begin{equation*}
\Phi(\rho, \phi)=\frac{V_{1}+V_{2}}{2}+\frac{V_{1}-V_{2}}{\pi} \tan ^{-1}\left(\frac{2 \rho b \cos (\phi)}{b^{2}-\rho^{2}}\right) \quad, \text { q.e.d. } \tag{6}
\end{equation*}
$$

It is noted that the result has the correct limit for $\rho \rightarrow b$: Writing $\rho=b-\epsilon$ with $\epsilon>0$, it is $\tan ^{-1}\left(\frac{2 \rho b \cos (\phi)}{b^{2}-\rho^{2}}\right)=$ $\tan ^{-1}\left(\frac{b \cos (\phi)}{\epsilon}\right)=\frac{\pi}{2} \times \operatorname{Sign}(\cos \phi)$, and

$$
\Phi(\rho, \phi)=\left\{\begin{array}{llc}
\frac{V_{1}+V_{2}}{2}+\frac{V_{1}-V_{2}}{V_{1}}=V_{1} & \text { for } & -\frac{\pi}{2}<\phi<\frac{\pi}{2} \tag{7}\\
\frac{V_{1}+V_{2}}{2}-\frac{V_{1}-V_{2}}{2}=V_{2} & \text { for } & \frac{\pi}{2}<\phi<\frac{3 \pi}{2}
\end{array}\right\} \text { and } \rho \rightarrow b .
$$

b): The charge density is $\sigma=\epsilon_{0} E_{\perp}=-\epsilon_{0} \frac{\partial \Phi}{\partial n}=+\left.\epsilon_{0} \frac{\partial \Phi}{\partial \rho}\right|_{\rho=b}$. Thus,

$$
\begin{align*}
\sigma(\phi) & =\left.\epsilon_{0} \frac{V_{1}-V_{2}}{\pi} \frac{1}{1+\left(\frac{2 \rho b \cos \phi}{b^{2}-\rho^{2}}\right)^{2}} \frac{\left(b^{2}-\rho^{2}\right) 2 b \cos \phi+4 \rho^{2} b \cos \phi}{\left(b^{2}-\rho^{2}\right)^{2}}\right|_{\rho=b} \\
& =\left.\epsilon_{0} \frac{V_{1}-V_{2}}{\pi} \frac{2 b \cos \phi\left(b^{2}+\rho^{2}\right)}{\left(b^{2}-\rho^{2}\right)^{2}+4 \rho^{2} b^{2} \cos ^{2} \phi}\right|_{\rho=b} \\
& =\epsilon_{0} \frac{V_{1}-V_{2}}{\pi} \frac{1}{b \cos \phi} \tag{8}
\end{align*}
$$

a): To simplify the calculation, we choose the origin such that the upper and lower walls are at $z= \pm a / 2$, and the other four are at $x=0$ or a and $y=0$ or a. We transform into the frame of the problem statement after the calculation.

For the given boundary conditions, the potential is of the form

$$
\begin{equation*}
\Phi(x, y, z)=\sum_{n, m=1}^{\infty} A_{n m} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{a}\right) \cosh \left(\gamma_{n m} z\right) \quad \text { where } \gamma_{n m}=\frac{\pi}{a} \sqrt{n^{2}+m^{2}} \tag{9}
\end{equation*}
$$

