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Problem Set 2

Problem 1.17 5 Points

a): There are n conductors with surfaces Si, potentials Vi and charges Qi (i = 1, ..., n). Assume that there
is only one conductor with non-zero potential. Call the index of that conductor k, its potential V , and its
charge Q.
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Setting V=1, we have QV = CV 2 = C with capacitance C, and therefore C = ε0
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b): Write Ψ = Φ+δψ, with Φ being the exact solution for the potential, and δψ being the difference between
the test function Ψ and Φ. Note that δψ = 0 on all surfaces Si.
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Thus, for all Ψ satisfying the boundary conditions it is C ≤ ε0
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Problem 1.22 5 Points

For a well-behaved function f(x, y), the k-th order Taylor expansion around (x0, y0) is
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a): Cross average. Since either (x− x0) or (y− y0) is zero (while the other one ±h), the only non-vanishing
terms are ones in which either n = 0 or m = 0. Using Fx = ∂
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and the cross sum evidently is
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b): Square sum. It is easily seen that due to cancellations in the square sum only terms in Eq. 2 contribute
with both m and n even. Thus, it is:
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where the ... stand for terms that cancel when performing the square sum, and C6 for a 6-th order coefficient.
Thus,
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Note: An improved average (=sum/4) can be defined as follows:
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For functions F that are solutions of the Laplace equation all correction terms up to and excluding the O(h6)
vanish. In a charged space with charge density ρ(x), the expressions
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with ρc being the cross average of the charge density, can be inserted into Eq. 8, yielding an equation that
can be resolved for F (0, 0). This procedure and a consideration of the error in the second equation of Eq. 9
lead to Equation 1.82 in the textbook.



Problem 2.1 5 Points

A charge q is located at x′ = dx̂, at a distance d from a conducting surface formed by the x = 0 plane. In
the volume of interest, x > 0, the field is that of the original charge and a charge −q at location x1 = −dx̂.

a): In the yz-plane it is E = Exx̂ = − 2qd

4πε0
√

d2+ρ2
3 x̂ with ρ =

√
x2 + y2. Since x̂ coincides with the normal

vector of the conducting surface, the charge density is

σ(ρ) = ε0Ex = − qd

2π
√

d2+ρ2
3 .

b): The force is attractive, and is F = − q2

16πε0d2 x̂ .

c): The electrostatic pressure is σ2

2ε0
n̂, where the normal vector of the surface n̂ = x̂. Thus,

F = x̂
q2d2

8π2ε0

∫ ∞

0

2πρ dρ

(d2 + ρ2)3
= x̂

q2d2

4π2ε0

[
− 1

4(d2 + ρ2)2

]∞

0

= x̂
q2

16πε0d2
, (10)

which is the negative of the result of b) (as expected).

d): The work to be done to move the charge from its location to infinity is
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e): The potential energy between charge and image charge is Wpot = − q2

8π2ε0d , which is not equal to −W ,
as one might naively expect, but equal to −2W . The customary interpretation of the factor 2 is that in the
image problem the field fills all space and is symmetric about the x = 0 plane, while in the real problem the
field only fills the half-space x > 0. Therefore, the potential energy in the image problem can be expected
to be twice that of the image problem. Generally, calculations of electrostatic energy are not directly
transferrable from image to real problems, because the motion of real charges usually implies a motion of
the respective image charge(s). The latter motion matters in the electrostatic energy of the image problem,
while it does not in the electrostatic energy of the real problem. In contrast, potentials, forces and fields in
the volume of interest are same for the real and the image problem.

f): For q = −e and d = 10−10m it is W = 3.6eV . This energy is substantial. Note that it corresponds to
the work function of typical metals.



Problem 2.2 5 Points

We consider the problem of a charge q inside a grounded, thin conducting shell with radius a. The calculation
of the size and the location of the image charge is analogous to the case of a charge outside a grounded
conducting sphere covered in the textbook (swap primed and unprimed variables). For a distance y < a of
the charge from the center of the sphere, the image charge q′ = −q a

y is located at a distance y′ = y a2

y > a.
The angle between the vector from the center of the sphere to the observation point and the vector from the
center of the sphere to either charge is denoted γ.

a): The potential at a location x characterized by a radial coordinate x and angle γ is
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b): The charge density is the negative of Eq. 2.5 in the textbook,
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c): The force is radially outward and given by
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d): In the following, we identify quantities obtained for the case of a grounded sphere with a subscript I.