Thus, on the upper and lower surface it is

$$
\begin{align*}
& V \int_{0}^{a} \int_{0}^{a} \sin \left(\frac{n^{\prime} \pi x}{a}\right) \sin \left(\frac{m^{\prime} \pi y}{a}\right) d x d y= \\
= & \sum_{n, m=1}^{\infty} A_{n m} \cosh \left(\gamma_{n m} \frac{a}{2}\right) \int_{0}^{a} \int_{0}^{a} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{a}\right) \sin \left(\frac{n^{\prime} \pi x}{a}\right) \sin \left(\frac{m^{\prime} \pi y}{a}\right) d x d y \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
V \frac{a^{2}}{\pi^{2} n^{\prime} m^{\prime}}\left[\cos \frac{n^{\prime} \pi x}{a}\right]_{0}^{a}\left[\cos \frac{m^{\prime} \pi y}{a}\right]_{0}^{a} & =A_{n^{\prime} m^{\prime} \cosh \left(\gamma_{n^{\prime} m^{\prime}} \frac{a}{2}\right) \frac{a^{2}}{4}} \begin{array}{ll}
\frac{16 V}{\frac{1}{\pi^{2} n m \cosh \left(\frac{\pi}{2} \sqrt{n^{2}+m^{2}}\right)}}, & , \text { n and m both odd } \\
0 & , \\
\text { otherwise }
\end{array}
\end{align*}
$$

and, after transformation into the frame specified in the problem,

$$
\begin{equation*}
\Phi(x, y, z)=\sum_{n, m \text { odd }}^{\infty} \frac{16 V}{\pi^{2} n m \cosh \left(\frac{\pi}{2} \sqrt{n^{2}+m^{2}}\right)} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{a}\right) \cosh \left(\frac{\pi}{a} \sqrt{n^{2}+m^{2}}\left(z-\frac{a}{2}\right)\right) \tag{12}
\end{equation*}
$$

b): At the center of the cube

$$
\begin{align*}
\Phi\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right) & =\sum_{n, m \text { odd }}^{\infty} \frac{16 V}{\pi^{2} n m \cosh \left(\frac{\pi}{2} \sqrt{n^{2}+m^{2}}\right)} \sin \left(\frac{n \pi}{2}\right) \sin \left(\frac{m \pi}{2}\right) \\
& =\sum_{i, j=0}^{\infty} \frac{16 V(-1)^{i+j}}{\pi^{2}(2 i+1)(2 j+1) \cosh \left(\frac{\pi}{2} \sqrt{(2 i+1)^{2}+(2 j+1)^{2}}\right)} \tag{13}
\end{align*}
$$

To achieve an accuracy of three significant digits, it is:

(i, j)	$\frac{(-1)^{i+j}}{\pi^{2}(2 i+1)(2 j+1) \cosh \left(\frac{\pi}{2} \sqrt{(2 i+1)^{2}+(2 j+1)^{2}}\right)}$	Multiplicity	
$(0,0)$	+0.21438	$\times 1$	required
$(0,1)$	-0.00464	$\times 2$	required
$(1,1)$	0.00028	$\times 1$	required
$(2,0)$	0.00013	$\times 2$	required
$(2,1)$	-0.000007	$\times 2$	not required
$(3,0)$	-0.000004	$\times 2$	not required
\ldots			not required

and $\Phi\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)=\frac{16 V}{\pi^{2}} \times 0.20564=0.333371 V$. According to Problem 2.28 , the exact result must be $\Phi\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)=\frac{1}{3} V$. We see that only four terms of the expansion approach the exact result with a relative accuracy of order 10^{-4}.
c): On the upper face, it is $\sigma=\epsilon_{0} E_{\perp}=-\epsilon_{0} \frac{\partial \Phi}{\partial n}=+\left.\epsilon_{0} \frac{\partial \Phi}{\partial z}\right|_{z=a / 2}$, i.e.

$$
\begin{equation*}
\sigma\left(x, y, z=\frac{a}{2}\right)=\frac{16 \epsilon_{0} V}{a \pi} \sum_{n, m \text { odd }}^{\infty} \frac{1}{n m} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{a}\right) \tanh \left(\frac{\pi}{2} \sqrt{n^{2}+m^{2}}\right) \sqrt{n^{2}+m^{2}} \tag{14}
\end{equation*}
$$

The functions $\left\{U_{m}(\phi)=A_{m} \sin \left(\frac{m \pi \phi}{\beta}\right)\right\}$ with integer m and arbitrary non-zero constants A_{m} form a complete orthogonal set on the interval $0 \leq \phi \leq \beta$ with Dirichlet BC. Note the analogy of these functions with the complete set of eigenfunctions of a quantum particle in an infinitely deep square well.

Consider the expansion of a function $f(\phi)$ satisfying Dirichlet BC, $f(\phi)=\sum_{m=1}^{\infty} a_{m} U_{m}(\phi)$ with coefficients a_{m}, multiply both sides with $U_{m^{\prime}}(\phi)$ and integrate over ϕ :

$$
\begin{align*}
\int_{0}^{\beta} f(\phi) A_{m^{\prime}} \sin \left(\frac{m^{\prime} \pi \phi}{\beta}\right) d \phi & =\sum_{m=1}^{\infty} a_{m} A_{m} A_{m^{\prime}} \int_{0}^{\beta} f(\phi) \sin \left(\frac{m \pi \phi}{\beta}\right) \sin \left(\frac{m^{\prime} \pi \phi}{\beta}\right) d \phi=a_{m^{\prime}} A_{m^{\prime}}^{2} \frac{\beta}{2} \\
a_{m} & =\frac{2}{\beta A_{m}} \int_{0}^{\beta} f\left(\phi^{\prime}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right) d \phi^{\prime} \tag{15}
\end{align*}
$$

where, for later convenience, we have switched the primes in the second line. Inserting this expression into the expansion of $f(\phi)$,

$$
\begin{aligned}
f(\phi) & =\sum_{m=1}^{\infty}\left\{\frac{2}{\beta A_{m}} \int_{0}^{\beta} f\left(\phi^{\prime}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right) d \phi^{\prime}\right\} A_{m} \sin \left(\frac{m \pi \phi}{\beta}\right) \\
& =\int_{0}^{\beta}\left\{\sum_{m=1}^{\infty} \frac{2}{\beta} \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right) \sin \left(\frac{m \pi \phi}{\beta}\right)\right\} f\left(\phi^{\prime}\right) d \phi^{\prime} \quad \forall \phi
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{2}{\beta} \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right) \sin \left(\frac{m \pi \phi}{\beta}\right)=\delta\left(\phi-\phi^{\prime}\right) \quad, \text { q.e.d. } \tag{16}
\end{equation*}
$$

In Problems 3.2 and 3.3, use of Eq. 3.70 of the textbook is recommended.
It is $\rho\left(\mathbf{x}^{\prime}\right)=\frac{Q}{4 \pi R^{2}} \delta\left(r^{\prime}-R\right)$. Using Eq. 3.70 of the textbook, with $r_{<}=r$ and $r_{>}=r^{\prime}$ for the interior region, it is

$$
\begin{align*}
\Phi(\mathbf{x}) & =\frac{1}{4 \pi \epsilon_{0}} \int \rho\left(\mathbf{x}^{\prime}\right) \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \\
\Phi(\mathbf{x}) & =\frac{1}{4 \pi \epsilon_{0}} \sum_{l, m} \frac{4 \pi}{2 l+1} \frac{Q}{4 \pi R^{2}} \int \delta\left(r^{\prime}-R\right) \frac{r^{l}}{r^{\prime l+1}} Y_{l m}(\theta, \phi) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) r^{\prime 2} d r^{\prime} d \cos \theta^{\prime} d \phi^{\prime} \tag{17}
\end{align*}
$$