Sphere on potential V : Add all charge densities and the potentials of the solutions of the following
problems: I=grounded sphere with charge q inside. II=sphere on potential V and no charge inside. The
solution of case II is a constant potential V in the shell and its entire interior, because conductors with
charge-free internal cavities are equipotential volumes. Outside the shell, the potential of case II drops as
1
x . The sum of the charge densities of case I and II, and the sum of the potentials, Φ = ΦI + ΦII , satisfy
the boundary conditions. That is: the sums produce the correct internal charge distribution and the correct
potential on the boundary, respectively. Also, due to the superposition principle, the sum potential and the
sum charge distribution are a solution of the Poisson equation. Due to the uniqueness theorem, this must
be the only solution for the given surface potential V and the given charge distribution in the volume of
interest.

In the conductor and its interior cavity the potential is Φ = ΦI +ΦII , i.e. Φ = ΦI + V . The charge density
induced on the inner surface is σ = σI , since in case II there are no surface charges on the inner surface
at all. The internal electric fields derived from Φ and ΦI are the same, and thus the forces on the charge q

are the same, F = FI .

Sphere with total charge Q: Again, we think of two solutions and form their sum. Case I is as before. In
case I, the total surface charge induced on the inner surface of the shell is −q (think of a Gaussian surface
between inner and outer surface of the conducting shell). Also, in case I there is no charge on the outer



surface of the shell, because the shell is grounded and, lacking any further information, the exterior potential
must be assumed to be zero as well. Case II is a shell with a total charge Q′ = Q + q and no charge inside.
The charge Q′ evenly distributes on the outer surface of the shell; there is no surface charge on the inner
surface of the shell. The potential of case II is V = Q+q

4πε0a .

The solution for the case of a shell with total charge Q and internal charge q is given by summing the
potential and the charge distributions of case I and II. Inside the shell it is Φ = ΦI + V = ΦI + Q+q

4πε0a .

The charge density induced on the inner surface is σ = σI , since in case II there are no surface charges
in the inner surface. (The problem doesn’t ask for the charge density on the outer surface; it would be
σouter = Q+q

4πa2 .) The forces on the charge q are the same, F = FI .



Convergence speed of relaxation methods. 5 Points

We consider a two-dimensional square region with three sides on zero potential, and one side on unit potential
V = 1. Use a square grid of 21x21 potential values, {V (i, j), i = 0, 1, 2...20, j = 0, 1, 2...20}. The grid includes
the boundaries, and all internal points are initialized to zero.

a): We use the Jacobian iteration of “cross averages”, as defined in Eq. 1.80a of the textbook, and consider
how the potential at the mid point, V (10, 10), changes from one iteration to the next. A piece of Fortran
code that does this is:

C flag1=1 will indicate that the desired accuracy level has been reached.
C n is a counter for the iteration index

flag1=0
n=0

C Initialize potential array
DO i=0,20
DO j=0,20
potold(i,j)=0d0
potnew(i,j)=0d0
ENDDO
ENDDO
vold=potold(10,10)

C Initialize one side of potential array to 1
DO i=0,20
potold(20,i)=1d0
potnew(20,i)=1d0
ENDDO

C Begin iteration loop
DO WHILE ((n.LT.2000).AND.(flag1.EQ.0))

C Calculate new potentials
DO i=1,19
DO j=1,19
r1=(potold(i-1,j) + potold(i,j-1) + potold(i+1,j) + potold(i,j+1))
potnew(i,j)=r1/4d0
ENDDO
ENDDO
vnew=potnew(10,10)

C Check for termination condition
IF (ABS(vold.LT.1d-10)) vold=1d-10
IF ((ABS((vnew-vold)/vold).LT.1d-5).AND.(n.GT.15).AND.(flag1.EQ.0))THEN
WRITE (*,’(A,X,I4,A,F10.7)’) ’Hit accuracy of 10ˆ-5 at iteration:’,n,’ V=’,vnew
flag1=1
ENDIF

C Replace old potentials by new potential
DO i=1,19
DO j=1,19
potold(i,j)=potnew(i,j)
ENDDO
ENDDO
vold=vnew



C Increment iteration counter
n=n+1

C End iteration loop
ENDDO

During the first few iterations, the potential at the center does not change yet. To ensure that the potential
at the center has begun to change, in the termination condition we check for n > 15.