Sine the charge density does not depend on ϕ, only terms with $m=0$ occur. Using $Y_{l 0}(\theta, \phi)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta)$ and Eq. 3.28, which integrates to $\int P_{l}(x) d x=\frac{1}{2 l+1}\left(P_{l+1}(x)-P_{l-1}(x)\right)$,

$$
\begin{align*}
\Phi(\mathbf{x}) & =\frac{1}{4 \pi \epsilon_{0}} \sum_{l=0}^{\infty} \frac{Q}{2} \frac{r^{l}}{R^{l+1}} P_{l}(\cos \theta) \int_{\cos \theta=-1}^{\cos \alpha} P_{l}\left(\cos \theta^{\prime}\right) d \cos \theta^{\prime} \\
\Phi(\mathbf{x}) & =\frac{Q}{8 \pi \epsilon_{0}} \sum_{l=0}^{\infty} \frac{r^{l}}{R^{l+1}} P_{l}(\cos \theta) \frac{1}{2 l+1}\left[P_{l+1}(x)-P_{l-1}(x)\right]_{x=-1}^{\cos \alpha} \tag{18}
\end{align*}
$$

Since $P_{l+1}(-1)=(-1)^{l+1}=(-1)^{l-1}=P_{l-1}(-1)$,

$$
\begin{equation*}
\Phi_{\text {interior }}(\mathbf{x})=\frac{Q}{8 \pi \epsilon_{0}} \sum_{l=0}^{\infty} \frac{r^{l}}{R^{l+1}} P_{l}(\cos \theta) \frac{1}{2 l+1}\left[P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)\right] \quad, \text { q.e.d. } \tag{19}
\end{equation*}
$$

Explicit integration of the dubious case $l=0$ shows that our result is correct if we define $P_{-1}(\cos \alpha)=-1$. In the exterior region, choose $r_{<}=r^{\prime}$ and $r_{>}=r$ to find

$$
\begin{equation*}
\Phi_{\text {exterior }}(\mathbf{x})=\frac{Q}{8 \pi \epsilon_{0}} \sum_{l=0}^{\infty} \frac{R^{l}}{r^{l+1}} P_{l}(\cos \theta) \frac{1}{2 l+1}\left[P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)\right] \tag{20}
\end{equation*}
$$

b): The interior radial field $E_{r}=-\frac{\partial}{\partial r} \Phi$ is

$$
\begin{equation*}
E_{r}=\frac{-Q}{8 \pi \epsilon_{0}} \sum_{l=1}^{\infty} \frac{r^{l-1}}{R^{l+1}} P_{l}(\cos \theta) \frac{l}{2 l+1}\left[P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)\right] \tag{21}
\end{equation*}
$$

By symmetry, the field near the origin must point in z-direction. Therefore, the field at the origin is

$$
\begin{aligned}
\mathbf{E}(0) & =\hat{\mathbf{z}} \lim _{r \rightarrow 0} E_{r}(r, \theta=0) \\
& =\left.\hat{\mathbf{z}} \frac{-Q}{8 \pi \epsilon_{0}} \sum_{l=1}^{\infty} \frac{r^{l-1}}{R^{l+1}} \frac{l}{2 l+1}\left[P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)\right]\right|_{r \rightarrow 0}
\end{aligned}
$$

$$
\begin{align*}
& =\hat{\mathbf{z}} \frac{-Q}{8 \pi \epsilon_{0}} \frac{1}{R^{2}} \frac{1}{3}\left[P_{2}(\cos \alpha)-P_{0}(\cos \alpha)\right] \\
& =\hat{\mathbf{z}} \frac{-Q}{8 \pi \epsilon_{0}} \frac{1}{R^{2}} \frac{1}{3}\left[\frac{1}{2}\left(3 \cos ^{2} \alpha-1\right)-1\right] \tag{22}\\
& =\hat{\mathbf{z}} \frac{Q}{16 \pi \epsilon_{0} R^{2}} \sin ^{2} \alpha \tag{23}
\end{align*}
$$

c): Limit of a small cap. For $\alpha \rightarrow 0$ it is $\cos \alpha=1-\frac{1}{2} \alpha^{2}$ and, in the case $l \geq 1$,

$$
\begin{align*}
P_{l+1}\left(1-\frac{1}{2} \alpha^{2}\right)-P_{l-1}\left(1-\frac{1}{2} \alpha^{2}\right) & \approx P_{l+1}(1)-\frac{1}{2} \alpha^{2} P_{l+1}^{\prime}(1)-P_{l-1}(1)+\frac{1}{2} \alpha^{2} P_{l-1}^{\prime}(1) \\
=-\frac{1}{2} \alpha^{2}\left(P_{l+1}^{\prime}(1)-P_{l-1}^{\prime}(1)\right) & =-\frac{1}{2} \alpha^{2}(2 l+1) P_{l}(1) \\
& =-\frac{2 l+1}{2} \alpha^{2}, \tag{24}
\end{align*}
$$

where in the last step we have used Eq. 3.28 of the textbook, $(2 l+1) P_{l}=P_{l+1}^{\prime}-P_{l-1}^{\prime}$.
In the case $l=0$ it is $P_{l+1}\left(1-\frac{1}{2} \alpha^{2}\right)+1=2-\frac{1}{2} \alpha^{2}=2-\frac{2 l+1}{2} \alpha^{2}$. Thus, using $r_{>}=\max (R, r)$ and $r_{>}=\min (R, r)$, the potential in the interior and the exterior region is

$$
\begin{align*}
\Phi(\mathbf{x}) & =\frac{Q}{8 \pi \epsilon_{0}} \sum_{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \theta) \frac{1}{2 l+1}\left(-\frac{2 l+1}{2} \alpha^{2}\right)+\frac{Q}{8 \pi \epsilon_{0}} \frac{1}{r_{>}} \cdot 2 \\
& =\frac{Q}{4 \pi \epsilon_{0} r_{>}}-\frac{Q}{4 \pi \epsilon_{0}} \frac{\alpha^{2} \pi}{4 \pi} \sum_{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \theta) \\
& =\frac{Q}{4 \pi \epsilon_{0} r_{>}}-\frac{Q}{4 \pi \epsilon_{0}} \frac{\alpha^{2} \pi}{4 \pi} \frac{1}{|\mathbf{x}-\hat{\mathbf{z}} R|} \tag{25}
\end{align*}
$$

This is the potential of a homogeneously charged sphere (first term) plus the potential of a charge q located at the north pole of the sphere (second term). The charge q equals $-Q$ times the ratio $\frac{\alpha^{2} \pi}{4 \pi}$ between the solid angle of the cap and the solid angle of a full sphere. This behavior in the limit of a small cap is to be expected.
$\underline{\text { Limit of a large cap. In this case, } \alpha=\pi-\epsilon \text { with } \epsilon \rightarrow 0 . \text { Then, } \cos \alpha \approx \frac{\epsilon^{2}}{2}-1 \text {, and for } l \geq 1 \text { it is }}$

$$
\begin{align*}
P_{l+1}\left(\frac{1}{2} \epsilon^{2}-1\right)-P_{l-1}\left(\frac{1}{2} \epsilon^{2}-1\right) & =(-1)^{l+1}\left[P_{l+1}\left(1-\frac{1}{2} \epsilon^{2}\right)-P_{l-1}\left(1-\frac{1}{2} \epsilon^{2}\right)\right] \\
& \approx(-1)^{l+1}\left(-\frac{\epsilon^{2}}{2}\right)\left(P_{l+1}^{\prime}(1)-P_{l-1}^{\prime}(1)\right) \\
& =(-1)^{l} \frac{2 l+1}{2} P_{l}(1) \epsilon^{2}=(-1)^{l} \frac{2 l+1}{2} \epsilon^{2} \tag{26}
\end{align*}
$$

where Eq. 3.28 of the textbook has been used. In the special case $l=0$, it also is $P_{l+1}\left(\frac{1}{2} \epsilon^{2}-1\right)-P_{l-1}\left(\frac{1}{2} \epsilon^{2}-1\right)=$ $P_{1}\left(\frac{1}{2} \epsilon^{2}-1\right)+1=\frac{1}{2} \epsilon^{2}=(-1)^{l} \frac{2 l+1}{2} \epsilon^{2}$. Thus, the potential in the interior and the exterior region is