Result: Reached accuracy of 10−5 at iteration: 613 pot(10,10)=0.24979

Note that the exact potential at the center is 1/4.

b): The computation is repeated using the Gauss-Seidel iteration of “cross averages”. The changes in the
program are that instead of two only one potential array is used, and that the potential values are replaced
at the time when they are calculated. Think about why in the case of the Gauss-Seidel iteration there is
a slight dependence of the convergence speed on which potential side is initialized to 1. Typical results,
obtained with initializing different sides to V = 1, are:

Result 1: Reached accuracy of 10−5 at iteration: 340 pot(10,10)=0.24990
Result 2: Reached accuracy of 10−5 at iteration: 331 pot(10,10)=0.24990

c): The convergence of the Gauss-Seidel iteration is accelerated using the hyper-relaxation method. While
the plain Gauss-Seidel iteration uses the cross-average replacement

pot(i, j) =
1
4

(pot(i + 1, j) + pot(i− 1, j) + pot(i, j + 1) + pot(i, j − 1)) , (15)

the hyper-relaxation method with hyper-relaxation parameter p operates as follows:

r1 =
1
4

(pot(i + 1, j) + pot(i− 1, j) + pot(i, j + 1) + pot(i, j − 1))

pot(i, j) = pot(i, j) + p (r1− pot(i, j)) , (16)

where r1 is an auxiliary variable. Using the hyper-relaxation method defined in Eq. 16, the following results
are obtained:

p=1.00 Accuracy 10−5 at iteration 340 pot(10,10)=0.24990
p=1.10 Accuracy 10−5 at iteration 285 pot(10,10)=0.24992
p=1.20 Accuracy 10−5 at iteration 237 pot(10,10)=0.24993
p=1.30 Accuracy 10−5 at iteration 196 pot(10,10)=0.24994
p=1.40 Accuracy 10−5 at iteration 159 pot(10,10)=0.24995
p=1.50 Accuracy 10−5 at iteration 126 pot(10,10)=0.24997
p=1.60 Accuracy 10−5 at iteration 094 pot(10,10)=0.24997
p=1.70 Accuracy 10−5 at iteration 061 pot(10,10)=0.24998
p=1.80 Accuracy 10−5 at iteration 046 pot(10,10)=0.25003
p=1.90 Accuracy 10−5 at iteration 102 pot(10,10)=0.25000
p=2.00 Accuracy 10−5 at iteration 016 pot(10,10)=0.50000



Considering the potential value obtained for p = 2.0 and inspecting the whole potential grid obtained for
that p, it is seen that for p = 2.0 the method fails, and that the small number of iterations listed for p = 2.0
is a fluke.

The following addendum to part c) of the problem is not required to obtain full score.

Using the maximum relative change of the potential over the whole grid as an improved figure of merit, we
obtain

p=1.00 Accuracy 10−5 at iteration 381 pot(10,10)=0.24996
p=1.10 Accuracy 10−5 at iteration 320 pot(10,10)=0.24997
p=1.20 Accuracy 10−5 at iteration 268 pot(10,10)=0.24997
p=1.30 Accuracy 10−5 at iteration 222 pot(10,10)=0.24998
p=1.40 Accuracy 10−5 at iteration 182 pot(10,10)=0.24998
p=1.50 Accuracy 10−5 at iteration 145 pot(10,10)=0.24999
p=1.60 Accuracy 10−5 at iteration 111 pot(10,10)=0.24999
p=1.70 Accuracy 10−5 at iteration 075 pot(10,10)=0.24999
p=1.80 Accuracy 10−5 at iteration 082 pot(10,10)=0.25000
p=1.90 Accuracy 10−5 at iteration 161 pot(10,10)=0.25000

In this list, p = 2.00 does not show up any more because, due to oscillations, no convergence is achieved.

d): Due to the immediate updating of the potential values, the Gauss-Seidel iteration converges about a
factor two faster than the Jacobi iteration. Also, 50% in memory is saved (which may matter in large
problems). The hyper-relaxation method requires - for the best choice of the hyper-relaxation parameter
p = 1.8 - about a factor seven fewer iterations than the plain Gauss-Seidel method, and at most 50% more
operations in one potential-value computation, leading to an overall gain of a factor four to five in efficiency.
One could, of course, time the various methods against each other to obtain direct speed comparisons.

Total 25 Points