$$
\begin{align*}
\Phi(\mathbf{x}) & =\frac{Q}{8 \pi \epsilon_{0}} \sum_{l=0}^{\infty} \frac{1}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \theta)(-1)^{l} \frac{2 l+1}{2} \epsilon^{2} \\
& =\frac{Q}{4 \pi \epsilon_{0}} \frac{\epsilon^{2} \pi}{4 \pi} \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\pi-\cos \theta) \\
& =\frac{Q}{4 \pi \epsilon_{0}} \frac{\epsilon^{2} \pi}{4 \pi} \frac{1}{|\mathbf{x}+\hat{\mathbf{z}} R|} . \tag{27}
\end{align*}
$$

This is the potential of a charge q located at the south pole of the sphere. The charge q equals Q times the ratio $\frac{\epsilon^{2} \pi}{4 \pi}$ between the solid angle of the charged area and the solid angle of a full sphere. This behavior in the limit of a large cap is to be expected.

In both cases of small and large cap, the electric field at the origin is $\mathbf{E}(0)=\hat{\mathbf{z}} \frac{Q \alpha^{2}}{16 \pi \epsilon_{0} R^{2}}$ and $\mathbf{E}(0)=$ $\hat{\mathbf{z}} \frac{Q \epsilon^{2}}{16 \pi \epsilon_{0} R^{2}}$, respectively. This result is consistent with the interpretations of the potentials.

Problem 3.3

5 Points
Hint: A closed expression exists for $\int_{0}^{R} \frac{r^{2 n+1}}{\sqrt{R^{2}-r^{2}}} d r$ (you can find it with Mathematica, for instance).
a): Exterior potential $(r>R)$. The surface charge density is $\sigma(r)=\frac{\lambda}{\sqrt{R^{2}-r^{2}}}$ for $r<R$ and zero otherwise. The volume charge density must be of the form $\rho(\mathbf{x})=f(r) \delta(\cos \theta)$. The function $f(r)$ is determined by considering the charge in a shell of radius r and thickness $d r$:

$$
\begin{equation*}
d q=\sigma(r) 2 \pi r d r=\int_{\phi=0}^{2 \pi} d \phi \int_{\cos \theta=-1}^{1} d \cos \theta r^{2} d r f(r) \delta(\cos \theta)=2 \pi r^{2} f(r) d r \tag{28}
\end{equation*}
$$

and thus $\rho(r)=\frac{\sigma(r)}{r} \delta(\cos \theta)$. To find λ, we calculate the potential at the origin and equate the result to V :

$$
\begin{equation*}
V=\Phi(0)=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{R} \frac{\lambda}{r \sqrt{R^{2}-r^{2}}} 2 \pi r d r=\frac{\lambda}{2 \epsilon_{0}}\left[\sin ^{-1}\left(\frac{r}{R}\right)\right]_{0}^{R}=\frac{\lambda \pi}{4 \epsilon_{0}} \tag{29}
\end{equation*}
$$

Thus, $\lambda=\frac{4 \epsilon_{0} V}{\pi}$, and $\rho(r)=\frac{4 \epsilon_{0} V}{\pi r \sqrt{R^{2}-r^{2}}} \delta(\cos \theta)$. Using Eq. 3.70 of the textbook for the case $r>R$ we have $r_{>}=r$ and $r_{<}=r^{\prime}$, and we find

$$
\begin{aligned}
\Phi(\mathbf{x}) & =\frac{1}{4 \pi \epsilon_{0}} \frac{4 \epsilon_{0} V}{\pi} \sum_{l, m} \frac{4 \pi}{2 l+1} Y_{l m}(\theta, \phi) \frac{1}{r^{l+1}} \iiint r^{\prime l} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) \frac{1}{r^{\prime} \sqrt{R^{2}-r^{\prime 2}}} \delta\left(\cos \theta^{\prime}\right) r^{\prime 2} d \cos \theta^{\prime} d \phi^{\prime} d r^{\prime} \\
& =\frac{V}{\pi^{2}} \sum_{l} P_{l}(\cos \theta) \frac{2 \pi}{r^{l+1}} \iint r^{\prime l+1} P_{l}\left(\cos \theta^{\prime}\right) \frac{1}{\sqrt{R^{2}-r^{\prime 2}}} \delta\left(\cos \theta^{\prime}\right) d \cos \theta^{\prime} d r^{\prime} \\
& =\frac{2 V}{\pi} \sum_{l} \frac{1}{r^{l+1}} P_{l}(\cos \theta) P_{l}(0) \int_{0}^{R} \frac{r^{\prime l+1}}{\sqrt{R^{2}-r^{\prime 2}}} d r^{\prime} \\
& =\frac{2 V}{\pi} \sum_{n=0}^{\infty} \frac{1}{r^{2 n+1}} P_{2 n}(\cos \theta) \frac{(-1)^{n}(2 n-1)!!}{2^{n} n!} \int_{0}^{R} \frac{r^{\prime l+1}}{\sqrt{R^{2}-r^{\prime 2}}} d r^{\prime}
\end{aligned}
$$

Using integral tables or software, it is found that $\int_{0}^{R} \frac{r^{l+1}}{\sqrt{R^{2}-r^{2}}} d r=R^{2 n+1} \frac{n!2^{n}}{(2 n+1)!!}$, and thus

$$
\begin{equation*}
\Phi_{\mathrm{r}>\mathrm{R}}(\mathrm{x})=\frac{2 V}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\frac{R}{r}\right)^{2 n+1} P_{2 n}(\cos \theta) \quad, \text { q.e.d. } \tag{30}
\end{equation*}
$$

b): Interior potential $(r<R)$. On the surface $r=R$ the expansions for $r>R$ and $r<R$ must agree, i.e. the respective coefficient functions $B_{l} r^{-l-1}$ and $A_{l} r^{l}$ of the $P_{l}(\cos \theta)$ must be equal for $r=R$ and for all l. Thus, the interior coefficients $A_{l}=B_{l} R^{-2 l-1}$. Here, $l=2 n$ and $A_{2 n}=B_{2 n} R^{-4 n-1}=R^{2 n+1} R^{-4 n-1}=R^{-2 n}$. Thus,

$$
\begin{equation*}
\Phi_{\mathrm{r}<\mathrm{R}}(\mathbf{x})=\frac{2 V}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\frac{r}{R}\right)^{2 n} P_{2 n}(\cos \theta) \tag{31}
\end{equation*}
$$

With $r_{<}=\min (r, R)$ and $r_{>}=\max r, R$ the potential in all space can be written as

$$
\begin{equation*}
\Phi_{\text {everywhere }}(\mathbf{x})=\frac{2 V R}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \frac{r_{<}^{2 n}}{r_{>}^{2 n+1}} P_{2 n}(\cos \theta) \tag{32}
\end{equation*}
$$

c): The capacitance is $C=\frac{Q}{V}$. From part a), we know that $V=\frac{\lambda \pi}{4 \epsilon_{0}}$. The total charge Q on the disk is obtained as

$$
\begin{equation*}
Q=\int_{0}^{R} \frac{\lambda}{\sqrt{R^{2}-r^{2}}} 2 \pi r d r=2 \pi \lambda\left[-\sqrt{R^{2}-r^{2}}\right]_{0}^{R}=2 \pi \lambda R \tag{33}
\end{equation*}
$$

Thus, $C=\frac{Q}{V}=2 \pi \lambda R \frac{4 \epsilon_{0}}{\lambda \pi}$, and $C=8 R \epsilon_{0}$.

